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Abstract

The widespread and increasing usage of Machine Learning (ML) results in sig-
nificant power consumption in training and inference steps. Even a marginal re-
duction in power consumption holds the potential for substantial energy savings,
benefiting stakeholders (e.g., companies, end users) and the environment.

Optimizing Artificial Neural Network (ANN) models is a promising avenue for
curbing power consumption. Employing an evolutionary approach to tailor these
models to specific problems offers a versatile framework. Furthermore, by inte-
grating considerations of model power usage into this evolutionary process, the
pathway toward power-efficient models can be efficiently paved.

In this work, we propose novel approaches integrated into Fast Deep Evolution-
ary Network Structured Representation (Fast-DENSER), which aim at finding
power-efficient models. We have incorporated a new approach to measure the
power consumption of a Deep Neural Network (DNN) model during the infer-
ence phase. This metric has been embedded into multi-objective fitness functions
to steer the evolution towards more power-efficient DNN models. We also in-
troduce a new mutation strategy that allows the reuse of modules of layers with
inverse probability to the power usage of a module, thus (re)introducing efficient
sets of layers in a model. We propose the introduction of an additional output
layer connected to an intermediate layer of a DNN model and posterior partition-
ing into two separate models to obtain smaller but similarly accurate models that
utilize less power. To the best of our knowledge, no prior works employ a similar
approach. We developed a strategy that allows initializing Fast-DENSER with a
previously trained model to start the evolution with already accurate models and
evolve them towards power-efficient models.

The results obtained by our proposals show that we can reduce the power con-
sumption of the ANNs without compromising their predictive performance. In
concrete, we can obtain models that consume less 19.50 W (19.5%) than a base-
line model whilst having an accuracy higher by 0.2%. The best model found
regarding power consumes less 29.18 W (29.2%) whilst having a tiny decrease in
performance (less than 1%).
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Resumo

A utilização generalizada e crescente de Aprendizagem Computacional (AC) re-
sulta num consumo significativo de energia nas etapas de treino e inferência.
Uma redução apenas marginal no consumo energético tem o potencial de levar
a poupanças energéticas substanciais, beneficiando assim tanto as partes interes-
sadas (e.g., empresas, utilizadores) como o meio ambiente.

A otimização de modelos de Redes Neuronais Artificiais constitui uma abor-
dagem promissora para a redução de consumo energético. A utilização de uma
abordagem evolutiva para afinar esses modelos a problemas específicos oferece
uma plataforma versátil. Além disso, ao integrar considerações sobre o consumo
energético de um dado modelo no processo evolutivo, é possível pavimentar de
forma eficiente o caminho no sentido de modelos energicamente eficientes.

Neste trabalho, propomos abordagens novas integradas no Fast Deep Evolu-
tionary Network Structured Representation (Fast-DENSER), que visam encon-
trar modelos energicamente eficientes. Incorporámos uma nova abordagem para
medir o consumo energético de uma Rede Neuronal Profunda durante a fase
de inferência. Esta métrica foi introduzida em funções de aptidão multiobjetivo
de modo a conduzir a evolução no sentido de modelos energicamente mais efi-
cientes. Para além disso, também introduzimos uma nova estratégia de mutação
que permite a reutilização de módulos de camadas com probabilidade inversa
ao seu uso de energia, (re)introduzindo assim conjuntos eficientes de camadas
num modelo. Promomos também a introdução de uma camada de saída adi-
cional conectada a uma camada intermediária de um modelo de Rede Neuronal
Profunda e o posterior particionamento em dois modelos separados de modo
a obter modelos de menor dimensão, porém de precisão semelhante e de con-
sumo energético inferior. Até onde sabemos, nenhum trabalho prévio utiliza uma
abordagem semelhante. Desenvolvemos uma estratégia que permite inicializar o
Fast-DENSER com modelos previamente treinados de modo a iniciar o processo
evolutivo com modelos precisos e evoluí-los de modo a serem mais eficientes em
termos energéticos.

Os resultados obtidos pelas nossas propostas mostram que é possivel reduzir
o consumo de energia de Redes Neuronais Artificiais sem comprometer o seu
desempenho preditivo. Concretamente, podemos obter modelos que consomem
menos 19.50 W (19.5%) do que um modelo de referência, tendo uma precisão mais
elevada que este por 0.2%. O melhor modelo encontrado em relação à energia
consome menos 29.18 W (29.2%), tendo uma diminuição mínima no desempenho
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(menos de 1%).
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Chapter 1

Introduction

As the demand for Machine Learning (ML) continues to grow, so does the elec-
trical power required for training and assessment. According to Patterson et al.,
GPT-3, the model behind ChatGPT, consumes 1287 MWh, corresponding to ap-
proximately 552 tons of CO2 equivalent emissions just for training during 15 days
[1]. In addition to the environmental impacts of this power usage, it can also bur-
den individual users and organizations, who may face high energy costs. There-
fore, finding ways to reduce the power consumption of machine learning pro-
cesses is becoming increasingly important.

Artificial Neural Networks (ANNs) are a type of ML model inspired by biological
neural networks. They consist of multiple layers of artificial neurons, which are
functions that take input data and produce an output based on it. The connec-
tions between neurons have an associated weight value modified in the training
process to allow the network to “learn” how to solve a specific task. Deep Neural
Networks (DNNs) are ANNs with a considerable number of hidden layers. This
allows them to avoid the feature engineering step, thus automatically discover-
ing the representations needed for classification and achieving higher accuracy
values. Training and executing ANNs is power-intensive due to the required
computational resources.

Evolutionary Algorithms (EAs) are algorithms inspired by natural selection. They
utilize mechanisms to evolve solutions over multiple generations, such as selec-
tion, crossover, and mutation. The process begins with a randomly initialized
population whose evolution is steered by a fitness function that measures an in-
dividual’s quality. In conjunction with the mentioned evolutionary mechanisms,
the process is predicted to culminate in near-optimal individuals.

Neuroevolution (NE) uses EAs to generate and optimize ANNs for a given task
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[2]. It can optimize the ANN’s architecture and learning parameters.

One approach to address the energy inefficiency issue is using NE to search for
well-suited models for a particular problem while being power-efficient. Fast
Deep Evolutionary Network Structured Representation (Fast-DENSER) is a method
that utilizes an Evolution Strategy (ES) to find optimal neural network models by
using their accuracy as the fitness function, thus guiding the search towards ac-
curate models [3].

The main motivation of our work is the inefficiency of Deep ML models regard-
ing energy consumption. Over 90% of ML research tackles the accuracy metric
alone [4]. Conversely, day-to-day usage requires balancing the model’s accuracy
and energy efficiency. On a larger scale, enabling efficient models could widen
the use of Deep ML on personal, commercial, and industrial fronts, thus promot-
ing algorithms that increase efficiency. Moreover, this could help mitigate the
environmental impact of Deep ML, which has been increasingly brought to at-
tention due to the high energy consumption of model training and inference, as
well as minimizing time spent on training, designing, and inferring models, thus
providing faster services to the end user.

In this work, we propose novel approaches integrated into Fast-DENSER, which
aim at finding power-efficient models. We have incorporated a new approach to
measure the power consumption of a DNN model during the inference phase.
This metric has been embedded into multi-objective fitness functions to steer the
evolution towards more power-efficient DNN models. We also introduce a new
mutation strategy that allows the reutilization of modules of layers with inverse
probability to the power usage of a module, thus (re)introducing efficient sets
of layers in a model. We propose the introduction of an additional output layer
connected to an intermediate layer if a DNN model and posterior partitioning
into two separate models to obtain smaller but similarly accurate models that
utilize less power. To the best of our knowledge, no prior works employ a similar
approach. Even though comprehensive testing is yet to take place, we developed
a strategy that allows initializing Fast-DENSER with a previously trained model
to start the evolution with already accurate models and evolve them towards
power-efficient models.

