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Abstract 

Shape memory alloys, namely NiTi, are unique materials with exceptional functional 

properties that have been rising interest and increased popularity over the last decades. They 

have the potential to unlock groundbreaking solutions in several development areas, such as 

microelectromechanical systems (MEMS), where these distinct alloys can solve complex 

challenges with simple applications.  

The main objective of this dissertation is to produce NiTi shape memory alloys in 

the form of films via two sputtering deposition strategies (NiTi target and pure Ti and Ni 

targets), while varying deposition parameters such as, pressure, power, time, and substrates’ 

rotation speed. The influence of these deposition parameters on the properties of monolithic 

and multilayer films was studied. For this purpose, several characterization techniques were 

used: Profilometry, Energy Dispersive X-ray Spectroscopy, Scanning Electron Microscopy, 

X-Ray Diffraction, Differential Scanning Calorimetry, and Nanoindentation. As the primary 

goal is the application of these films in MEMS, the desired functional property is 

superelasticity, and thus nickel-rich films are required.  

Upon completion of this thesis, several austenite crystalline superelastic films were 

produced with rather low heat treatment temperatures, in which the quantity of precipitates 

present was associated with the nickel content. Furthermore, among the films produced, 

some are superelastic with exceptionally high nickel content. In addition, it was possible to 

correlate the varied deposition parameters with the films’ chemical composition, specific 

morphological features, structure, and thermophysical and mechanical properties, providing 

advances in material science and microelectromechanical systems. 
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Resumo 

Ligas com memória de forma, nomeadamente NiTi, são materiais únicos com 

propriedades funcionais excecionais que têm despertado interesse e popularidade acrescida 

ao longo das últimas décadas. Estas têm o potencial de apresentar soluções inovadoras em 

várias áreas de desenvolvimento, sendo que estes materiais se distinguem quando aplicados 

em sistemas microeletromecânicos, onde podem resolver desafios complexos com 

aplicações simples.  

O objetivo desta dissertação é a produção de ligas de memória de forma de NiTi na 

forma de filmes a partir da técnica de pulverização catódica a partir de duas estratégias de 

deposição distintas (alvo NiTi ou alvos Ti e Ni independentes), variando parâmetros de 

deposição tais como a pressão, potência, tempo e velocidade de rotação. Foi estudado o 

impacto de várias combinações dos parâmetros de deposição. Com este intuito, várias 

técnicas de caracterização foram usadas: Perfilometria, Microscopia Eletrónica de 

Varrimento, Difração de Raios X, Espectroscopia de Raios X por Energia Dispersiva e 

Nanoindentação. Dada a meta principal ser a aplicação dos filmes em sistemas 

microeletromecânicos, a propriedade funcional desejada é a superelasticidade, sendo assim 

necessários filmes ricos em níquel.   

Após conclusão do trabalho, vários filmes austeníticos superelásticos foram 

produzidos com temperaturas de tratamento térmico relativamente baixas, sendo que a 

quantidade de precipitados presentes foi correlacionada com o teor de níquel. De entre os 

filmes produzidos, alguns têm teores de níquel excecionalmente elevados. Além disso, foi 

possível correlacionar os parâmetros de deposição com a composição química, morfologia 

específica, estrutura, propriedades termofísicas e propriedades mecânicas dos filmes, 

permitindo avanços no estudo da ciência de materiais e de sistemas microeletromecânicos. 

 

 

 

 

Palavras-chave: Ligas com memória de forma, NiTi, Sistemas microeletromecânicos, 
Superelasticidade, Austenite, Teor de níquel. 
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1. INTRODUCTION 

The accelerating technology development over the last decades has been replacing 

single macro devices with compact micro solutions: compound and complex systems with 

microscopic devices incorporating both electronic and moving parts called 

microelectromechanical systems (MEMS). This relentless hunger of industry calls for never 

ending mechanical and functional solutions enabled by science knowledge. In this context, 

Shape Memory Alloys (SMA) are studied to investigate their appeal and distinction in this 

field. 

SMAs have exceptional functional properties: shape memory effect (SME) and 

superelasticity effect (SE). Exposing these materials to a controlled external stimulus such 

as stress or temperature change can cause a unique response. For the superelasticity effect, 

this response is an abnormal material elongation before plastic deformation, while for the 

shape memory effect, the response is a complete material recovery to an initial form when 

heated above austenitic temperature. The presence of these distinctive effects is tied to a fine 

combination between material’s processing and chemical composition. In fact, minimal 

deviations in chemical composition cause major differences in material morphology and 

composition, which will greatly impact final results. 

The Shape Memory Alloy chosen is NiTi. This compound reveals superior 

characteristics and has been rising interest and popularity in the last decades in the sensor 

and actuator industry. In this dissertation, both near equiatomic and highly Ni-rich NiTi are 

studied, with the later being the subject of scarce research in the available literature. With 

the intention of applying these materials in MEMS, it was decided to work with materials in 

the form of films. From a wide range of available techniques, it is consensual that the 

sputtering technique has many advantages in successfully producing films. For that reason, 

magnetron sputtering is the chosen technique to deposit the films to be studied. 

Two strategies were adopted to prepare NiTi-based films: i) sputtering from a single 

NiTi target, ii) sputtering from two separate targets (Ni and Ti). In both cases, to obtain the 

desired NiTi intermetallic it was necessary to heat treat the films. In addition, some 

deposition parameters were varied, to study their influence on the films’ properties. For this 

purpose, several characterization techniques were used: Profilometry for measuring 
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thickness, Energy Dispersive X-ray Spectroscopy to determine chemical composition, 

Scanning Electron Microscopy to study the morphology, X-Ray Diffraction for phase 

investigation, Differential Scanning Calorimetry for thermophysical analysis, and finally 

Nanoindentation to evaluate the films’ mechanical properties. 

With all these data in hand, it should be possible to produce and improve the properties 

of NiTi-based films that could be promising and possibly open doors in MEMS field. 

 

The present dissertation is organized in five Chapters, being the first the Introduction 

chapter. The second chapter is the State of Art, where the literature’s most relevant 

information is compiled. The third chapter exhibits a collection of the materials, equipment 

and characterization techniques used, including the procedures to enable the reader to 

reproduce each process. In the fourth chapter the results are presented, analyzed, and 

discussed which lead to the conclusions and future works of the fifth chapter.
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2. STATE OF ART 

2.1. Shape Memory Alloys 

Shape memory alloys (SMAs) belong to the class of advanced materials with unique 

functional properties such as shape memory effect (SME) and superelasticity effect (SE). 

These alloys present excellent mechanical properties, a very high resistance to corrosion [1] 

and biocompatibility [2], which allow these materials to be used in a wide range of 

applications. 

When subjected to an external stimulus, SMAs can undergo a phase change that is 

the key factor for the existence of SMEs and SE. This phase transformation is classified as 

thermoelastic martensitic transformation, which is characterized by the reversible 

transformation between the austenite phase (A), stable at temperatures higher than the 

austenitic finish transformation temperature (T > Af); and the martensitic phase (M), stable 

at temperatures lower than the martensitic finish transformation temperature (T < Mf) [3,4]. 

SMAs are typically composed by a combination of metallic elements such as 

titanium, nickel, copper, magnesium, zirconia, among other, being NiTi (nickel and 

titanium) the most famous SMA alloy, and the one that will be explored in this study. 

2.2. NiTi Shape Memory Alloys 

2.2.1. NiTi Film Composition 

The control of the chemical composition of the films is crucial since the shape 

memory effect or superelasticity depend on the Ni content of the shape memory alloy.  

Slight variations in the Ni content can result in materials with other intermetallic 

phase besides NiTi, particularly for the Ni-rich side of the phase diagram (Figure 1). 

Single crystal NiTi usually have low critical stress for slip. As superelasticity only 

occurs when austenite phase is present, which is at temperatures above As, it is very hard for 

this effect to be present (See example “B” in Figure 2 and its very narrow superelasticity 

zone). However, for aged Ni-rich NiTi alloys “the critical stress for slip is strengthened by 

precipitation hardening” [1], creating room for stress at temperatures higher than As, without 
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incurring the possibility of plastic deformation. (See example “A” in Figure 2 and its very 

wide superelasticity zone). 

