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Relativistic Equation of State with Short Range Correlations
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Short range correlations are introduced using unitary correlation method in a relativistic approach to the
equation of state of the infinite nuclear matter in the framework of the Hartree-Fock approximation. The effect
of the correlations in the ground state properties of the nuclear matter is studied.

In this paper we introduce short range correlations in a re-
lativistic approach to the description of nuclear matter for the
first time. Although there are several procedures which may
be used to introduce short range correlations into the model
wave function, we work with the unitary operator method as
proposed by Villars [1]. There are several advantages in using
an unitary model operator. In particular, one automatically
guarantees that the correlated state is normalized. The general
idea of introducing short range correlations in systems with
short range interactions exists for a long time [2, 3] but has
not been pursued for the relativistic case.

Nonrelativistic calculations based on realistic NN potenti-
als predict equilibrium points that are not able to describe si-
multaneously the correct binding energy and saturation den-
sity; either the saturation density is correct but the binding
energy is too small, or the correct binding energy is obtained
at a too high density [4]. In order to solve this problem a repul-
sive potential or density-dependent repulsive mechanism [5]
is included. Due to Lorentz covariance and self-consistency,
relativistic mean field theories [6] include automatically con-
tributions which are equivalent ton-body repulsive potentials
in non-relativistic approaches.

In non-relativistic models the interaction arises from the in-
terplay between a long range attraction and a very strong short
range repulsion and it is indispensable to take short range cor-
relations into account. In relativistic mean field models, the
parameters are phenomenological, fitted to the saturation pro-
perties of nuclear matter. Short range correlation effects may
be included to some extent in the model parameters. However,
we want to study the consequences of taking these effects into
account explicitly [7].

We start with the effective Hamiltonian as

H =
Z

ψ†
α(~x)(−i~α ·~∇+βM)αβψβ(~x) d~x

+
1
2

Z
ψ†

α(~x)ψ†
γ(~y)Vαβ,γδ(|~x−~y|)ψδ(~y)ψβ(~x) d~x d~y (1)

with

Vαβ,γδ(r) = (β)αβ(β)γδVσ(r)+
(
δαβδγδ−~ααβ ·~αγδ

)
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where

Vσ(r) =−g2
σ

4π
e−mσr

r
, Vω(r) =

g2
ω

4π
e−mωr

r
, (3)

and~α are the Dirac-matrices. In the above,ψ is the nucleon
field interacting through the scalar and vector potentials. The
equal time quantization condition for the nucleons is given by

[ψα(~x, t),ψβ(~y, t)
†]+ = δαβδ(~x−~y), (4)

whereα andβ refer to the spin indices. The field expansion
for the nucleonsψ at time t=0 is given by [8]

ψ(~x) =
1√
V

∑
r,k

[
Ur(~k)cr,~k +Vr(−~k)c̃†

r,−~k

]
ei~k·~x, (5)

whereUr andVr are
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(
cosχ(~k)

2
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2

)
ur ;
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(
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2

cosχ(~k)
2

)
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For free spinor fields, we havecosχ(~k) = M/ε(~k), sinχ(~k) =
|~k|/ε(~k) with ε(~k) =

√
~k2 +M2. However, we will

deal with interacting fields so that we take the ansatz
cosχ(~k) = M∗(~k)/ε∗(~k), sinχ(~k) = |~k∗|/ε∗(~k), with ε∗(~k) =√

~k∗
2
+M∗2(~k), where~k∗ and M∗(~k) are the effective mo-

mentum and effective mass, respectively. The equal time anti-
commutation conditions are

[cr,~k,c
†
s,~k′

]+ = δrsδ~k,~k′ = [c̃r,~k, c̃
†
s,~k′

]+ . (7)

The vacuum| 0〉 is defined throughcr,~k | 0〉 = c̃†
r,~k
| 0〉 = 0;

one-particle states are written|~k, r〉 = c†
r,~k
| 0〉; two-particle

and three-particle uncorrelated states are written, respecti-
vely as |~k, r;~k′, r ′〉 = c†

r,~k
c†

r ′,~k′
| 0〉, and |~k, r;~k′, r ′;~k′′, r ′′〉 =

c†
r,~k

c†
r ′,~k′

c†
r ′′,~k′′

| 0〉, and so on.
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We now introduce the short range correlation through an
unitary operator method. The correlated wave function[9] is
|Ψ〉 = eiΩ|Φ〉 where|Φ〉 is a Slater determinant andΩ is, in
general, an-body Hermitian operator, splitting into a 2-body
part, a 3-body part, etc.. The expectation value ofH is

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

〈Φ|e−iΩ H eiΩ|Φ〉
〈Φ|Φ〉 . (8)

In the present calculation, we only take into account two-
body correlations. Let us denote the two-body correlated wave
function by

|~k, r;~k′, r ′〉= eiΩ|~k, r;~k′, r ′〉 ≈ f12|~k, r;~k′, r ′〉 (9)

where f12 is the short range correlation factor, the so-called
Jastrow factor [10]. For simplicity, we considerf12 = f (~r12),
~r12 = ~r1 −~r2, and f (r) = 1− (α + βr) e−γr where α, β
and γ are parameters. The important effect of the short

range correlations is the replacement, in the expression for
the ground-state energy, of the interaction matrix element