To better visualize and interpret results from experiments performed in Fast-
DENSER, we developed a visualization tool, NeuroView, that enables interactive
data visualization. It allows for comparing the metrics of a single experiment,
comparing two different experiments, and inspecting a single individual model.

The experiments are analyzed through two metrics: accuracy and mean energy

2



Introduction

usage during the validation step. The motive for using the energy usage of the
validation step instead of the training step is that the training is usually per-
formed only once. At the same time, the inference is executed multiple times.
Moreover, inference does not necessarily occur on the machine where the train-
ing was conducted, which is important since many devices are not optimized for
these tasks.

The results of this work show that it is possible to have DNN models with sub-
stantial inferior power usage. Specifically, we can obtain models that consume
less 19.50 W (19.5%) than a baseline model whilst having an accuracy 0.2% higher.
The best model found regarding power consumes less 29.18 W (29.2%) whilst
having a tiny decrease in performance (less than 1%).

1.1 Research Questions

The main objective of this work is to provide a way to make DNNs physically fea-
sible on a small and large scale, making them more energy-efficient. This work
aims to answer the question: "Is it possible to create neural networks that con-
sume energy in the same order of magnitude as the human?".

Some secondary research questions (RQ) are posed as follows to answer the main
question:

RQ1 — Can we train a single network that can be partitioned into a smaller,
accurate, and efficient energy-wise partition? To answer this, we will per-
form tests on models with two outputs that are subsequently partitioned
into two separate DNN models. These have the advantage of requiring
only the training of the composite model and, tentatively, being accurate
while requiring less energy since they possess fewer layers. For example,
the larger partitioned model could be used on devices with more extensive
computational resources or in scenarios where a large number of inferences
are performed on Artificial Intelligence (AI) models. At the same time, the
smaller one could be employed on devices that do not, such as smartphones
or Internet of Things (IoT) devices, which nowadays have AI models ap-
plied to them through previous training and testing.

RQ2 — To what degree does penalizing large energy consumption drive
the search for efficient networks? To answer this, we will analyze how im-
portant it is to consider energy consumption in a neuroevolutionary process

3
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and at what point it matters most, i.e., can we evolve accurate networks
and only consider their energy consumptions after having a satisfactory
accuracy value?

1.2 Contributions

The key contributions of this work can be encapsulated as follows:

• Introduction of power consumption of a DNN model as a metric on Fast-
DENSER.

• Development of multi-objective fitness functions on Fast-DENSER, which
consider the power consumption of a model.

• Reutilization of modules of layers on Fast-DENSER, fulfilled through intro-
ducing two new mutation operators and adding an archive of modules and
their respective power consumption.

• Model partitioning, a strategy that allows the development of two separate
models on a single training, with one of them having an inferior number of
layers.

• Using previously trained models as the basis on which Fast-DENSER begins
its evolutionary process, thus starting with an accurate model and allowing
it to evolve towards a more power-efficient model.

• NeuroView, a web app that allows interactive visualization and analysis of
results from Fast-DENSER.

1.3 Structure

Chapter 2 presents the essential background for the reader to understand the
concepts behind this work, such as Evolutionary Computation (EC), ANNs, and
NE. Chapter 3 shows the various approaches we developed to tackle the problem.
Chapter 4 comprises the performed experimental study: the experimental setup,
the experiments performed, and a comparison and discussion of their results.
Chapter 5 presents a visualization tool developed to understand better the results
of NE experiments. At last, chapter 6 presents this work’s conclusion and topics
to approach in the future.
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Background

2.1 Evolutionary Computation

Evolutionary Computation (EC) is a branch of Artificial Intelligence (AI) inspired
by the Darwinian Theory of Evolution [5]. This theory states that individuals
who most effectively compete for the resources available in their environment are
favoured by natural selection. The population members are different in behavior
and physical traits, which determine their fitness. It also considers that minor,
random variations occur during the evolutionary process, thus making it possible
to create new traits.

Initial potential solutions are generated at the beginning of an EC process. Itera-
tively, weaker solutions are stochastically filtered out, and slight random modifi-
cations are introduced. Over time, solutions become increasingly improved, and
the process culminates in near-optimal solutions.

One important trade-off in EC is balancing exploration and exploitation. Explo-
ration refers to the systematic exploration of novel regions in the search space. In
contrast, exploitation involves the examination of areas within the search space
that are near previously visited points [6]. When focusing more on exploration,
unproductive regions of the search space may be prone to be searched, wasting
computational resources and time and diverging from an optimal solution. On
the other hand, focusing on exploitation increases the susceptibility to becoming
trapped in local optima, thus failing to explore regions that could contain better
solutions.
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2.1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are meta-heuristic optimization algorithms based
on the principles of Darwinian evolution [7, 8]. They work by exploring possible
solutions in the search space in a stochastic manner to solve a problem better. An
example of a simple EA can be analyzed in Algorithm 1.

Algorithm 1 Simple Evolutionary Algorithm

Require: pop_size > 0, generations > 0, 0 ≤ crossover_prob ≤ 1,
0 ≤ mutation_prob ≤ 1
population← initialize(pop_size)
generation← 1
while generation ≤ generations do

new_population← ∅
i← 1
while i ≤ pop_size do

individual ← select(population)
if random() < crossover_prob then

mate← select(population)
individual ← crossover(individual, mate)

end if
if random() < mutation_prob then

individual ← mutate(individual)
end if
new_population← new_population ∪ individual
i← i + 1

end while
population← new_population
generation← generation + 1

end while

The EA begins with the random generation of an initial population. Each indi-
vidual is represented by its genotype, which can take many forms, such as binary
strings, real-valued vectors, or a permutation of a set of integers. The encoding
from genotype to phenotype and vice-versa is problem-dependent.

An individual’s effectiveness in solving a problem can be assessed through a fit-
ness function adequate to the problem. It is crucial since it is the factor that quan-
tifies a solution’s quality by considering its qualities and defects. A well-designed
fitness function can determine the degree of alignment between a solution and the
intended objective(s).

Similarly to the natural evolution processes, EAs utilize mechanisms to allow
diversity in the population. A broader search of the search space and the es-
cape from local minima is encouraged through selection, crossover, and muta-
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tion mechanisms. The last two have an associated probability of being applied to
control the level of exploration and exploitation. Furthermore, selection can be
divided into parent selection and survivor selection.

Parent selection regards the selection of individuals in the current generation who
will participate in the recombination step, thus generating offspring and passing
their genes to the following generations. Parent selection is stochastic and pre-
disposed to individuals with higher fitness values. To balance exploration and
exploitation, lesser-fit individuals can often generate offspring. There are several
types of selection operators for parent selection. The most common are tourna-
ment selection, roulette wheel selection, and stochastic universal sampling.

Tournament selection is a relatively simple operator where a sample of individ-
uals is stochastically picked, and the one with the highest fitness is selected. In
the roulette wheel operator, the selection is proportionate to an individual’s fit-
ness, i.e., individuals with higher fitness are more likely to be selected. One can
visualize a wheel with sections proportionate to the individuals’ fitness values.
In the centre of it, an arm spins and stochastically falls in one of those sections.
Stochastic universal sampling extends the roulette wheel operator by performing
one spin with multiple equally-spaced arms instead of multiple spins with only
one arm, thus providing an unbiased selection [7].