 

   

Figure 1- Ni-Ti phase diagram with emphasis on Ni-rich lower temperature section [5]. 

 

Figure 2- Representation for the appearance of superelasticity and shape memory effect [1]. 

 

As it can be observed in Figure 3, martensite start temperature will greatly decrease 
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with minimum atomic Ni (nickel) % variation, being the variation from equiatomic film to 

51% Ni enough to almost halve transformation temperature [6].  

 

 

Figure 3- Influence of the nominal Ni concentration on the measured Ms temperature and calculated T0 

temperature (calculated according to Tong and Wayman for a given film [6]. 

 

Shape memory effect is possible if the working temperature of the alloy is lower than 

Mf temperature. If Ms temperature decreases too much, so does Mf temperature and shape 

memory effect would only be achievable in sub-zero room temperatures. This way, Ti-rich 

NiTi alloys are a must to obtain Ms temperatures as high as 70ºC, temperatures which are 

easily achievable in the majority of the applications, allowing these alloys to have shape 

memory effect.  

2.2.2. Shape Memory Effect 

Shape memory effect is this alloy’s most known ability: the ability to return to the 

original form after being strained, through heating. 

To better understand how memory effect works, Figure 4 can be analyzed.  

At working temperature (T>Mf), the alloy starts in the twinned martensitic phase 

(Point O).  

As the alloy is loaded, its crystal configuration will accommodate the stress by 

stretching (Point P). This stretch doesn’t disappear once the alloy is unloaded (Point Q). 
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Figure 4- Crystal transformations in Superelasticity Effect (left) and Memory Shape Effect (right) [7].  

 

The alloy is then heated, promoting a change back to austenite phase, and the 

macrostructure back to the original form (Point S). 

After cooling, the macrostructure remains the same as phase changes back to twinned 

martensite, closing the cycle. (Point O). 

An example of this effect is evident in Figure 5, where a deformed NiTi paper clip 

returns to the original form with the stimulus of heated water. 

 

 

Figure 5- Paper Clip made of a SMA showing the Shape Memory Effect [8]. 
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2.2.3. Superelasticity Effect 

Superelasticity effect is the ability to return to the original form after complete 

removal of the stress applied. This occurs when the alloy is in the austenitic field, which 

means it is above austenite finish temperature (Af) [9].  

In Figure 4, the superelasticity effect is shown. While unloaded, the alloy is in 

austenitic field (Point S), then a force is applied and there is a change to detwinned martensite 

phase (Point U). When the force is relieved, there is a change back to the original phase, 

combined with a return to the original form.  

A utility of this effect is, for example, glasses temples made of NiTi, which can be 

highly deformed and return to the original form without plastic deformation (Figure 6). 

 

 

Figure 6- Glasses made of a SMA showing the superelasticity effect. 

2.2.4. Ni-Rich NiTi Alloys 

NiTi alloys have several possible compositions, being the Ni-rich NiTi an interesting 

iteration. This variant can be called 60NiTi because it is characterized by nickel weight 

percentages ranging from 55 to 60 wt.% [10,11,12,13,14]. 

In equiatomic and Ti-rich NiTi there are virtues such as superelasticity and the 

memory shape effect, which make them usable in a wide range of applications such as 

actuators and arch wires. However, these variants lack dimensional and microstructural 

stability, and are soft when compared to 60NiTi [10,14].  
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As stated in section 2.2.1, NiTi films with high Ni composition will have negative 

Ms and Mf temperatures, and consequently, low As and Af temperatures as well. These films 

will benefit the best from the superelasticity effect, because they are austenitic stable in a 

wide range of temperatures: temperatures higher than Af temperature, which includes room 

temperature. 

This last fact combined with the high dimensional and microstructural stability 

[10,14], high hardness [10,14], low density [11,12], low elastic modulus [10,11] and 

superelasticity (making them highly resistant to excessive shock loads [11]) ensure 60NiTi’s 

suitability in structural applications [10], tool manufacturing [10,11], gears and bearing 

applications [10,11,12], as well as highly innovative areas such as aerospace, marine and 

automotive engineering, intelligence control, medical applications, etc. [10,13]. 

2.3. NiTi Thin Films 

The use of NiTi films instead of bulk alloys results in faster cooling rates (because 

of the higher surface/volume ratio) allowing SMA use for applications in smaller 

components with better efficiencies [4]. 

Among deposition techniques such as pulsed laser deposition, electron beam 

evaporation, ion beam deposition, plasma spray technique, ion plating, and flash 

evaporation; magnetron sputtering has proved to be the most successful and most widely 

used technique to prepare NiTi-based thin films [7]. 

Sputtering is a physical vapor deposition technique. It works by applying a high-

voltage electric field on a target, accelerating ions towards the target, and ejecting its atoms 

that will eventually collide with the substrate, creating a film. For that, an inert gas is used, 

usually Argon because it has a good compromise between ion size and cost. Low Ar gas 

pressures (<0.05 Pa) conduct to high energy atoms reaching the substrate, leading to atomic 

peening which causes increasing compressive stresses in the film. Intermediate pressures 

(from 0.05 Pa to 0.5 Pa) create rather dense films with few defects. Films produced with 

higher Argon pressures (>1 Pa) will be subjected to less peening effect, which means the 

film will be less dense, more brittle, more porous and with columnar morphology [7,15,16]. 

Magnetron sputtering is a sputtering variant that uses a magnetic field to enhance 

target sputtering yield, in other words, the number of atoms ejected. The potential 

disadvantages of this technique are the preferential erosion of the target where the magnetic 
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field is the strongest [3], and the interference of the magnetic field with ferromagnetic alloys 

such as Ni. To solve this last problem, the use of Ni targets with a few percent of Vanadium 

is reported in the literature [17]. The addition of V cancels the target ferromagnetic 

properties. 

 

There are multiple ways to obtain NiTi films by magnetron sputtering, as shown on 

Table 1. The conventional approach is the use of a single NiTi alloy target. In this case, due 

to the higher sputtering yield of Ni compared to Ti, the films tend to have Ni-rich chemical 

compositions (2 to 4 at% richer than the target [7]). To control the Ni percentages, variants 

such as the NiTi alloy target with Ti plates or the NiTi alloy target with a second Ti target 

are used. In addition, the usage of separate Ni and Ti targets is also possible. In this case, 

after deposition a multilayer film is obtained. 

 

Table 1- Different target layouts used for producing NiTi films by sputtering*. 

Targets Layout Ref. 

NiTi 

 

[18,19,20] 

NiTi+Ti 

 

[21,22] 

NiTi/Ti 

 

[2,3] 

Ni/Ti multilayers 

 

[3,4,15,23,24,25,26] 

* To simplify, all targets were drawn as circles 
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The multilayer films approach means that the as-deposited films are composed of 

alternated layers Ni- and Ti-rich, whose single layer thicknesses depend on the substrate 

rotation speed. The higher the rotation speed, the lower the multilayer period (bilayer 

thickness). This variant is more flexible, when it comes to control the average chemical 

composition, which can be achieved by simply adjusting the power applied to each target. 

Furthermore, it has additional advantages, such as denser films, less residual stress than its 

counterparts, and grain size control [7,21]. The grain size is limited by the individual layer 

thickness; thus, it increases as the period increases. To control the grain size, the modulation 

period can be varied by changing the substrate rotation speed [4]. If the total thickness is 

known, the modulation period can be estimated using Equation (1): 

 

 𝑝𝑒𝑟𝑖𝑜𝑑 () =
𝑡𝑜𝑡𝑎𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ∗ 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑
 (1) 

 

Shape memory effect or superelasticity effect can only be achieved if the alloy has 

martensite or austenite phase present, which means that in the case of multilayer films, Ni 

and Ti must react to form the NiTi intermetallic phase. 

In the case of monolithic films prepared using a NiTi alloy target, the as-deposited 

films tend to be amorphous [19,20]. Therefore, the equilibrium austenitic phase can only be 

achieved after crystallization, which is possible either by depositing the films at high 

substrate temperatures [19], or by post-annealing treatment [20]. 

