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Relativistic Equation of State with Short Range Correlations
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Short range correlations are introduced using unitary correlation method in a relativistic approach to the
equation of state of the infinite nuclear matter in the framework of the Hartree-Fock approximation. The effect
of the correlations in the ground state properties of the nuclear matter is studied.

In this paper we introduce short range correlations in a rewhere
lativistic approach to the description of nuclear matter for the
first time. Although there are several procedures which may V(r) = ’ V()
be used to introduce short range correlations into the model art am
wave function, we work with the unitary operator method as

roposed by Villars [1]. There are several advantages in usinanda are the Dirac-matrices. In the abowg/s the nucleon
gn Enitar Kwodel o efator In particular. one au?omaticall Held interacting through the scalar and vector potentials. The
y P ' P ' Yequal time quantization condition for the nucleons is given by

guarantees that the correlated state is normalized. The gener%
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idea of introducing short range correlations in systems with %t O = 828X — 4
short range interactions exists for a long time [2, 3] but has WX, Wp(5:1) ]+ = Bupd(X =), “)
not been pursued for the relativistic case. wherea and refer to the spin indices. The field expansion

Nonrelativistic calculations based on realistic NN potenti-for the nucleongs at time t=0 is given by [8]
als predict equilibrium points that are not able to describe si- 1
multaneously the correct binding energy and saturation den- _ = [ AV DAt } k%
sity; either the saturation density is correct but the binding Wx) \/V; Ur(k)cf=k+vr( k)crfR e ®)
energy is too small, or the correct binding energy is obtained '
at atoo high density [4]. In order to solve this problem a repul-whereU, andV; are
sive potential or density-dependent repulsive mechanism [5]
is included. Due to Lorentz covariance and self-consistency, .
relativistic mean field theories [6] include automatically con- Un (K) — cos&zk) i
tributions which are equivalent tewbody repulsive potentials r(k) = 6-Rsinx® s
in non-relativistic approaches.

In non-relativistic models the interaction arises from the in-

terplay between a long range attraction and a very strong short . &.ksin x(K)
range repulsion and it is indispensable to take short range cor- Vi (—k) = (@) vy (6)
relations into account. In relativistic mean field models, the C0s;

parameters are phenomenological, fitted to the saturation pro- . . .

perties of nuclear matter. Short range correlation effects mafor free spinor fields, we hawsy (k) = M/g(k), sinx(k) =

be included to some extent in the model parameters. Howevelk| /e(k) with e(K) = VK2+M2.  However, we wil
we want to study the consequences of taking these effects inifeal with interacting fields so that we take the ansatz
account explicitly [7]. cosx (k) = M* (k) /e* (K), sinx(k) = [k*| /e*(k), with &*(k) =

We start with the effective Hamiltonian as ~2 - . . ]
\/ k" +M*2(k), wherek* and M*(k) are the effective mo-
mentum and effective mass, respectively. The equal time anti-

z - e
commutation conditions are

H= h(X)(~it-0+BM)epwp(%) dx

+

[Cr,R’ CS’R/]Jr = 6r55R’R/ = [q’R,éS’RJJr. )

Z
+} LIJE((X)wJ(y)VuB,yé(W_VDLIJB(V)LDB(X) dxdy (1) The vacuum| 0) is defined through:rﬁ |0) = EIR | 0) =0;

2 a ,
one-particle states are writtéR,r) = chR | 0); two-particle
with and three-particle uncorrelated states are written, respecti-
L vely as|k,r;K,r') = CTR c o | 0), and [k r; K ' Ky =
Vopys(r) = (B)ag(B)yaVo(r) + (Bapdys — Gop - Oys) Vao(r) vt S

@  CiCix S | 0), and so on.
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We now introduce the short range correlation through amange correlations is the replacement, in the expression for
unitary operator method. The correlated wave function[9] isthe ground-state energy, of the interaction matrix element
W) = é9|d) where|®) is a Slater determinant ar@ is, in (K, r; K, 1 Va2fk, 1K, 1) by (K 1K 1 Vag+ty + oK, K 1) —
general, an-body Hermitian operator, splitting into a 2-body
part, a 3-body part, etc.. The expectation valuélaé

(k,r;K 'ty + o]k, r; K, r'), wheret; is the kinetic energy ope-
rator of particlei. As argued by Moszkowski [11] and Bethe
WHIW)  (Dle @ H &2|) [12],itis expected_ t_hat the true_grouno_l-st_ate wave fu_nction of

= (8)  the nucleus containing correlations coincide with the indepen-
(W|w) (®|®) dent particle, or Hartree-Fock wave function, for interparticle
distances > rpea, Whererpea ~ 1 fm is the so-called “healing
glstance This behavior is a consequence of the constraints
Imposed by the Pauli Principle. A natural consequence of ha-
ving the correlations introduced by an unitary operator is the
occurrence of a normalization constraint tm),

e_{

In the present calculation, we only take into account two-
body correlations. Let us denote the two-body correlated wavi
function by

k,r;K, 1) = &2k r;K,r') ~ frolk,r;K, ') 9)
Z
where f1, is the short range correlation factor, the so-called (f2(r)—1) d® =0. (10)
Jastrow factor [10]. For simplicity, we considép = f(F12),
Fip =T —Tp, and f(r) =1— (a+Pr) e wherea, B
and y are parameters. The important effect of the short The correlated ground state energy becomes