Variation operators form new individuals from existing ones, thus creating new
candidate solutions.

Crossover is a variation operator that usually takes two individuals and combines
information from their genotypes into one or two offspring. It is also possible to
input more than two parents even though it has no biological counterpart. Figure
2.1 presents an example of a two-point crossover that produces two offspring.
Two cutoff points are randomly selected to perform it, and the genotype material
exchange is performed around them.

Figure 2.1: Example of two-point crossover

Mutation is a variation operator applied to a single individual that stochastically
modifies its genotype. For a binary representation, the bit-wise mutation is usu-
ally used. In the case of permutation representation, there are many types of
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mutation operators, such as swap mutation. The first flips one or more bits of the
genotype, and the latter randomly picks two genes and swaps their values.

Survivor selection is the selection of the individuals to be passed to the following
generation. The used criterion can be fitness or age. In the first case, the fittest
individuals are selected. In the second, the individuals have a maximum limit
of generations to exist. In the case of age-based survivor selection, the fittest
individuals are not necessarily selected since only their age is considered.

Multiple criteria determine when an evolutionary process terminates. For ex-
ample, it may be when a known optimal fitness level has been reached, the maxi-
mum number of generations has been reached, the population diversity has fallen
under a specific threshold, or the maximum allowed CPU time has been reached.

2.1.2 Evolution Strategies

Evolution Strategys (ESs) work similarly to EA, taking advantage of key concepts
such as selection and mutation to aid the search for a solution to a problem [9,
10]. Considering µ ∈ N as the number of parents and λ ∈ N as the number of
offspring, ES algorithms are generally of the form (µ, λ) with µ < λ or (µ + λ)

with µ ≤ λ.

In the case of the first form, the process begins with a population of λ randomly
initialized individuals. The µ with the best fitness values are selected, producing
(λ/µ) new individuals who replace the parents. The value of λ controls the size
of the population. Thus, as it increases, the algorithm tends towards exploration.
The value of µ controls the selective behaviour of the algorithm, with low values
pushing it towards exploitative search. Since the only mechanism varying the
individuals is mutation, if the mutation degree is too high, the children will be
too different from the parents, thus probably resulting in individuals with inferior
fitness.

In the case of the additive strategy, instead of replacing the parents, a new gen-
eration is comprised of µ parents plus λ new children. This way, only the first
generation is of size λ. The following generations are of size λ + µ.

2.1.3 Genetic Programming

Genetic Programming (GP) works similarly to EA. However, it concerns the evo-
lution of programs, expressions, or models that can be represented, for example,
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as syntax trees [7]. To solve a GP problem, it is required to specify the termi-
nal set (variables or constants) and the function set, as well as standard require-
ments to EA, such as the fitness function, the control parameters, and the termi-
nation criteria [11]. Considering a function set F = {+,−, ∗, /} and a terminal
set T = {π, r, 1, 2}, an example of a syntax tree is shown in Figure 2.2.

Figure 2.2: Example of a syntax tree

The initial population is created randomly, and its individuals are usually gener-
ated with the following methods: full, grow, and ramped half-and-half. The first
method creates each tree branch with the maximum defined depth (Figure 2.3a).
The second creates a tree where each branch may be as deep as the maximum
defined depth (Figure 2.3b). The last method uses the previous two with equal
probability (Figure 2.3c).

Similarly to EA, mutation and recombination operators exist. Mutation in GP
can be accomplished by replacing the sub-tree with its root in a randomly se-
lected node with a new randomly generated tree, as seen in Figure 2.4. On the
other hand, recombination can be achieved through a sub-tree crossover. This
crossover consists of swapping the sub-trees starting at two randomly selected
nodes of two individuals, as shown in Figure 2.5.

While searching for solutions using GP, the solutions may become larger and
more complex over time. If its fitness does not increase, it is called "bloat." Bloat
can slow down the search and create solutions that are difficult to understand.

One way to prevent bloat is to use a fitness function that considers the tree’s size
and penalizes larger trees. Methods like double tournament, which first selects
solutions based on their fitness and then on their size, can also help reduce bloat.
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(a) Full method

(b) Grow method

(c) Ramped half-and-half method

Figure 2.3: Example of tree initialization methods for a population of two indi-
viduals

2.1.4 Grammatical Evolution

Grammar-based GP has a search space defined by a human-readable grammar
[12]. Grammatical Evolution (GE) is a grammar-based GP with a clear distinc-
tion between genotype and phenotype. The first is a linear sequence of bits, and
the latter is a high-level program. The mapping from genotype to phenotype is
performed using the production rules of a Context-free Grammar (CFG) [13]. A
grammar is represented by the tuple (N, T, P, S) with N being the set of non-
terminals, T being the set of terminals, P being the set of production rules, and
S ∈ N is a start symbol.

The mapping from genotype to phenotype is performed as follows: the linear
sequence of bits is read from left to right, and, starting with S, a production rule
is iteratively applied to expand the leftmost non-terminal symbol. The value of
the linear sequence being read (the codon) is used to select which production
to apply by calculating the modulo of it per the number of existing choices for
expanding the leftmost non-terminal symbol.

Consider the grammar in Figure 2.6 with N = {< expr >,< op >,< trig >,<
var >}, T = {+,−, sin, cos, x, y, ()} and S = <expr>. Considering a genotype with
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Figure 2.4: Example of sub-tree mutation

Figure 2.5: Example of sub-tree crossover

integer values ranging from 0 to 63, the mapping process is as follows (Figure
2.7). Firstly, we begin with the start symbol, <expr>, and read the first element
of the integer vector. Since there are three options on how to expand the start
symbol, we have 46 mod 3 = 1; thus, the start symbol is replaced by its second
expansion rule, <trig>(<expr>). Following this, the second value in the genotype
is read, and we expand the leftmost non-terminal symbol, i.e., <trig>. Since it has
two expansion rules, 15 mod 2 = 1 and the second expansion rule is selected,
replacing <trig> and forming cos(<expr>). The mapping process is executed un-
til there are no more non-terminal symbols. If there are no more integers to read
from the genotype, it is possible to use a wrapping mechanism instead of termi-
nating the mapping process, thus reusing the genotype values.

2.2 Artificial Neural Networks

Machine Learning (ML) is an approach to data analysis that automates analytical
model building. It is based on the idea that systems can learn from data, recognize
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<expr> F <expr> <op> <expr>
| <trig>(<expr>)
| <var>

<op> F +
| -

<trig> F sin
| cos

<var> F x
| y

Figure 2.6: Example of a grammar

Genotype: [46, 15, 17, 28, 50, 42, 22, 19, 51, 35]

<expr>
<trig>(<expr>) 46 mod 3 = 1

cos(<expr>) 15 mod 2 = 1
cos(<var>) 17 mod 3 = 2

cos(x) 28 mod 2 = 0

Figure 2.7: Example of Grammatical Evolution mapping

patterns, and make decisions with minimal or no human intervention. In ML, a
system is trained on a dataset, which enables it to learn from the data and perform
predictions without being explicitly programmed. Several types of ML exist, such
as supervised learning, unsupervised learning, and reinforcement learning [14].

In supervised learning, the model is trained on labelled data, where each input
is associated with a corresponding output. The model learns to map inputs to
the correct outputs by analyzing the labelled examples. The dataset is commonly
split into training, validation, and testing. As their names imply, the training
subset is utilized for training the model, the validation subset is employed to
assess the model’s performance and refine it during the training phase, and the
final subset is reserved to evaluate the trained model’s performance and measure
its accuracy using unseen data.