John A. Thornton [16] succeeded on relating deposition substrate temperature and 

deposition argon pressure with the film’s surface and cross-section microstructure (Figure 

7). For reference, 1mTorr is equal to about 0.133 Pa. 

The deposition temperature also has impact on the final film’s phasic composition 

produced using an alloy target (monolithic films) or by co-sputtering from separated targets 

(multilayer films). When the monolithic films are deposited with substrate temperatures 

around 425ºC, the NiTi peak becomes evident in the X-ray diffraction (XRD) diffractograms 

[2,19]. Using high power impulse magnetron sputtering (HiPIMS), X. Bai et al. [22] 

obtained in-situ crystalline NiTi thin films at a low substrate temperature (230ºC). Although 

less usual, it is possible to use separate targets and heat the substrates during the deposition 

to obtain in-situ crystalline NiTi films [26]. In this case, the reported substrate temperature 

is 450ºC. 
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Figure 7- Microstructure zone diagram for metal films deposited by magnetron sputtering where Tm is the 
coating material melting point and T is the substrate temperature [16]. 

 

In alternative, whatever the sputtering approach, the deposition stage can be 

separated from the heat treatment stage.  

In multilayer films, post heat treatments at temperatures above 400ºC are the most 

used to crystallize NiTi [3,15,23]. As an example, in Figure 8 several diffractograms of 

equiatomic Ni/Ti multilayer films with different modulation periods are shown at different 

annealing temperatures. It is evident that the higher the period of the multilayer film, the 

lower the temperature for the austenitic NiTi (110) XRD peak to be indexed. This 

temperature ranges from 375ºC ( = 70 nm) to 450ºC ( = 5 nm) [4].  

In-situ transmission electron microscopy (TEM) together with electron diffraction, 

allowed to observe the appearance of NiTi grains after 6 min at 400ºC [27]. 

Typically, the monolithic films are post-annealed at temperatures above 500ºC [22]. 

For near equiatomic monolithic films, temperatures of 600ºC were used to obtain well 

defined NiTi XRD peaks [18,20]. Annealing temperature is critical since a low temperature 

might not be enough to fully crystallize the films. On the other hand, a temperature higher 

than necessary can promote the precipitation of undesired phases such as NiTi2, Ni3Ti, and 

oxides, that can influence the films’ mechanical properties as well as the phase 

transformation temperatures [7,20].  

For both, monolithic and multilayer films, the study of the hardness and Young’s 

modulus is important to characterize the shape memory thin films. These mechanical 

properties can be evaluated by depth sensing indentation [28]. If conventional indentation is 

to be used in thin films, the indentation depth would be too high taking in consideration the 
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reduced thickness of the films and the mechanical properties would be significantly 

influenced by the substrate. According to the literature, a maximum indentation depth close 

to 10% of the films’ total thickness should avoid the influence of the substrate on the 

hardness measurements [29,30]. However, regarding the Young’s modulus the influence of 

the substrate can be noticed even for indentation depths of this magnitude. In this context, 

nanoindentation is the preferred technique since it can work with very low loads and depths.  

 

 

Figure 8- XRD diffractograms for Ni/Ti multilayer thin films with different periods at a) 300, b) 375, c) 400 

and d) 450 ºC. Substrate diffraction peaks are labelled with “S” [4]. 

 

When comparing monolithic with multilayer films, it is expected for the later to be 

harder, because the multilayer design has inherently more interfaces which contribute to 

increase the hardness [31,32]. In fact, the hardness of Me1/Me2 (Me – metal) multilayer 

films is higher than the value that results from a simple rule of mixtures based on Me1 and 

Me2 films’ hardness [32].The modulation period of Me1/Me2 multilayer films influences 

the hardness. In general, the hardness increases as the period decreases. However, for short 

periods, in certain Me1-Me2 systems, after achieving a maximum value there is a hardness 

decrease as the period decreases further (Figure 9) [33]. 
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Figure 9- Hardness of Ag/Co multilayer films as a function of the period [33]. 

2.4. Applications 

Taking advantage of the shape memory alloys’ peculiar characteristics, several 

applications can be envisaged. In fact, there are numerous applications for which NiTi-based 

SMAs are potential candidates. 

A first example would be the use of NiTi SMAs in endodontic instruments such as 

drills (Figure 10). Compared to conventional materials, the use of this alloy creates safer and 

more effective rotary instruments with dynamic properties that can better sustain flexural 

and torsional stresses [34]. 

 

 

Figure 10- Rotary endodontic instruments [34]. 
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NiTi can also be used in orthodontic treatment, mainly for the alignment of the teeth. 

This orthodontic treatment consists in applying a continuous but low force to a tooth, moving 

it through the alveolar bone of the jaws without causing any permanent damage [35]. This 

procedure uses arch wires to create the needed tension in the teeth (Figure 11). The arch 

wires have very specific property requirements: biocompatibility, high modulus of 

resilience, stiffness, formability and springback, which are properties where a superelastic 

NiTi alloy excels [35]. 

 

Figure 11- NiTi arch wires. 

 

Still in the biomedical field, porous NiTi alloys are being developed to replicate 

bones’ mechanical properties, such as the low elastic modulus. Nonetheless, porosity will 

negatively impact compressive stress strength, superelastic strain and biocompatibility 

which makes the balance a challenge [36]. Figure 12 shows some examples of the use of 

porous NiTi as implants to replace bones in the human body. 

 

 

Figure 12- (a) Cervical spine implantation; (b) lumbar spine implantation; (c) intervertebral fusion device 
and (d) acetabular cup (hip implant) [36]. 
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NiTi SMAs are also very useful in engineering applications. Their high strain range 

and spontaneous strain recovery can be used in self-centering earthquake resisting structural 

systems [37]. There are also some NiTi solutions for creating earthquake proof bridges [38], 

as observable in Figure 13. 

 

 
Figure 13- Model of an earthquake proof bridge that uses NiTi alloy materials [38]. 

 

One branch of equipment with rising interest is the microelectromechanical 

systems (MEMS). These systems require working sensors and actuators at the 

microscopical level. NiTi SMAs are active materials that can already be downsized, thus 

can have significant impact in the development of MEMS. This alloy’s electrical 

resistance varies with both stress and strain, allowing the creation of sensors using 

controlled voltages on NiTi wires, being possible to measure the displacements of 

moving parts (Figure 14) [39,40]. 

 
Figure 14- Displacement measurement testing on a NiTi wire [40] 
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In the actuator perspective, the possibilities are endless. By controlling the alloy’s 

temperature, martensite transformation can be promoted. As a result, the position of the 

material can change, and motion or force can be induced at the microscopic level. 

Microvalves and micropumps to control microfluidic systems using a moving 

diaphragm have already been developed (Figure 15) [41,42]. Microgrippers using a wire 

with different transformation temperatures at each length are shown in Figure 16 [43]. 

In addition, microswitches, microspacers, microwrappers, microrobots, among other, 

have been reported in the literature [7,44]. 

 

 

Figure 15- Schematic of a micropump and the corresponding NiTi/silicon driving diaphragm [42]. 

 

       

Figure 16- (a-d) Photographs of the different stages of activation of the microgripper (upper images) and 
wire’s shape set configuration (lower image) [43]. 
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In this context, an interesting mechanism was designed by Yang X et al [45], where 

a robot was built with catalytic artificial NiTi-Pt wires as muscles. Once fed with a 

combustible such as methanol (stored within the robot), the wire gets excited by the heat of 

the reaction, triggering the moving parts (Figure 17). 

 

 

Figure 17- RoBeetle and corresponding schematics and detailed views [45]. 