〈~k, r;~k′, r ′|V12|~k, r;~k′, r ′〉 by 〈~k, r;~k′, r ′|V12+ t1+ t2|~k, r;~k′, r ′〉−
〈~k, r;~k′, r ′|t1 + t2|~k, r;~k′, r ′〉, whereti is the kinetic energy ope-
rator of particlei. As argued by Moszkowski [11] and Bethe
[12], it is expected that the true ground-state wave function of
the nucleus containing correlations coincide with the indepen-
dent particle, or Hartree-Fock wave function, for interparticle
distancesr ≥ rheal, whererheal≈ 1 fm is the so-called “healing
distance”. This behavior is a consequence of the constraints
imposed by the Pauli Principle. A natural consequence of ha-
ving the correlations introduced by an unitary operator is the
occurrence of a normalization constraint onf (r),

Z
( f 2(r)−1) d3r = 0. (10)

The correlated ground state energy becomes
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(11)

whereAi , Bi , Ci , I andJ are exchange integrals. In the above
equation for the energy density, the first term results from the
kinetic contribution, the second and third terms come respec-
tively from theσ andω direct contributions from the potential
energy with correlations, the fourth from the exchange
correlation contribution from the kinetic energy, and the last
one from theσ+ω exchange contributions from the potential
energy with correlations. The direct correlation contribution
is zero due to (10). The angular integrals are given by
Ai(k,k′) = Bi(k,k′) = 2π g2

i /4π
R π

0 dcosθ F̃i(k,k′,cosθ),
Ci(k,k′) = 2π g2

i /4π
R π

0 cosθ dcosθ F̃i(k,k′,cosθ),
I(k,k′) = 2π

R π
0 dcosθ C̃1(k,k′,cosθ), and J(k,k′) =

2π
R π

0 cosθ dcosθ C̃1(k,k′,cosθ), where

F̃i(~k,~k′) =
Z

[ f (r)Vτ(r) f (r)] ei(~k−~k′)·~r d~r

and C̃1(~k,~k′) =
Z

( f 2(r)−1) ei(~k−~k′)·~r d~r. (12)

The baryon density and the scalar density are
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2 ν

(2π)3

Z kf

0
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2 ν k3
f

6π2 , ρs =
2 ν

(2π)3

Z kf

0
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(13)
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FIG. 1: The correlation functionf (r).

The couplingsgσ, gω, the meson masses,mσ andmω and
also three more parameters from the short range correlation
function,α, β andγ have to be fixed. The couplings are cho-
sen so as to satisfy the ground state properties of the nuclear
matter. We choosemσ = 550MeV and takemω = 783MeV.
The normalization condition (10) determinesβ. We fix α by
minimizing the energy. For the parameterγ we consider a
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TABLE I: Parameters and ground state properties of nuclear matter at saturation density are given. These results were obtained with fixed:
M = 939MeV mσ = 550MeV, mω = 783MeV atkF0 = 1.3 fm−1 with binding energyEB = ε/ρ−M =−15.75MeV. We have used a density
dependent parameter (HF+corr)γ = 600+400kF/kF0 MeV for the correlation.

gσ gω α β γ K M∗/M T /ρB−M Vd/ρB Ve/ρB T C/ρB
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

Hartree 11.079 13.806 540 0.540 8.11 -23.86
HF 10.432 12.223 585 0.515 5.87 -37.45 15.83

HF+corr 4.4559 2.6098 13.855 -2252.448 1000 429. 0.625 15.95 -73.12 20.46 19.96

function which increases linearly with the Fermi momentum,
of the formγ = a1 + a2kF/kF0 wherea1 anda2 are free pa-
rameters. This is consistent with the idea that the healing dis-
tance decreases askF increases.

The correlation functionf (r) is plotted in Fig. 1 as a func-
tion of the relative distance. The inclusion of correlations in-
troduces an extra node in the ground-state wave-function con-
trary to what generally happens in non-relativistic calculations
with a hard core. In this case the wave function has a wound.
The quantities cos(χ(k)/2) and sin(χ(k)/2) are plotted in Fig.
2. They show how the interaction and correlations make the
wave-function deviate from the free wave-function, represen-
ted by a dotted line. The correlated angleχ(k) lies between
the Hartree-Fock(HF) and the free wavefunction angles. As
a consequence, we will see that the correlated effective mass
will not decrease so fast with density as the HF effective mass.
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FIG. 2 The variational angleχ(k) .

In table I, we have tabulated the parameters used in our
calculation together with the compressibilityK, the relative
effective massM∗/M, the kinetic energyT /ρB−M, the direct
and exchange parts of the potential energy (Vd/ρB andVe/ρB
respectively) with correlation and the correlation contribution
to the kinetic energyT C/ρB, all calculated at the saturation
point. Notice that a HF calculation produces an EOS which
is stiffer than the one obtained at the Hartree level. However,
the inclusion of correlations gives a larger effective mass than
both Hartree and HF calculations and a softer EOS. In fact,
the contribution of direct and exchange correlation terms are

of the same order of magnitude of the other terms in the energy
per particle. Hence, they cannot be disregarded.
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FIG. 3 EoS for different parametrizations.
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FIG. 4 Effective mass as a function of density.

We have computed the binding energies as function of
the density for the Hartree, HF and HF+Corr and compared
with the quark-meson-coupling model (QMC) [13] and a non-
linear Walecka model NL3 [14], as can be seen from Fig. 3.
The inclusion of correlations make the equation of state (EOS)
softer than Hartree or HF calculations. NL3 and QMC also
provide softer EOS around nuclear matter saturation density
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but around two times saturation density, the EOS with corre-
lations is softer than NL3. In Fig. 4 we plot the effective mass
as a function of density. If correlations are included the effec-
tive mass does not decrease so fast with the increase of density
as in a Hartree or, even worse, HF calculation. This explains
the softer behavior of the EOS with correlations.

We conclude referring that, although correlation effects in
the Hartree and HF calculations may be taken partially into
account by a correct choice of the coupling constants, the ex-
plicit introduction of correlations has other effects such as sof-

tening the EOS.
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