Contrarily to supervised learning, unsupervised learning does not require la-
belled data since it learns from the inputs alone. Most unsupervised learning
algorithms usually perform a clustering step and then learn to classify the pat-
terns into a finite number of classes.

Reinforcement learning is similar to supervised learning but relies on the output’s
rightness instead of it being equal to an exact desired outcome, i.e., through the
maximization of a reward function. This is achieved through a trial-and-error
learning approach where an agent’s actions in an environment impact its rewards
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and long-term rewards.

Artificial Neural Networks (ANNs) are a supervised ML model inspired by Bi-
ologic Neural Networks [15]. An ANN consists of connected processing units
known as neurons. The connections follow a specific topology to achieve the de-
sired application. A neuron’s input may be the output of other neurons, external
sources, or itself (Figure 2.8). Every connection has an associated weight, allow-
ing the system to simulate biological synapses. A weighted sum of the inputs is
computed at a given instant, considering the connection weights. It is also pos-
sible to sum a bias value to this. An activation function is applied, and thus, the
neuron’s output is obtained.

Figure 2.8: Example of an artificial neuron with n inputs

The perceptron is a single-layer ANN composed of one or more inputs and a
single output, as depicted in Figure 2.9, with x as the input vector, w as the weight
vector, f as the activation function, and y as the output [16]. During the training
process, the weights of the input nodes are adjusted to improve the accuracy of
the perceptron’s classification of input data into one of two classes. As a linear
classifier, it can only differentiate linearly separable data.

The multilayer perceptron extends the concept of perceptron by allowing more
than one layer. It consists of an input layer, one or more hidden layers, and an
output layer. Contrarily to the simple perceptron, it can handle non-linear classi-
fication tasks. Figure 2.10 shows a multilayer perceptron with three inputs, two
hidden layers, and two outputs. The first hidden layer has three units, and the
second one has four.

Deep Neural Networks (DNNs) are ANNs composed of many hidden layers.
Due to this, DNNs can avoid the feature engineering step, which requires human
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Figure 2.9: Example of a perceptron with three inputs

Figure 2.10: Example of a multilayer perceptron

expertise, by automatically discovering the representations needed for classifica-
tion [17]. Thus, they can model more complex relationships and achieve higher
accuracy on tasks requiring pattern recognition.

The development and usage of DNNs have substantially increased due to the
widespread deployment of more capable hardware, such as Graphics Processing
Units (GPUs).

Convolutional Neural Networks (CNNs) are a type of DNN primarily used in
image-driven pattern recognition problems due to their ability to capture spa-
tial dependencies since, in an image, it is relevant to consider a pixel and its
surrounding region [18]. CNNs have achieved remarkable success in computer
vision tasks such as image classification, medical image analysis, and image seg-
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mentation. Their ability to automatically learn hierarchical representations and
capture spatial dependencies has made them a fundamental tool in deep learning
and computer vision.

At the basis of a CNN lies using one or more convolutional layers. These layers
perform a convolution operation on the input data, which helps extract relevant
features and learn hierarchical representations. The convolution operation in-
volves sliding a small filter or kernel window over the input data. Each kernel
extracts specific patterns or features from the input by performing a dot product
between the sliding window and the filter. The resulting output is a feature map
representing certain features at different spatial locations in the input.

2.2.1 Energy Consumption

With the increasing usage of computing resources and the growing issue of cli-
mate change, it is essential to produce energy-efficient hardware and software.
GPU usage is typically energy-expensive due to arduous cycles such as training
ML models, mining cryptocurrencies, and video games.

There are two main categories of measuring GPU power: through physical de-
vices and through metrics that serve as a proxy for calculating the used power
[19].

In the case of using physical devices, there are techniques such as using a power
measuring tool or GPU drivers. Relatively to the first case, a device is placed be-
tween the power outlet and the computer’s power cable. This way, it can output
the measured power directly into a computer. Relatively to the other option, it is
possible to use a program to read the GPU power measuring device if supported.
In the case of Nvidia, it is possible to use nvidia-smi or third-party programs such
as pyJoules [20], which allows obtaining energy consumption programmatically
in Python.

As for the case of using metrics to estimate energy consumption, it is possible
to use the number of trainable parameters in a model or the number of floating
point operations per second (FLOPs). While both are good indicators, literature
shows that FLOPs provide a better proxy for energy consumption [21].

It is also possible to estimate the energy consumption of a DNN through frame-
works such as NeuralPower [22]. It is a layer-wise predictive framework based
on sparse polynomial regression that allows the estimation of the serving energy
consumption of a network deployed on any GPU, i.e., it is not restricted to the
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manufacturer.

[23] presents a thorough comparison of power and energy efficiency of various
well-known DNNs such as AlexNet and GoogleNet through the convnet bench-
mark suite [24]. Training frameworks like Caffe [25], Torch [26], and Tensorflow
[27] are compared as well. It is concluded that Torch is the most efficient frame-
work on GPU and that Caffe has a similar performance, depending on the GPU
being used. It also shows that convolutional layers consume most of the total
energy consumption, followed by fully-connected layers. It is also noteworthy
that increasing the batch size, i.e., the number of examples used in one iteration,
increases power consumption but reduces the energy consumption per image.

It is possible to develop problem-specific networks comprising a few neurons
[28], taking inspiration from simple biological organisms. Since the outputs of
this kind of network are as accurate or even more accurate than the larger coun-
terparts, they present benefits since a lower number of neurons results in lower
energy consumption. Similarly, it is sometimes preferable to separate feature ex-
traction from decision-making to allow problems to be solved with more straight-
forward methods while maintaining comparable performance [29].

2.2.2 Multi-Output Learning

Multi-Output Learning (MOL) allows the prediction of multiple outputs with a
single input, making it possible to solve more complex decision-making prob-
lems with multiple related solutions [30]. MOL makes it possible to predict n
aspects from a single input without developing n different models, each special-
ized in one aspect. Instead, one model can have n output layers, each capable of
predicting one aspect.

When having multiple output layers, each output layer requires an adequate loss
function for the data type it is expected to predict. They are then combined into
a single scalar value used in the optimization process. Specifying loss weights to
apply to each loss value in the combined loss is possible.

For example, it is possible to predict the age, gender, and race of an individual
with a three-output model, with the age output meant for numeric values and the
other two for categorical values [31].
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2.3 Neuroevolution

Neuroevolution (NE) is the application of evolutionary techniques to search for
DNN models. It is used to optimize the structure and weights of DNNs to im-
prove their performance on specific tasks, such as image classification and natu-
ral language processing. NE is a gradient-free method based on the concept of
population [2]. It allows for the simultaneous exploration of multiple zones of
the search space through parallelization techniques at the cost of taking a usu-
ally long time to execute since each individual of the population is a DNN that
requires training and testing.

Multi-Objective Optimization (MOO) is the process of finding a solution or set
of solutions that optimize multiple objective functions [32]. It is necessary to
perform trade-offs between objectives in multiple problems among many fields,
such as economics, engineering, and computer science. For example, the indus-
trialized development of a product might require maximizing profit while mini-
mizing costs and environmental impact.

A key concept of MOO is that of the Pareto optimal solution. It represents a
solution that cannot be improved in any single objective without worsening the
others. A set of these solutions comprises the Pareto frontier and represents all
the solutions that are trade-offs between the objectives.

Figure 2.11: Example of the Pareto front of a set of solutions (maximizing f1 and
f2)
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2.3.1 MONAS

Multi-Objective Neural Architecture Search (MONAS) is a framework that em-
ploys reward functions that consider accuracy and other objectives, such as power
consumption, when searching for DNN architectures [34].