 

  



 

 

PRODUCTION AND CHARACTERIZATION OF SHAPE MEMORY FILMS FOR MICROELECTROMECHANICAL SYSTEMS  

 

 

18  2023 

 

 

 



 

 

  MATERIALS AND METHODS 

 

 

André Valentim Costa Fontes  19 

 

3. MATERIALS AND METHODS 

3.1. Materials 

3.1.1. Substrates 

Substrates are the materials on which the atoms of the deposition accumulate to 

create the film. For this thesis, monocrystalline silicon substrates were used. The silicon 

wafers from which the substrates were cut were mirror finished in one of the sides. Before 

deposition, the Si substrates were subjected to ultrasound cleaning, in acetone and alcohol 

baths, for 5 minutes each. After exiting the ultrasound machine, the substrates are dried with 

hot air. 

To measure the thickness of the films by profilometry, a drop of boron nitride is 

placed on one of the substrates in each batch. 

3.1.2. Substrate Holders 

Substrate holders are the materials on which the substrates are fixed onto using silver 

glue. Copper substrate holders were used, to take advantage of Cu high thermal conductivity 

which allows heat dissipation during the deposition process, avoiding high substrates’ 

temperatures.  

3.1.3. Targets 

Targets are the materials from which the atoms of the deposition are detached. In this 

thesis 3 types of targets (150 mm x 150 mm x 5-7 mm) were used: NiTi (99,9 % pure), 

titanium (99,99 % pure) and nickel (99,99 % pure). A near-equiatomic NiTi target (Ti–49.9 

at.% Ni) was used to produce monolithic films, while the Ti and Ni targets were used to 

prepare multilayer films with nanometric periods. The Ni target contains 7 wt.% of 

vanadium, so that it becomes nonmagnetic [17]. 
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3.2. Methods 

3.2.1. Deposition Technique 

As often used to obtain thin films, the deposition technique in this thesis was 

magnetron sputtering. 

Sputtering is a physical vapor deposition technique, where the targets and substrates 

are inside a vacuum chamber with the presence of an inert gas; being argon the most 

commonly used because it has a good compromise between ion size and cost. 

For this technique to work, a high-voltage electric field is applied on each target, 

ionizing the inert gas and creating plasma. This electric field accelerates argon ions (Ar+) 

towards the target(s) (cathode). When the ions collide with the target, some of its atoms are 

ejected (by effect of exchange of momentum) and will travel towards the substrates creating 

a film. The whole process occurs inside a vacuum chamber to minimize the gases present in 

the atmosphere that would oxidize and contaminate the substrates. 

When the magnetron sputtering variant is used, the plasma concentrates near the 

targets which generates a more efficient deposition. To be noted that the targets will have a 

less uniform wear, which will require a higher attention. 

3.2.2. Deposition Equipment 

The equipment used for the magnetron sputtering deposition is from a German 

company called Hartec (Figure 18). 

The deposition chamber has an ion beam and two distance adjustable targets, each 

with its magnets. Therefore, it is possible to deposit multilayer films. The equipment has 

four different power supplies; two used for the targets, one to polarize the substrate holder 

and one for the ion beam. The vacuum system is composed of two pumps: the primary, which 

is responsible for creating vacuum from the atmospheric pressure down to approximately 

30-40 Pa, and the secondary pump (turbomolecular), which aided by the primary pump can 

reach pressures in the range of 10-4 Pa. 
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Figure 18- Deposition equipment Hartec of DEM. 

3.2.3. Deposition Conditions 

Prior to the deposition itself, it is necessary to create the needed vacuum, before 

introducing the argon and cleaning the substrates by ion bombardment (etching). 

Pressures of around 4x10-1 mbar (40 Pa) were achieved through the primary pump, 

while lower pressures were reached with the help of the secondary pump. After attaining the 

desired vacuum level, a heating and etching procedure is done with an argon pressure of 

1.5x10-3 mbar (0.15 Pa). The objective is to remove impurities at the substrates surface. To 

start the deposition process, Ar is introduced up to the desired pressure is attained, and then 

the target(s) power supplies are turned on. 

The monolithic films deposited in this work are summarized in Table 2, while the 

multilayer films are presented in Table 3. The nomenclature followed is 

M_pressure[Pa]_power[W] for the monolithic films, and ML_modulation.period[nm] for 

the multilayer films. According to the total thickness of the multilayer films and substrates’ 

rotation speed, the estimated periods are close to 4 and 60 nm for the ML_4 and ML_60 

films, respectively. 
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Table 2- Deposition parameters for the monolithic films. 

Film Target(s) Distance1 

[mm] 

Pressure 

[Pa] 

Specific 

Power 

[Wmm-2] 

Dep* 

Time 

[min] 

Rot* 

Speed 

[rpm] 

Thickness 

[m] 

M0.3_1000 NiTi 75 0.3 4.44x10-2 
(1000 W) 

60 23 3.2 

M0.3_1700 NiTi 75 0.3 7.56x10-2 
(1700 W) 

28 23 2.7 

M0.5_1000 NiTi 75 0.5 4.44x10-2 
(1000 W) 

60 23 3.4 

M0.3_1000t NiTi 75 0.3 4.44x10-2 
(1000 W) 

120 23 5.1 

* Dep and Rot are abbreviations of Deposition and Rotation, respectively. 

 

Table 3- Deposition parameters for the multilayer films. 

Film Target(s) Distance 

[mm] 

Pressure 

[Pa] 

Specific 

Power 

[Wmm-2] 

Dep 

Time 

[min] 

Rot 

Speed 

[rpm] 

Thickness 

[m] 

ML_4 Ti 
Ni 

Ti: 75 
Ni: 95 

0.4 Ti: 7.42x10-2 
Ni: 2.76x10-2 

30 23 2.5 

ML_60 Ti 

Ni 

Ti: 75 

Ni: 95 

0.4 Ti: 7.42x10-2 

Ni: 2.76x10-2 

32 1.5 3.0 

 

3.2.4. Post Deposition Treatments 

To achieve superelasticity or shape memory effect, NiTi phase must be present. As 

the substrates were not heated, it was not expected that NiTi formed, and a heat treatment is 

needed to obtain the intermetallic phase [20]. As such, all films were heat treated at 400ºC 

for 1h in a horizontal oven present in DEM. The multilayer film with the highest period was 

also heat treated at 500ºC during 1h.  

To perform the heat treatments, the samples were put in an alumina crucible, and 

placed in the oven’s quartz tube. After achieving a vacuum pressure of around 2x10-4 mbar 

(0.02 Pa), hydrogenated argon was introduced in the oven until a pressure of 5x10-3 mbar 

(0.5 Pa) is reached. Afterwards, the heating up to the desired temperature was carried out at 

20ºC/min. Once attained the predefined temperature, it was maintained during 1 h, after 

which the oven was switched off, and the samples were let to cool inside the oven. 

 
1 Target to substrate distance 
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3.2.5. Characterization Techniques 

3.2.5.1. Profilometry 

In the context of the NiTi films under study, profilometry was used as an easy way 

to measure the total film thickness immediately after the depositions. For this purpose, prior 

to the deposition, a drop of boron nitride was placed onto the Si substrate, as mentioned. 

After the deposition, the drop was removed in alcohol ultrasound bath, allowing the 

thickness to be measured through the height of the profile’s degree created by the absence 

of the drop. 

3.2.5.2. Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) is a physical technique used to visualize and 

analyze the surface and/or cross-section morphology of a material at high resolution.  

SEM works by emitting a focused beam of electrons onto the material under study, 

followed by the analysis of the response-signals emitted by the material. These signals 

include secondary electrons, backscattered electrons and X-rays.  

Secondary electrons are used mainly to exhibit the material’s topography map, while 

backscattered electrons are used to reveal compositional variations in the sample: heavy 

elements usually are shown as brighter, while light elements are shown as darker areas in 

SEM images. 

Emitted X-rays are linked to the Energy Dispersive X-ray Spectroscopy (EDS) 

analysis, because each chemical element emits its own characteristic X-rays at a specific 

energy. Therefore, SEM/EDS is a semi-quantitative mode to obtain the chemical 

composition of the films under study. 

The equipment used in this thesis is a field-emission gun Zeiss Merlin SEM 

microscope equipped with EDS present at Instituto Pedro Nunes (IPN) (Figure 19). 

Accelerating voltages of 2 and 10 kV were used for imaging and EDS, respectively.  
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Figure 19- IPN SEM equipment. 