) - -
£ = % , " K2 dk [JK| sinx (k) + Mcosx(K)] + E‘T(())p§+F‘*’2(O) P3
Z
4 2 2 : / /
- T o "2 dk K2 dK {[|k|smx +2Mcosx(k)}l(k,k’)+|k| smx(k)J(k,k)}
Zy
+ = 7 fkdkl{dl([ > Ai(kK)+cosx(kjcosx(K) 5 Bi(kK)+sinx(k)sinx(K) 3 Ci(k,k’)]
(21'[) i=0,w i=0,w i=0,w

(11)

whereA;, B;, G , | andJ are exchange integrals. In the above
equation for the energy density, the first term results from the 0
kinetic contribution, the second and third terms come respec-
tively from theo andw direct contributions from the potential

energy with correlations, the fourth from the exchange
correlation contribution from the kinetic energy, and the last £ -6
one from theo 4+ w exchange contributions from the potential 8
energy with correlations. The direct correlation contribution
is zero due to (10). The angHIar integrals are given by

Ak K) = Bi(kK) = ZE[ g?/41m 'dcosd F(k k',cosB), -2 i
Ci(kK) = ZAL g?/4m Qcose dcose Fi(k,K,cosh), h - = - = ]
I(lﬁ,{k’) = 2n OT‘d~cose Ci(k,K,cosB), and J(kK) = r (fm)
21 ;'cosd dcosh Cy (k, K, cosd), where
FIG. 1: The correlation functiofi(r).
Z

ERK) = [FnV(r) ()] &FTgr

z
and Cl(_R,R’) _ (fz(r) —1) ei(R—R’)f dr. (12) The couplinghys, 9., the meson massesy; andm,, and _
also three more parameters from the short range correlation

The baryon density and the scalar density are function, a, B andy have to be fixed. The couplings are cho-
sen so as to satisfy the ground state properties of the nuclear
matter. We choosmy; = 550MeV and takem, = 783 MeV.
The normalization condition (10) determin@s We fix a by
(13) minimizing the energy. For the parametgeive consider a

2v Lk 2vi3 2y £k

27 o dk= e pS:(2n)3 . cosx (k) dk
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TABLE I: Parameters and ground state properties of nuclear matter at saturation density are given. These results were obtained with fix
M = 939MeV mg = 550MeV, my, = 783MeV atkro = 1.3 fm~1 with binding energyEg = £/p — M = —15.75MeV. We have used a density
dependent parameter (HF+coyr)- 600+ 400kr /keo MeV for the correlation.

9o 9o a B y K M*/M  T/pg—M  u/ps  Ve/ps  T/pe
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
Hartree 11.079  13.806 540 0.540 8.11 -23.86
HF 10432  12.223 585 0.515 5.87 -37.45 15.83
HF+corr  4.4559  2.6098  13.855  -2252.448 1000 429. 0.625 15.95 -73.12 20.46 19.96

function which increases linearly with the Fermi momentum,of the same order of magnitude of the other terms in the energy

of the formy = a; + a>kr /kro Wherea; anday are free pa- per particle. Hence, they cannot be disregarded.

rameters. This is consistent with the idea that the healing dis-

tance decreases ks increases. 25
The correlation functiorf (r) is plotted in Fig. 1 as a func- T Hartree

tion of the relative distance. The inclusion of correlations in- 2| Hpecorr

troduces an extra node in the ground-state wave-function con- 5oy

trary to what generally happens in non-relativistic calculations

with a hard core. In this case the wave function has a wound.

The quantities cdy (k) /2) and sir{x(k)/2) are plotted in Fig.

2. They show how the interaction and correlations make the

wave-function deviate from the free wave-function, represen-

ted by a dotted line. The correlated anglg) lies between

the Hartree-Fock(HF) and the free wavefunction angles. As

a consequence, we will see that the correlated effective mass

will not decrease so fast with density as the HF effective mass.
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FIG. 2 The variational anglg(k) .
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In table I, we have tabulated the parameters used in our olpo

calculation together with the compressibili; the relative
effective mas$/1* /M, the kinetic energy /pg — M, the direct
and exchange parts of the potential enerly/ps and1./ps
respectively) with correlation and the correlation contribution We have computed the binding energies as function of
to the kinetic energy7“/pg, all calculated at the saturation the density for the Hartree, HF and HF+Corr and compared
point. Notice that a HF calculation produces an EOS whichwith the quark-meson-coupling model (QMC) [13] and a non-
is stiffer than the one obtained at the Hartree level. Howevedjnear Walecka model NL3 [14], as can be seen from Fig. 3.
the inclusion of correlations gives a larger effective mass thafhe inclusion of correlations make the equation of state (EOS)
both Hartree and HF calculations and a softer EOS. In factsofter than Hartree or HF calculations. NL3 and QMC also
the contribution of direct and exchange correlation terms argrovide softer EOS around nuclear matter saturation density

FIG. 4 Effective mass as a function of density.
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but around two times saturation density, the EOS with corretening the EOS.

lations is softer than NL3. In Fig. 4 we plot the effective mass

as a function of density. If correlations are included the effec-

tive mass does not decrease so fast with the increase of density

as in a Hartree or, even worse, HF calculation. This explains ACKNOWLEDGMENTS

the softer behavior of the EOS with correlations. This work was partially supported by CNPq (Bra-
We conclude referring that, although correlation effects inzil), CAPES (Brazil)/GRICES (Portugal) under project

the Hartree and HF calculations may be taken partially intdl00/03, FEDER and FCT (Portugal) under the pro-

account by a correct choice of the coupling constants, the ejects POCTI/FP/FNU/50326/2003, POCTI/FIS/451/94 and
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