MONAS is a two-stage framework with a generation and evaluation stage. In
the former, a Recurrent Neural Network (RNN) is used as a robot network and
generates a hyperparameter sequence for a CNN. In the latter stage, an existing
CNN model is trained as a target network using the hyperparameters from the
previous stage. The target network’s accuracy and energy consumption are used
as rewards to the robot network, which updates itself based on this reward with
reinforcement learning.

The performed experiments use models of the AlexNet [35] and CondenseNet
[36] families in the evaluation stage. The used dataset is CIFAR-10 [37], which
has 50 thousand examples for training and 10 thousand for testing, where each
example is a 32x32 color image, and the images are divided into ten classes.

Compared to the CondenseNet baselines, MONAS obtained more accurate mod-
els that consume less energy. The best model found is 0.14% more accurate than
the best CondenseNet model tested whilst consuming 40.4% less energy than it.
The most power-efficient model found consumes 13.6% less energy whilst being
0.62% more accurate than the worst-performing CondenseNet model tested.

2.3.2 DENSER

Deep Evolutionary Network Structured Evolution (DENSER), as the name sug-
gests, is an algorithm that allows the search of DNNs through a grammar-based
neuroevolutionary approach that searches both network topology and hyper-
parameters [33].

The developed DNNs are structured according to a provided context-free gram-
mar. DENSER uses Dynamic Structured Grammatical Evolution (DSGE) as the
strategy that allows the modification of the network topology. DSGE is built upon
Structured Grammatical Evolution (SGE), with the main differences of allowing
the growth of the genotype and only storing encoded genes. Allied with dynamic
production rules, DSGE allows creating multiple-layer DNNs. SGE proves to per-
form better than GE, and DSGE proves to be superior to SGE. The individuals of
the evolutionary process are represented in two levels: the outer level encodes
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the topology of the ANN, and the inner one encodes its parameters.

Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) was
developed to overcome some limitations verified on DENSER: evaluating the
population consumes a considerable amount of time, and the developed DNNs
are not fully trained [3]. Fast-DENSER is an extension of DENSER on which the
evolutionary engine is replaced by a (1 + λ)-ES. This modification dramatically
reduces the required number of evaluations per generation, enabling executions
20 times faster than the original version of DENSER.

Moreover, individuals are initialized with shallow topologies, and the stopping
criterion is variable to allow an individual to be trained for a more extended time.

On the CIFAR-10 dataset, DENSER obtained models with an accuracy higher
than most of the state-of-the-art results, and on the CIFAR-100, it obtained the
best accuracy reported by NE approaches. Fast-DENSER proves to be highly
competitive relative to DENSER, achieving execution times far inferior to its pre-
decessor. Additionally, Fast-DENSER can develop DNNs that do not require ad-
ditional training after the evolutionary approach and are, therefore, ready to be
deployed.

2.3.3 LEMONADE

Lemarckian Evolutionary Algorithm for Multi-Objective Neural Architecture De-
sign (LEMONADE) is an evolutionary algorithm for multi-objective architecture
search that allows approximating the entire Pareto front of architectures under
multiple objectives, such as predictive performance and number of parameters in
a single run of the method [38].

It uses a Lamarckian inheritance mechanism, which generates child networks that
are started with the predictive performance of their trained parents. It is accom-
plished by using approximate network morphism operators for generating chil-
dren. These operators preserve the network’s function, thus not requiring the
training from scratch and reducing the required training time per network.

LEMONADE keeps a population of networks on an approximation of the Pareto
front of the multiple objectives. It exploits the fact that evaluating particular ob-
jectives, such as the number of parameters on an architecture, does not require
training the model, while evaluating the predictive performance on validation
data does. That is, LEMONADE assigns higher probabilities to architectures with
a better chance of providing more knowledge on the Pareto front for the "cheap"
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objectives and then evaluates only this subset, reducing the required computa-
tional resources. LEMONADE returns a set of architectures, thus not requiring
the definition of weighted reward functions and allowing the user to select the
most adequate.

The experiment performed on the CIFAR-10 dataset initializes LEMONADE with
trivial architectures instead of state-of-the-art ones. It aims at minimizing five
objectives: performance on CIFAR-10 and CIFAR-100 datasets, number of pa-
rameters, number of multiply-add operations, and the inference time. Relatively
to the CIFAR-10 dataset and in comparison with literature results LEMONADE
achieves an error rate 0.05% inferior to DPP-Net whilst using the same number
of parameters, and achieves an error rate 0.28% superior to PLNT whilst using
8.39% less parameters.

2.3.4 NSGA-Net

NSGA-Net is an evolutionary approach for Neural Architecture Search (NAS)
that utilizes at its core Nondominated Sorting Genetic Algorithm II (NSGA-II) as
the MOO algorithm. It is a population-based search algorithm that explores a
space of potential neural network architectures in three steps. At first, the pop-
ulation is initialized, taking into account knowledge from hand-crafted architec-
tures. Afterward, an exploration step is performed through crossover and muta-
tion of architectures. At last, an exploitation step uses a Bayesian network that
has knowledge of the history of evaluated neural architectures [39].

This approach ponders two objectives useful for real-world deployment: maxi-
mizing accuracy and minimizing power consumption using FLOPs as a proxy.

The performed experiments use the CIFAR-10 dataset. When compared to the
presented state-of-the-art architectures designed by human experts, NSGA-Net
achieves a test error 0.38% inferior whilst using only 12.9% of the number of pa-
rameters. When compared with other NAS methods, it achieves similar accuracy
and uses the same number of parameters as the best one. Furthermore, NSGA-
Net obtained a model with the best test error (0.15% less than the previous best)
although it uses 8.1 times the number of parameters.

Nondominated Sorting Genetic Algorithm II

NSGA-II combines MOO and EA by using evolutionary mechanisms to find so-
lutions to an optimization problem [40, 41].
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The algorithm starts by generating a population of potential solutions to the op-
timization problem and evaluating their performance in the multiple objectives.
Following this evaluation, a fast non-dominated sorting is performed where the
solutions in the population are sorted into different fronts based on their level
of non-dominance. The first front consists of the non-dominated solutions. The
second consists of the solutions dominated by at least one solution of the first
front, and so forth. A crowding distance is assigned to solutions belonging to the
same front to ensure diversity in the population. Selection is performed by taking
the crowding distance measure as key to balancing exploration and exploitation.
The selected solutions are then recombined and mutated, replacing the worst-
performing solutions to keep a constant population size. This process is repeated
until a satisfactory set of solutions is found.
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Chapter 3

Approach

In this chapter, we introduce the modifications we propose to apply to Fast Deep
Evolutionary Network Structured Representation (Fast-DENSER) to make it able
to generate power-efficient Deep Neural Network (DNN) models.

3.1 Power Measurement

Measuring the power a Graphics Processing Unit (GPU) consumes is fundamen-
tal when developing approaches that minimize a model’s energetic footprint. The
ecosystem of developing a DNN model mainly consists of three phases: design,
training, and deployment.

The design phase uses some energy be it with manual design techniques or auto-
matic methods. As described in Section 2.3.2, Deep Evolutionary Network Struc-
tured Evolution (DENSER) is a Neuroevolution (NE) framework and, as such,
consumes energy on the search for optimal models. That consumption might be
on par with the energy used on manual, trial-and-error methods. Reducing the
energy used in this phase is out of the scope of this work.