 

3.2.5.3. X-ray Diffraction (XRD) 

X-ray Diffraction (XRD) is a very powerful technique that uses X-rays to study the 

structural characteristics of the materials, such as the identification of the present phases and 

their crystal structure. 

In the context of this thesis, XRD allowed the analysis of the as-deposited films’ 

present crystalline phases, if any, and more importantly, the analysis of the heat treated films’ 

phases. This is a must to ensure the purpose of this thesis, namely the study of the deposition 

parameters and their influence in achieving austenitic superelastic NiTi films. 

 

X-ray Diffraction works by emitting X-rays which will diffract when in contact with 

the crystalline sample. XRD works based on Bragg’s law principle (Equation (2)) which 

relates the wavelength of the incident x-rays, the angle of incidence and the spacing between 

the crystal lattice planes of atoms [46]. 

 
 𝑛 = 2d sin() (2) 

 
Where: 𝑛 is an integer number, 𝜆 is the wavelength of x-rays, 𝑑 is the interplanar spacing of 

the crystal and 𝜃 is the angle of reflection. 

For the XRD measurement, the identification of the diffraction peaks was performed 

based on the ICDD2 database. 

 
2 International Centre for Diffraction Data 
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The XRD tests were run in 2 different systems (lab source and synchrotron radiation) 

that are described in the following sections. 

3.2.5.3.1. Conventional X-Ray Source (XRD)  

The conventional X-ray source can also be called a reflection XRD. 

In this study, the equipment used was XPert Pro from PANalytical coupled with a 

PW 3020/00 goniometer (IPN, Coimbra), with current and voltage of 35 mA and 40 kV 

respectively, using CuKα radiation. 

3.2.5.3.2. Synchrotron Radiation X-ray Diffraction (SR-XRD)  

The Synchrotron Radiation X-ray Diffraction can also be called a transmission X-

ray diffraction. This type of XRD uses very high energies, fact that ensures full sample 

penetration, guarantees a higher precision and resolution, and consequently increases the 

visibility of phases that are present in very low percentages. Furthermore, this variant has 

exceptionally fast read times which allows in-situ analysis that are not possible with the 

conventional method. Synchrotron radiation comes from particle accelerators, with high cost 

and as such restricted access. 

The structural characterization using synchrotron radiation was performed in 

beamline P07 High-Energy Materials Science (HEMS) of Petra III/DESY (Deutsches 

Elektronen-Synchrotron), located at Hamburg, Germany (Figure 20). The measurements 

used a wavelength of 0.1467 Å (87 keV); a beam spot of 200 × 200 μm2 at room temperature, 

and a two-dimensional (2D) detector PERKIN ELMER XRD 50 1621 was placed at 1.00 m 

from the samples. The raw 2D images were treated using Fit2D program (Hammersley, 

1996) to calculate the individual XRD patterns by integration from 0° to 360° (azimuthal 

angles). 

 
Figure 20- DESY PETRAIII: High Energy X-Ray Diffraction [47]. 
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3.2.5.1. Differential Scanning Calorimetry (DSC) 

Differential Scanning Calorimetry (DSC) is a thermal analysis technique used to 

study heat flow in or out of a sample.  

DSC analysis is very important in order to study the martensitic transformation of 

the heat treated films. This fact is relevant for many reasons, being one of them to know at 

which temperatures a film is in the austenitic phase and if those temperatures are satisfactory 

for certain applications, namely for MEMS. 

In a first run, to simulate the heat treatment, the sample was heated to 400 ºC at a 

continuous heating rate of 10 ºC/min followed by cooling to room temperature at a cooling 

rate of 10 ºC/min. The first run was used to identify the possibility of the occurrence of some 

exothermic phenomenon. Immediately after the first run, the same sample was heated to 150 

ºC and subsequently cooled to -150 ºC, again heated to 150 ºC, and then cooled to room 

temperature. In the second run (up to 150 ºC / -150 ºC / 150 ºC / Room Temperature) the 

phase transformation temperatures were determined by the tangent method. The DSC 

equipment used was DSC 204 F1 Phoenix from Netzsch in NOVA School of Science and 

Technology – NOVA FCT. 

3.2.5.2. Nanoindentation 

Nanoindentation is a type of depth sensing indentation technique that works with low 

displacements and forces to evaluate mechanical properties such as hardness and Young’s 

modulus. This technique works by pressuring a calibrated diamond indenter against the 

sample, measuring its response and accordingly calculating the sample’s mechanical 

properties, namely the hardness and the reduced Young’s modulus.  

Equation (3) allows to obtain the Young’s modulus from the measured reduced 

Young’s modulus. For that, it is necessary to know the Poisson coefficient of the material 

and diamond,  and i, respectively; as well as the Young’s modulus of diamond (Ei) [28]. 

 

 

1

𝐸𝑟
=

(1 − 𝜈2)

𝐸
+

(1 − 𝑣𝑖
2)

𝐸𝑖
⟺ 𝐸 =

(1 − 𝜈2)

1
𝐸𝑟

−
(1 − 𝑣𝑖

2)
𝐸𝑖

 
(3) 

 
The MicroMaterials nanoindentation equipment used (Figure 21) has a Berkovich 

indenter and can function in two modes: load control or indentation depth control. The 

nanoindentation experiments were performed in load control mode using a maximum load 
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of 5 mN. The maximum load was selected to make sure that the influence of the substrate is 

avoided, by guaranteeing that the maximum depth is below 10% of the films’ total thickness 

[29,30]. A minimum of 30 indentations were performed in each sample. The results were 

treated according to Oliver & Pharr method [28], including thermal drift correction to 

compensate for the effects of temperature changes during the tests.  

 

 

Figure 21- DEM Nanoindentation equipment. 
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4. RESULTS AND DISCUSSION 

4.1. Chemical, morphological, structural and thermophysical 
characterization of the as-deposited films 

4.1.1. Energy Dispersive X-Ray Spectroscopy 

After performing the EDS analysis, each film chemical composition was obtained as 

presented in Table 4. 

 

Table 4- As-deposited films’ chemical composition. 

Film 

ID 

Target(s) Ni 

[at.%] 

Ti 

[at.%] 

V 

[at.%] 

M0.3_1000 NiTi 60.7 39.3 ― 

M0.3_1700 NiTi 61.4 38.6 ― 

M0.5_1000 NiTi 60.3 39.7 ― 

M0.3_1000t NiTi 59.4 40.6 ― 

ML_4 Ti/Ni 48.7 47.9 3.4 

 

As can be observed, all the films are enriched in nickel. monolithic films have Ni 

atomic percentages close 60, while multilayer films have a near equiatomic NiTi chemical 

composition (50.4 at.% Ni, without considering vanadium). The use of an alloy target should 

result in films with chemical composition similar to the target [48]. However, due to the 

higher sputtering yield of Ni compared to Ti (more than double), the monolithic films have 

Ni contents much higher than the target from which they were prepared, in accordance with 

the available literature [19,20]. This Ni-rich chemical composition is required to reach the 

original objective of obtaining superelastic films [1,6]. Comparing with the reference film 

(M0.3_1000), the increase of the power applied to the NiTi target led to a slight increase of 

the Ni content, while the increase of the deposition time results in a slightly lower Ni %. At 

the beginning of the sputtering process, more nickel atoms are ejected from the target, but 

as the target’s surface become depleted in Ni, more titanium atoms are ejected, and in some 

cases a steady state where the films’ chemical composition is close to the target’s chemical 
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composition can be reached. In this study, the steady state was not reached, although the film 

deposited during 120 min has somewhat more Ti. 

4.1.2. Scanning Electron Microscopy 

SEM analyses were made to characterize both surface and cross-section morphology 

of the as-deposited films. 

In Figure 22 several micrographs are shown corresponding to the surface 

morphology of all the as-deposited films. 