The training of a DNN model is an expensive process in which a model is trained
on a large dataset to learn to predict unseen instances, taking a significant toll
on technological companies’ and individuals’ power bills. While diminishing en-
ergy consumption during the training process remains a significant objective, it
is worth noting that the inference phase in DNNs holds vital importance during
software deployment, as the software obtains results through inference. This be-
comes particularly relevant when considering the potential utilization of these
models by millions of users. As such, tackling the minimization of energy con-
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sumption in this step is vital. For example, it is estimated that 80% to 90% of
NVIDIA’s Machine Learning (ML) computations are inference processing [42]
and about 60% of Google’s ML energy usage is for inference with the remain-
ing portion being for training [1].

With that in mind, our work focuses on the power consumption in the inference
step to allow a large deployment, thus saving more computational resources and
energy and, on another layer, reducing financial expenses and reducing environ-
mental impact.

3.2 Model Partitioning

Training a DNN model requires a substantial amount of time and considerable
energy. Creating a process on which a single model is trained but can be split
posteriorly into two models would reduce the time spent on training two models
by, at most, two times. Pushing one of those two models into being smaller than
the other may produce a simpler, similarly accurate, yet more power-efficient
model.

For that matter, we experimented with a modification to Fast-DENSER on which
an extra output layer is connected to an intermediate layer of the model. The
two-output model (Figure 3.1a) is trained to optimize for two outputs. At the
validation step, it is split into left (Figure 3.1b) and right (Figure 3.1c) partitions.
These partitions are disjoint and can be evaluated similarly to how the complete
model is evaluated, and metrics such as accuracy and power consumption can be
obtained.

The intermediate point is a marker for where the additional output is added at
the model partitioning step. We can, for example, consider a model as an array
of layers, and the mentioned marker is the index of the layer to which the addi-
tional output is connected. This point can be assigned to any intermediate layer
of the model. The input and output layers are excluded to prevent useless and
redundant partitions.

Since the maximum value of the point depends on the number of layers of the
model, the grammar initializer and the mutation mechanism for the macro level
were modified to consider the maximum number of layers of the model dynami-
cally. To introduce the intermediate point in the evolutionary process, it was con-
sidered part of the macrostructure and, as such, as a rule of the grammar. The in-
troduced rule is <middle_point> ::= [middle_point,int,1,0,x], which means that one
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(a) Full model

(b) Left partition (c) Right partition

Figure 3.1: Example of a two-output model and its left and right partitions, with
the layer marked by the intermediate point in red color.
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integer value is obtained with the lower limit being zero. The upper limit is an
arbitrary variable x that will be replaced at any instance by the maximum number
of layers in the model.

3.3 Multi-objective Fitness Functions

To consider accuracy and power consumption in the fitness function, some func-
tions were developed to take these parameters into account. Since our objective is
to maximize accuracy but minimize power consumption, we consider the inverse
of the latter, i.e., power−1.

In light of our hypothesis suggesting the division of a DNN model into two com-
parably accurate partitions, with one smaller than the other, all of the presented
fitness functions consider the accuracy of both partitions. This aims to enhance
the accuracy of both partitions. These fitness functions only focus on minimizing
power consumption within the larger partition, which is anticipated to experi-
ence higher power usage.

Firstly, as presented in Equation 3.1, we developed a fitness function that sums
the accuracy of both partitions with the inverse of the power usage of the left
partition. The accuracy values have an upper limit, consisting of minimum sat-
isfiable values for the models. The upper limit is higher on the right partition
(0.85) than on the left partition (0.80) since it is desired that the right partition ob-
tains a higher accuracy value, if possible. The goal of this function design was to
obtain satisfiable models and, after that, guide the evolutionary process only by
their power usage to minimize the power usage of the models. After testing, we
observed that the power usage typically falls within the range [30, 100] W, which,
when inverted, resulted in values too small to be able to steer the evolution prop-
erly.

f1 = min(0.80, accle f t) + min(0.85, accright) + power−1
le f t (3.1)

With this in mind, another fitness function was designed (Equation 3.2), which
multiplies the power usage by 10, thus giving it a more considerable weight and
bringing it to another order of magnitude. Optimizing this weight value is out of
the scope of this work since it could be a research task in itself. Preliminary ex-
periments showed that although the evolution managed to somewhat minimize
the power usage of the models, their accuracy remained around the chosen upper
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limits, as expected. Since this is not an optimal behavior, a function that does not
limit accuracy was developed.

f2 = min(0.80, accle f t) + min(0.85, accright) + 10 ∗ power−1
le f t (3.2)

As shown in Equation 3.3, the mentioned fitness function considers only the par-
titions’ accuracy values when both are inferior to a threshold. After any of the
partitions surpasses its designated threshold, power consumption is added to
the fitness function with a weight of 10. This means that, at first, evolution is only
steered by the accuracy of the models. When satisfiable models are obtained,
power consumption starts being considered to obtain accurate and efficient mod-
els.

f3 =

accle f t + accright if accle f t ≤ 0.80∧ accright ≤ 0.85

accle f t + accright + 10 ∗ power−1
le f t, otherwise

(3.3)

3.4 Module Reutilization

Internally, Fast-DENSER considers modules of layers on each individual from
which a DNN is then unraveled. One way to encourage the evolution of energy-
efficient models is to provide an individual with a set of layers that are known to
be efficient. As such, a scheme of module reutilization is proposed through the
design of new mutation operators and the addition of an archive of modules and
their respective power consumption.

Since this strategy only considers power consumption, it is expected that inaccu-
rate models may sometimes be generated. Due to the nature of the evolutionary
process and the used fitness function (Equation 3.3), inaccurate models are in-
tensely penalized and, as such, discarded in favor of better ones.

Whenever a module of layers is randomly generated or modified, its power con-
sumption is measured. To do this, a temporary model consists of an input layer,
the module’s layers, and an output layer. Since the module’s accuracy is irrel-
evant, this temporary network is neither trained nor fed with a proper dataset,
i.e., it is given random values instead of a dataset to simplify the process. The
measured power consumption is then stored in a hash map where the module is
the key, and the power consumption is the value.
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An operator of mutation, reuse module, was introduced to use this information.
It selects a module with a probability inversely proportionally to its power con-
sumption, i.e., modules with inferior power consumption have a superior prob-
ability of being chosen. As shown in Equation 3.4, to obtain the probability of a
module i being chosen, we divide the inverse of its power, poweri, by the sum
of the inverse power of all modules, with n the number of saved modules. The
selected module is introduced in a randomly chosen position.

P(i) =
1

poweri

∑n
j=0

1
powerj

(3.4)

We also introduced an operator that randomly removes a module from an indi-
vidual to counteract the operator reusing modules.

3.5 Seed Model

By default, Fast-DENSER begins the evolutionary process with an individual ini-
tialized from scratch and mutates it to create new individuals. Afterward, all
individuals are trained and evaluated, with the best selected for the following
generation.

Starting from scratch, the individual will most likely result in an inaccurate model
due to its random inception. The new strategy we introduced in Fast-DENSER
provides the framework with an already trained model accompanied by its weights
and phenotype. By adopting this method, we can evolve existing models focus-
ing on power efficiency, thus generating more efficient models. One limitation of
this approach is requiring the phenotype that originated the model. That is, it is
necessary for the model to have had origin in Fast-DENSER or to elaborate the
phenotype manually.

Fast-DENSER initializes the first individual with the provided phenotype and
generates variations of it as usual, i.e., as if the individual had been initialized
from scratch. The provided phenotype is parsed, and the modules are initial-
ized from their corresponding phenotype portion instead of undergoing random
generation.

The conversion from phenotype to genotype is crucial in this process, and an
algorithm has been developed to do so. It translates a phenotype, essentially a
list of properties, into a structured genotype representation as required by Fast-
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DENSER. The algorithm searches for the symbols and matching rules in the gram-
mar to establish connections between phenotype properties and their correspond-
ing genotype structures. This step enables Fast-DENSER to evolve the individual
as if it had been generated by it.

Comprehensive testing of this approach has not yet taken place.
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Chapter 4

Experimental Study

This chapter will present the experimental setup, performed experiments, com-
parison between them, and discussion of results.

4.1 Dataset

The dataset used in all experiments is Fashion-MNIST [43]. It is a collection of 60
thousand examples for training and 10 thousand for testing, where each example
is a 28x28 grey-scale image, representing clothing items belonging to one of ten
classes as shown in Figure 4.1.

Figure 4.1: First instance for each class in the Fashion-MNIST training set.

Fashion-MNIST was developed as a more challenging replacement for the well-
known MNIST [44] dataset by swapping handwritten digits with images of clothes
such as shirts and coats, aiming at a more realistic and relevant benchmark.

Both the training and testing sets exhibit balanced data, with the former consist-
ing of 6000 instances for each class and the latter containing 1000 instances for
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each class.

Fashion-MNIST authors performed experiments with various classifiers with test
accuracy ranging from 51.1% to 89.7%. These values have since been surpassed
with the current best accuracy reported by [45] with 99.06%, followed by [46]
with an accuracy of 96.91%

4.2 Experimental Setup

All experiments were performed on a server running Ubuntu 20.04.3 LTS with an
Intel Core i7-5930K CPU with a clock frequency of 3.50GHz, 32 GB of RAM, and
an NVIDIA TITAN Xp with CUDA 11.2, CuDNN 8.1.0, Python 3.10.9, Tensorflow
2.9.1 and Keras 2.9.0 installed as well as the pyJoules 0.5.1 Python module with
the Nvidia specialization.

Since power usage is essential in making NE physically plausible, a function to
measure power with the pyJoules library was developed. Its pseudocode can
be analyzed in Algorithm 2, with meter the library tool that facilitates the mea-
surement of energy consumed, and with functions start and stop the functions
that allow controlling it. It wraps a function call (func, with corresponding ar-
guments args) while measuring the GPU energetic consumption during its exe-
cution and the call’s duration. This measurement is converted from milliJoule
to Watt and appended to the array of measures. These steps are performed
n_measures times, and then the mean value is calculated. In our work, we consid-
ered n_measures = 30. The described function was integrated with Fast-DENSER
on the model’s validation step to measure the power used in the inference phase.

It should be noted that ambient conditions of the server’s location, such as tem-
perature and humidity, were not considered, as well as other external variables,
and no other processes used the GPU during the execution of these experiments.

Table 4.1 presents the experimental parameters used across the experiments. Ex-
cept for the experiment with skip connections, all experiments considered null
probabilities on Add connection and Remove connection. All the experimental anal-
yses in this chapter consider the mean of the generation’s best individual accord-
ing to fitness over 5 runs.

Since some types of layers perform more operations and, as such, are prone to
consume more energy, we will analyze in each experiment the layer composition
of the models with emphasis on the distributions of every 30 generations. The
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Algorithm 2 Power Measure Algorithm

Require: func, args, n_measures
measures← ∅
i← 1
while i ≤ n_measures do

start(meter)
output← f unc(args)
stop(meter)
(energy, duration)← measure(meter)
measure← energy/1000/duration ▷ Convert mJ to W
measures← measures ∪measure
i← i + 1

end while
mean_power ← mean(measures)
return (output, mean_power)

types of Keras layers considered in all the experiments are the following:

• Dense (fc) - fully connected layer where each neuron is connected to every
neuron in the previous layer.

• Dropout (dropout) - prevents overfitting by setting part of the input units to
zero.

• MaxPooling2D (pool-max) - downsamples the input by computing the max-
imum value of a window.

• AveragePooling2D (pool-avg) - downsamples the input by computing the
maximum value of a window.

• BatchNormalization (batch-norm) - normalizes input activations for each batch

• Conv2D (conv) - applies two-dimensional convolution.

It should be noted that all line charts show the mean value of the data they rep-
resent, with the shadow serving to delineate a 95% confidence interval.

4.2.1 Statistical Tests

Throughout this chapter, we will conduct several statistical tests. We considered
a significance level of α = 0.05 across them.

We conduct Shapiro-Wilk tests whenever required to assess the normality of the
data. In this test, the null hypothesis (H0) is that the data follows a normal dis-
tribution, and the alternative hypothesis (H1) is that the data does not follow a
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Table 4.1: Experimental parameters

Evolutionary Parameter Value
Number of runs 5

Number of generations 150
Maximum number of epochs 10 000 000

Population size 5
Add layer rate 25%

Reuse layer rate 15%
Remove layer rate 25%
Add connection 0%, 15%

Remove connection 0%, 15%
DSGE-level rate 15%
Macro layer rate 30%
Train longer rate 20%

Train Parameter Value
Default train time 10 min

Loss Categorical Cross-entropy

normal distribution. If the p-value is less than α, we can reject the null hypothe-
sis, thus proving the data does not follow a normal distribution.

To determine the correlation between two variables, we obtain Spearman’s rank
correlation coefficient. This is favored relative to the Pearson correlation coeffi-
cient in the cases where the data does not follow a normal distribution. In Spear-
man’s rank, the null hypothesis (H0) is that there is no monotonic correlation
between the two variables, and the alternative hypothesis (H1) is that there is a
monotonic correlation between the two variables.

We perform the non-parametric Kruskal-Wallis test when comparing more than
two groups that do not follow a normal distribution and with independent sam-
ples. In this test, the null hypothesis (H0) is that the median is equal across all
groups, and the alternative hypothesis (H1) is that the median of at least one
group is different from the others.

In the cases where we verify significant differences between the groups through
the Kruskal-Wallis test, we perform the Mann-Whitney U test post-hoc between
the groups and adjust the p-values using Bonferroni correction to offset the mul-
tiple comparisons problem. The Mann-Whitney U test has the following hypoth-
esis: the null hypothesis (H0) is that the two populations are equal, and the alter-
native hypothesis (H1) is that the two populations are unequal.
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4.3 Baseline Experiment

We present a baseline experiment conducted to assess whether the energy con-
sumption of a DNN increases when only accuracy is considered in the fitness
function.

Correlation between accuracy and power usage

Figure 4.2 presents the accuracy and power usage evolution of each generation’s
best individual over 150 generations. Accuracy increases faster at the beginning
of the evolutionary process, accompanied by increased power usage. After gen-
eration 50, it is noticeable that the power usage decreases significantly but is soon
followed by a significant increase. Over the remaining execution, accuracy slowly
increases, and the power usage stabilizes.

Figure 4.2: Evolution of accuracy and power usage over 150 generations of the
baseline experiment.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on accuracy yielded a value of 0.601 with a corresponding p-value of
1.64× 10−18, and on power, it resulted in a value of 0.893 with a p-value of 5.77×
10−9. Since, in both cases, the p-value is less than α, we reject the null hypothesis.

Following the assessment of normality using both Q-Q plots (Figures 4.3a and
4.3b) and the Shapiro-Wilk tests, it was determined that the data does not follow
a normal distribution.