 

 

Figure 22- SEM surface images of as-deposited films: a) M0.3_1000, b) M0.3_1700, c) M0.5_1000, d) 
M0.3_1000t, e) ML_4, f) ML_60. 
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In all SEM images, except for the film deposited at a higher pressure, a cauliflower 

shape morphology can be observed, where the larger features should correspond to the top 

of the columns and, inside these features, some grains can be distinguished. This type of 

morphology is typical of metallic films deposited by magnetron sputtering, which usually 

results in columnar growth [49]. According to John A. Thornton [16], columnar cross-

section morphologies are possible for specific deposition parameters, as it can be observed 

in Figure 7. In the SEM image corresponding to the M0.5_1000 film (Figure 22c), the 

cauliflower morphology is not noticeable, having this film a smoother and dense surface 

morphology instead. SEM images of the monolithic films M0.3_1000 and M0.3_1700 show 

smaller surface features compared to the M0.3_1000t and multilayer films. In particular, the 

film deposited during a longer time and the multilayer with a higher period exhibited larger 

features, corresponding to wider columns as can be confirmed in the cross-section images 

presented in Figure 23. According to the surface images of the multilayer films, the film with 

the higher period seems to have  larger grain size, as expected due to the higher individual 

layer thicknesses.  

Regarding the cross-section morphology, the highest pressure film (Figure 23c) has 

a dense columnar morphology and a higher thickness than the film deposited at a lower 

pressure keeping all the other parameters constant (M0.3_1000). Higher pressure means 

more Ar+ ions bombarding the target(s) surface, and more collisions of the ejected atoms 

when travelling towards the substrates. In the present case, the first effect prevailed and an 

increase of the thickness was observed for the film deposited using a higher pressure. 

Looking at the rest of the monolithic films, an interesting characteristic can be observed, in 

particular for the film deposited applying a higher power to the NiTi target. In the SEM 

image of the M0.3_1700 film (Figure 23b) vein-like features can be observed, which are 

characteristic of metallic glass thin films produced by sputtering [50,51]. The higher power 

should be responsible for the more notorious vein-like morphology in the M0.3_1700 film. 

Nevertheless, by increasing the magnification, the observation of the vein-like morphology 

is also confirmed in other monolithic films (Figure 24). This morphology points to a more 

ductile behavior of the monolithic films when compared to the multilayer ones. The 

influence of deposition time can be seen when comparing films M0.3_1000 and M0.3_1000t 

at the same magnification (Figure 23a and 24b). Besides the obvious higher thickness, 
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M0.3_1000t film has wider columns, as expected as time increases due to the shape of the 

columns.  

When it comes to the multilayer films, a typical columnar cross-section morphology 

is observed (Figure 23e and 23f). In the multilayer film with the highest period (ML_60) it 

is also possible to distinguish the alternating layers of nickel and titanium throughout the 

entire thickness and to confirm the estimated modulation period. 

 

 

Figure 23- SEM cross-section images of as-deposited films: a) M0.3_1000, b) M0.3_1700, c) M0.5_1000, d) 
M0.3_1000t, e) ML_4, f) ML_60. 
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Figure 24- SEM cross-section image (higher magnification) of as-deposited films: a) M0.3_1000 and  
b) M0.3_1000t. 

4.1.3. X-ray diffraction 

Analyzing the XRD diffractograms corresponding to the monolithic films (Figure 

25a and 25b), it can be observed that both, conventional source and synchrotron radiation 

diffractograms indicate that the films exhibit a single broad peak. This observation suggests 

the absence of crystalline phases, leading to the conclusion that the as-deposited monolithic 

films in this study are amorphous. In the films deposited with the NiTi target, titanium and 

nickel atoms were simultaneously detached from that target and then deposited onto the 

substrate. Since the substrates were not heated, a rather low substrate temperature is 

expected, resulting in a low degree of crystallization of the mixture of nickel and titanium 

atoms, leading to amorphous films. The amorphous nature of as deposited films sputtered 

from NiTi targets without substrate heating has been reported in the literature [19,20].  

Examining the diffractograms of the multilayer films (Figure 26a and 26b), a distinct 

situation is observed. Opposing to the monolithic films, multilayer films display defined 

XRD peaks. Two narrow and intense peaks are associated with the presence of crystalline 

phases. In this case the indexed planes are Ti (10.1) (lower angle XRD peak) and Ni (111) 

(higher angle XRD peak) 

In films deposited with separated metallic targets, titanium and nickel atoms are 

detached from the targets and deposited to the substrate in an alternating pattern, which 

results in alternating nickel and titanium layers as shown in the SEM cross-section images 

(Figure 1Figure 23). It should be noted that using the copper substrate holders, the deposition 

temperatures attained are not sufficient to promote the reaction between Ni and Ti that occurs 
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above 350ºC [4]. This translates in crystallized alternating layers of hcp titanium and fcc 

nickel, as evidenced by the multilayer diffractograms (Figure 26a and 26b). 

 

 
Figure 25- XRD diffractograms of as-deposited monolithic films: a) M0.3_1000 (conventional XRD) and b) 

M0.3_1700 (synchrotron energy XRD). 

 

 

Figure 26- XRD diffractograms of as-deposited multilayer ML_60 film: a) conventional XRD and b) 
synchrotron energy XRD. 

 

4.1.4. Differential Scanning Calorimetry  

As mentioned in section 3.2 - Methods, after the deposition, the as-deposited films 

were subjected to a heat treatment, with the intent of forming crystalline phases, specifically 

austenite (B2-NiTi). 

In an initial approach, a heat treatment was performed during the DSC analysis on 

the monolithic film M0.3_1700, in order to study the possible occurrence of endothermic 

and exothermic phenomena hinting that some phase transition(s) can be identified.  
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The DSC heat treatment temperature chosen was 400ºC because this is also the main 

heat treatment temperature selected for the subsequent morphological, structural and 

mechanical characterization.  

Figure 27 presents the result of the DSC: a chart of heat flow versus temperature, 

where the temperature ranges from room temperature (about 25ºC) to 400ºC (673K). In this 

temperature range it is possible to verify some constant exothermal phenomenon. “The 

amorphous films crystallize when they are annealed at a temperature above 673K” (Otsuka, 

1998) [52], so it is very plausible that said phenomenon is crystallization. After the initial 

stabilization, close inspection of the graph shows a heating evolution with a significant 

disruption of heat flow in temperatures from 80ºC to 175ºC. This behavior reveals the 

occurrence of some exothermal phenomenon before complete crystallization. 
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Figure 27- DSC ramp of film M0.3_1700 during heat treatment. 
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4.2. Morphological, structural and thermophysical 
characterization of heat treated films 

4.2.1. Scanning Electron Microscopy after heat treatment 

After heat treatment, the surface and cross-section of the films was analyzed by SEM. 

Looking at the surface heat treated SEM micrograph of Figure 28 and comparing 

with the surface as-deposited SEM image of Figure 22, it can be perceived that in monolithic 

film M0.3_1000, the features observed are larger and the surface of the film seems more 

compact with the voids between the columns less defined. During heat treatment grain 

growth should also occur. The surface SEM image of the multilayer film with the highest 

period also reveal more compact morphology and less defined voids between columns. In 

the ML_60 film the cauliflower morphology and the grains are barely distinguished. In 

addition, some light-colored spots can be observed in Figure 28b, that might correspond to 

some Ni-rich precipitates. 

 

 

Figure 28- SEM surface images of heat treated films: a) M0.3_1000 and b) ML_60. 

 

Cross-section SEM images of the heat treated films are shown in Figure 29. When 

analyzing the cross-section of the M0.3_1700 monolithic film, there is a clear change from 

the as-deposited to the heat treated morphology. Although still with a slight vein-like 

appearance, heat treated M0.3_1700 transited to a more compact morphology, confirmed by 

the thickness decrease from 2.7 to 2.3 μm. A thin layer of oxide seems to have formed at the 

surface of the film. 
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Figure 29- SEM cross-section image of heat treated films: a) M0.3_1700 and b) ML_60. 

 

In the heat treated ML_60 film cross-section SEM image, a more compact 

morphology can be clearly seen, with only traces of the initial columnar morphology. Again, 

the heat treatment promoted a decrease of thickness, in line with the observed densification. 

Although reaction between Ni and Ti occurred, the film still exhibits a layered structure, 

although less pronounced that the as-deposited alternating titanium and nickel layers (Figure 

29b versus Figure 23f). However, there are regions with the same tone of color where nickel 

and titanium seem to have fully reacted. 

4.2.2. X-Ray Diffraction  

After heat treatment, XRD analyses were conducted to ensure if the monolithic films 

had crystalized and if the multilayer films had reacted to form intermetallic phases, in 

particular the desired B2-NiTi phase. Since all the films are enriched in nickel, besides the 

austenitic phase, the indexation of Ni-rich crystalline phases is possible. 

For the monolithic films (Figure 30) a change in the XRD diffractogram is clear. 

Films that were initially amorphous were found to crystallize revealing numerous XRD 

peaks. Among these, several were indexed as B2-NiTi, while a fewer can be identified as 

Ni-rich precipitates [52,53,54]. 

Initially, as-deposited multilayer films (Figure 26) correspond to crystalline hcp Ti 

and fcc Ni as exposed in section 4.1.3. With heat treatment, these crystals were proven to 

react forming B2-NiTi, and a high intensity B2 (110) peak can be observed (Figure 31). 

Although to less extent that in the monolithic films, minor XRD peaks that might correspond 

to Ni-rich precipitates can be observed in Figure 31. This finding is in accordance with the 
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EDS results (Table 4), which reveal that the average chemical composition of the multilayers 

films is only slightly enriched in Ni, while the monolithic films have Ni contents close to 60 

at.%. Furthermore, B19’ martensite phase might be indexed in the conventional 

diffractogram, which can also be present on synchrotron XRD merged with the B2 (110) 

austenite peak. In the literature, this phase was proven to appear as a result of induced stress 

[55].  

 

 

Figure 30- Synchrotron XRD diffractograms of heat treated monolithic films: a) M0.3_1000 b) M0.3_1700 
c) M0.5_1000 d) M0.3_1000t. 

 

The information of the XRD diffractograms is valuable because it proves that the 

chosen heat treatment temperature (400ºC) is enough to form the B2 phase, the main driving 

factor for the existence of a superelastic NiTi film. The formed austenite present (110) and 

(111) crystallographic planes for all the films, having the monolithic films extra austenite 

crystallographic planes such as (200) and (211). Furthermore, along with austenite phase, 
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heat treatment temperature allowed the formation of Ni-rich precipitates (highlighted by & 

in Figure 30 and Figure 31), which can be interesting to improve the mechanical behavior of 

the films [56]. 

 

 
Figure 31- XRD diffractograms of heat treated multilayer ML_60 film: conventional XRD on the left and 

synchrotron energy XRD on the right. 

4.2.3. Differential Scanning Calorimetry after heat treatment 

DSC technique was applied on heat treated films to observe the phase 

transformations and estimate the respective temperatures. 

By examining the DSC curves corresponding to the monolithic films (M0.3_1000, 

M0.3_1700 and M0.3_1000t), and to the multilayer films (Figure 32) a common feature can 

be distinguished. In all the above-mentioned films there are only two clear heat flow 

tendency changes: one during cooling (at around -70ºC) and one during heating (at around -

90ºC, except for the film M0.3_1700). This heat flow tendency suggests that there is one 

phase transition present per thermal process represented in the graph. It should be noted that 

it was extremely difficult to detach the films from the silicon substrates; therefore, the DSC 

signal corresponding to the films is weak, since the mass analyzed contained considerable 

amounts of Si. Another fact worth to be mentioned is that all the phase transitions occur at 

considerably negative temperatures.  

As present at this point of the thesis, all the films are nickel-rich. Revisiting Figure 3 

and its contextualization in the State of Art, rising of Ni at.% brings phase transformation 

temperatures down [6]. The slope is so high that nearly only titanium-rich and equiatomic 

materials have some of the transformation temperatures in the positive side.  
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Figure 32- DSC curves of heat treated films: a) M0.3_1000, b) M0.3_1700, c) M0.3_1000t, d) ML_4, e) 
ML_60. 

 

Since the DSC equipment only has definition to study heat flows in a temperature 

range of -150ºC to 150ºC, with the previous sentence in mind, it is certain that every film 

under study has low phase transition temperatures. This means that in most application 

temperatures, including room temperature, the temperatures are higher than Af, meaning that 

the film is in the in austenitic field. This accomplishment is one of the main goals of this 

thesis, whose objective is to have superelastic NiTi films for MEMS applications. 

The DSC curve of the M0.5_1000 film (Figure 33) has a quite different appearance, 

showing one phase transition temperature for the cooling and four for the heating. When it 
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comes to the cooling process, it appears to follow the same negative temperature deviation 

of the remaining films. For the heating process, however, two complete phase 

transformations are present, one corresponding to the intermediate phase (R-phase) 

transformation with Rs  -110ºC and Rf -80ºC, and the other to the austenite phase 

transformation with As  30ºC and Af  100ºC. The R-phase can be interesting in a variety 

of specific applications, due some distinct characteristics, such as phase transformation 

temperature and mechanical behavior. 

 

 

Figure 33- DSC curve of M0.5_1000 heat treated film. 

4.3. Mechanical Properties 

To study the mechanical behavior, the nanoindentation technique was used in order 

to obtain films’ hardness and Young’s modulus. 

Table 5 shows the average mechanical properties of the as-deposited films with the 

respective standard deviations, while Table 6 shows the mechanical properties of heat treated 

films. As can be seen in Table 5, the maximum indentation depths are always below 10% of 

the films’ thickness, assuring that there is no influence of substrate on the hardness values. 

For the monolithic films M0.3_1000 and M0.3_1700, a hardness of around 9 GPa 

and a Young’s modulus of about 150 GPa was registered for both, meaning that the power 

applied to the NiTi target does not significantly influence the films’ mechanical behavior. In 

fact, these films have similar nickel content and similar surface morphology. 
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Table 5- Mechanical behavior of as-deposited films  

Film 
Thickness 

[m] 
Max Depth,hp 

[nm] 

Plastic Depth 

[nm] 
Hardness, H 

[GPa] 

Er, 

[GPa] 

Young Mod, E 

[GPa] 

M0.3_1000 3.2 139.3 ± 4.5 109.3 ± 5.2 9.1 ± 0.6 145 ± 6 153 ± 6 

M0.3_1700 2.7 138.2 ± 8.2 107.5 ± 8 9.3 ± 0.9 144 ± 10 152 ± 10 

ML_4 2.5 154.3 ± 4.7 124.3 ± 5.1 7.6 ± 0.4 133 ± 5 139 ± 5 

ML_60 3.0 153.8 ± 6.8 124.8 ± 7.0 7.6 ± 0.6 137 ± 7 143 ± 7 
 

Table 6- Mechanical behavior of heat treated films. 

Film 
Max Depth,hp 

[nm] 
Plastic Depth 

[nm] 
Hardness, H 

[GPa] 

Er, 

[GPa] 

Young Mod, E 

[GPa] 

M0.3_1000 400C 129.2 ± 4.7 99.2 ± 5.0 10.3 ± 0.7 155 ± 5 165 ± 5 

M0.3_1700 400C 128.7 ± 3.9 98.8 ± 4.3 10.4 ± 0.6 156 ± 6 167 ± 6 

ML_4 400C 136.1 ± 5.8 105.8 ± 6,1 9.5 ± 0.7 147 ± 7 155 ± 7 

ML_60 400C 140.5 ± 3.7 104.5 ± 4.3 9.6 ± 0.5 124 ± 4 128 ± 4 

ML_60 500C 147.7 ± 3.5 111.7 ± 4.1 8.8 ± 0.4 119 ± 2 122 ± 2 

 

For both multilayer films a hardness of 7.6 GPa and a Young’s modulus of about 

140 GPa was registered. When comparing multilayer films with different modulation 

periods, the expected trend is that represented in Figure 9 in the State of Art: the hardness 

decreases as the period increases, except for very short periods where the reverse occurs 

[33]. The shortest period studied is this work (4 nm) should fall in the region where the 

hardness decreases as the period decreases, while the 60 nm period is already in the region 

where the hardness decreases as the period increases. At the end, the multilayer films have 

similar hardness values, although in different regions of the hardness curve as function of 

the period.  

An interesting observation is that the hardness of the multilayer films is significantly 

higher than the result of the rule of mixtures considering the hardness of Ti and Ni pure 

films. This fact is reported multiple times in the literature of multilayer films (e.g. [57]) and 

has been proven to be a result of the presence of multiple interfaces and of the low individual 

layer thicknesses, which limits grain growth resulting in smaller grains. According to the 

Hall-Petch law, grain size is inversely proportional to the hardness, meaning that low grain 

size will increase film’s hardness. Regarding the Young’s modulus of the multilayer films 

the values should obey to the rule of mixtures since it is an intrinsic mechanical property that 
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in principle should only depend on the chemical bonding. The Young’s modulus obtained 

for an equiatomic Ni/Ti multilayer using a rule of mixtures is 160 GPa [58,59], a value 

somewhat higher than the values in Table 6. 

Heat treating the films promoted changes in their mechanical properties. For the 

hardness, a significant increase is observed, as illustrated in Figure 34 and Figure 35. 

 

 

Figure 34-Hardness of as-deposited and heat treated (400ºC) monolithic films. 

 

 

Figure 35- Hardness of as-deposited and heat treated (400ºC and 500ºC) multilayer films. 

 

When analyzing films heat treated at 400ºC, it is evident that hardness increased in 

every film: monolithic films had an increase of about 13% and multilayer films’ hardness 

increased about 26%. This hardness increase is because heat treatment promotes the 

formation of hard intermetallic phases, but also induces compaction, as confirmed by SEM, 

which by itself increases hardness. 

The heat treatment of the multilayer film ML_60 at a higher temperature (500ºC), 

gave rise to a lower increase in the hardness of the as-deposited film ( 16%) The explanation 

behind this is the higher heat treatment temperature which promotes a more pronounced 

grain growth, when compared to the lower heat treatment temperature. According to the 

Hall-Petch’s law, this fact lowers the hardness. 
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Regarding the Young’ modulus monolithic and multilayer films have values higher 

than those found in the literature for equiatomic NiTi and Ni-rich materials (about 75GPa 

[60]). These films proven to have formed B2-NiTi as the major phase, which should have 

brought Young’s modulus closer to the value indicated. The higher Young’s modulus 

observed can be explained by the influence of the silicon substrate. Even though the 

maximum depths are lower than 10% of the thickness, when it comes to the Young’ modulus, 

substrate’s influence is still possible. Tests conducted using the same nanoindentation 

equipment also with a maximum load of 5 mN, reveal a reduced Young’s modulus for 

monocrystalline silicon around 175 GPa. Therefore, if there is influence of the substrate it 

should result in higher Young’s modulus that expected for NiTi films. In fact, when 

comparing the Young’s modulus for the films ML_4 and ML_60 heat treated at 400ºC, a 

higher value is observed for the thinner ML_4 film, corroborating the hypothesis of substrate 

influence.  

As an example, the indentation curves - load (P) versus indentation depth (h) - 

corresponding to the as-deposited and heat treated (400 and 500ºC) ML_60 film are shown 

in Figure 36. 

 

 

Figure 36- Indentation curves of the as-deposited and heat treated (400 and 500ºC) ML_60 film. 

 

According to Gall et al [61], the unloading part of the indentation curve allows the 

recoverable energy to be analyzed (Figure 37). According to Figure 36, the ML_60 film heat 

treated at 500ºC reveals a higher elastic recovery than after the 400ºC heat treatment (green 
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and red curves, respectively), indicating a higher quantity of B2-NiTi or a more 

homogeneous austenitic matrix, which might be favorable for MEMS applications. 

 

Figure 37- Scheme relating nanoindentation microstructural mechanisms with material hardness, energy 
dissipation and energy recovery for NiTi shape memory alloys [61]. 
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5. CONCLUSIONS 

NiTi monolithic and Ni/Ti multilayer films were produced by magnetron sputtering, 

using different deposition parameters. Both, monolithic and multilayer films had to be heat 

treated to obtain the NiTi shape memory alloy. 

From close analysis of all the results of this thesis, the following conclusions can be 

taken: 

 

1. As-deposited Monolithic Films: 

i) Contrary to the expected based on sputtering theory, monolithic films’ chemical 

composition reveals higher nickel contents than the equiatomic NiTi target. In this study, a 

steady state that would result in films with the same chemical composition of the target from 

which they were sputtered was not reached. 

ii) The increase of the power applied to the NiTi target results in films with a slightly 

higher Ni content. 

iii) The films present a cauliflower-like surface morphology, except the film deposited 

at a higher pressure. The cross-section morphology of most films is columnar with traces of 

vein-like features. These vein-like features are dominant in the M0.3_1700 film. 

iv) After deposition all the films are amorphous, as usual in NiTi sputtered films 

without substrate heating. 

v) The as-deposited monolithic films have higher hardness than the multilayer ones. 

 

2. Multilayer Films: 

i) Multilayer films’ chemical composition can be successfully controlled by adjusting 

the power applied to each target. Films slightly enriched in Ni were produced. 

ii) The modulation period of the multilayer films was adjusted by varying the 

substrates rotation speed. Periods of 4 and 60 nm were studied. 

iii) The multilayer films also have cauliflower-like surface morphology, with larger 

features in the film with  = 60 nm. The cross-section morphology is columnar and the films 

seem less ductile than the monolithic ones. 
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iv) The as-deposited multilayer films are crystalline. Fcc Ni and hcp Ti phases were 

identified. 

v) The hardness and Young’s modulus of the two multilayer films are similar. The 

hardness is significantly higher than the result of the rule of mixtures considering the 

hardness of Ti and Ni pure films. 

 

3. Heat treated monolithic and multilayer films: 

i) Heat treatment promoted grain growth, thickness reduction and more compact films. 

ii) In the highest period multilayer, although Ni and Ti reacted, it is still possible to 

observe a layered structure. 

iii) The 400ºC temperature was enough to promote the crystallization of the monolithic 

films with the formation of austenitic B2-NiTi as major phase, together with Ni-rich 

precipitates.  

iv) During heat treatment Ni and Ti reacted forming B2-NiTi. In accordance with their 

chemical composition, the presence of other phases in heat treated multilayer films is less 

pronounced. 

v) DSC analysis performed while heat treating an as-deposited monolithic film 

confirms the occurrence of crystallization (exothermic peak). 

vi) The films under study reveal negative thermophysical transformation temperatures, 

meaning that a stable austenitic phase is present at room temperature. 

vii) The heat treatment is responsible for a hardness increase. However, due to grain 

growth the film heat treated at 500ºC had lower a hardness than the corresponding film 

treated at 400ºC.  

viii) Heat treatment also increases the Young’s modulus of most of the films. An 

increase in heat treatment temperature of the highest period multilayer showed a slight 

increase in the elastic recovery. 

 

Considering the conclusions above and the versatility of the sputtering technique, the 

NiTi films produced, especially the monolithic ones, show potential for MEMS applications. 

Nevertheless, there is still research work to be done. 
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Future Work 

In the course of this research many breakthroughs and discoveries were 

accomplished. However, as part of every research, new questions have emerged that will 

require further investigation. 

 

1. Monolithic films: 

i) Study different interelectrode (target-substrates) distances, to obtain Ni-rich films, 

but limited to  55 at.% of nickel. 

ii) Study the influence of different deposition parameters on obtaining vein-like 

morphologies typical of metallic glasses, and their effect on the films’ thermophysical and 

mechanical properties. 

 

2. Multilayer films: 

i) Production of films with different periods, to study the influence on the 

thermophysical and mechanical properties. 

 

3. Monolithic and multilayer films: 

i) Sputter deposit films with an interlayer between substrate and film, to facilitate the 

detachment of the films from the substrate and allow the thermophysical properties of free-

standing films to be evaluated. 

ii) Study the influence of higher heat treatment temperatures, namely on the films’ 

elastic recovery. 

iii) Study the films’ superelasticity, having in mind their use in MEMS applications. 
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