To formally assess the correlation between accuracy and power usage, we cal-
culated Spearman’s rank correlation coefficient, which showed ρ = 0.417 and a
p-value of 1.12× 10−7 which is less than α. This indicates that the correlation be-
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(a) Accuracy (b) Power usage

(c) Num. of Layers (d) Trainable Parameters

Figure 4.3: Q-Q plots showcasing the distribution comparisons for accuracy,
power usage, number of layers, and number of trainable parameters over five
runs of the baseline experiment.

tween accuracy and power usage is statistically significant, thus suggesting that
there is a trend in how power usage increases with accuracy.

Correlation between the number of layers and power usage

Figure 4.4 presents the number of layers and power usage evolution of each gen-
eration’s best individual over 150 generations. Generally, it is noticeable that the
line relative to the power usage follows the one relative to the number of layers
with the observable exception of generations 50 through 60, where the power us-
age drops without an apparent decrease in the number of layers. This unusual
decrease might be due to measurement errors.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on the number of layers resulted in a value of 0.877 with a corresponding
p-value of 8.10 × 10−10. We reject the null hypothesis since the p-value is less
than α.
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Figure 4.4: Evolution of the number of layers and power usage over 150 genera-
tions of the baseline experiment.

Following the assessment of normality using both Q-Q plots (Figures 4.3b and
4.3c) and the Shapiro-Wilk tests, it was determined that the data does not follow
a normal distribution.

To formally assess the correlation between the number of layers and power us-
age, we calculated the Spearman’s rank correlation coefficient, which showed
ρ = 0.778 and a p-value of 1.05× 10−31 which is less than α. This indicates that
the correlation between the number of layers and power usage is statistically sig-
nificant, thus suggesting that there is a trend in how power usage increases with
the number of layers.

Correlation between the number of trainable parameters and power usage

Figure 4.5 shows how the number of trainable parameters and power usage evolve
over 150 generations. We can observe an apparent trend when, in the beginning,
the power usage increases as the number of trainable parameters increases. When
around generation 30, the number of parameters starts to decrease, the power us-
age does not follow such decrease. Except for generations 50 through 60, the
power usage stabilizes while the number of trainable parameters stabilizes.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on the number of trainable parameters resulted in a value of 0.819 with
a corresponding p-value of 2.46× 10−12. We reject the null hypothesis since the
p-value is less than α.

Following the assessment of normality using both Q-Q plots (Figures 4.3b and
4.3d) and the Shapiro-Wilk tests, it was determined that the data does not follow
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Figure 4.5: Evolution of the number of trainable parameters and power usage
over 150 generations of the baseline experiment.

a normal distribution.

To formally assess the correlation between the number of trainable parameters
and power usage, we calculated Spearman’s rank correlation coefficient, which
showed ρ = 0.072 and a p-value of 0.383, greater than α. This indicates that
the correlation between the number of trainable parameters and power usage is
not statistically significant. This lack of correlation might be explained by the
fact that what matters most regarding power consumption is not the number of
parameters but the number of operations performed by the layers (as mentioned
in Section 2.2.1).

Layer composition breakdown

The evolution of layer composition of each generation’s best model by percentage
is presented in Figure 4.6a with Figure 4.6b presenting the power usage over 150
generations. Table 4.2 showcases the values of every 30th generation to facilitate
the analysis.

As can be observed in Figure 4.6a, there’s a noticeable uptrend in power usage
on the initial 40 generations, with fc layers dominating and increasing in preva-
lence. Although dropout layers initially decline lightly, they rebound after about
90 generations. conv layers show steady growth, rising from 17.5% on the 30th
generation to 26.3% on the last generation. After around the 100th generation,
the layer composition seems to to have stabilized and, at the same time, power
usage slightly decreases, showing that this effect is likely due to some other fac-
tor. The last generation culminates on models with a predominance of fc layers,
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followed by conv.

Comparing the first and last generations, we observe that the latter has a higher
power consumption and an increased percentage of fc, batch-norm, and conv layers
than the former, which shows us that these types of layers are prone to consume
more power. Contrarily, the last generation presents less dropout and pooling
layers, which ought to consume less power.

(a) Layer composition

(b) Power usage

Figure 4.6: Evolution of layer composition by percentage and power consump-
tion over 150 generations of the baseline experiment.

Summary

We proved there is a positive correlation between accuracy and power usage and
between the number of layers and power usage. We also proved that the correla-
tion between the number of trainable parameters and power usage is not statisti-

39



Chapter 4

Table 4.2: Evolution of layer composition by percentage over 150 generations of
the baseline experiment, showcasing data for every 30th generation.

Layer
Generation

1 30 60 90 120 150

fc 25.7%± 14.0% 42.5%± 16.6% 38.8%± 28.7% 34.0%± 12.3% 32.7%± 11.9% 30.2%± 9.9%

dropout 27.0%± 22.2% 17.5%± 6.1% 14.8%± 10.1% 16.3%± 5.1% 18.4%± 12.1% 19.4%± 12.4%

pool-max 9.0%± 12.4% 2.5%± 5.6% 4.4%± 9.9% 2.2%± 5.0% 2.2%± 5.0% 2.2%± 5.0%

pool-avg 6.7%± 14.9% 0.0%± 0.0% 3.3%± 7.5% 3.3%± 7.5% 3.3%± 7.5% 3.3%± 7.5%

batch-norm 13.3%± 29.8% 20.0%± 11.7% 16.3%± 8.0% 16.1%± 8.2% 17.1%± 7.7% 18.5%± 8.0%

conv 18.3%± 20.7% 17.5%± 11.7% 22.4%± 16.1% 28.1%± 4.4% 26.2%± 6.6% 26.3%± 4.7%

cally significant. From this, we can conclude that the number of layers increases
the power consumption of a model, whilst the number of trainable parameters
does not.

The results of this baseline experiment show that the evolution tends towards
models with increased complexity to achieve higher accuracy values without con-
sidering power efficiency, thus setting the motivation for our work.

4.4 Power Experiment

This experiment utilizes the approaches described in Sections 3.1 (measuring
power usage), 3.2 (model partitioning), 3.3 (multi-objective fitness functions), and
3.4 (module reutilization). The employed fitness function is presented in Equa-
tion 3.3.

Correlation between accuracy and power usage

Figure 4.7 presents the accuracy and power usage evolution of each generation’s
best individual over 150 generations. Accuracy increases sharply in the begin-
ning of the evolutionary process, stabilizing afterwards. Power usage increases
at the beginning but diminishes around the 30th generation, having a somewhat
substantial increase around the 90th generation, stabilizing afterwards. The de-
crease is most likely because the fitness function only starts penalizing power
consumption after reaching a certain accuracy level.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on accuracy yielded a value of 0.565 with a corresponding p-value of
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Figure 4.7: Evolution of accuracy and power usage over 150 generations of the
power experiment.

2.86× 10−19, and on power, it resulted in a value of 0.976 with a p-value of 1.11×
10−2. Since, in both cases, the p-value is less than α, we reject the null hypothesis.

Following the assessment of normality using both Q-Q plots (Figures 4.8a and
4.8b) and the Shapiro-Wilk tests, it was determined that the data does not follow
a normal distribution.

To formally assess the correlation between accuracy and power usage, we calcu-
lated Spearman’s rank correlation coefficient, which showed ρ = 0.013 and a p-
value of 0.875, more than α. This indicates that the correlation between accuracy
and power usage is statistically insignificant. This can be explained by the fact
that, as described, the power consumption decreases after some 30 generations.

Correlation between the number of layers and power usage

Figure 4.9 presents the number of layers and power usage evolution of each gen-
eration’s best individual over 150 generations. At the beginning and until the
30th generation, the number of layers increases while accompanying an increase
in power consumption. After this, the number of layers stabilizes, dropping after
the 130th generation, with the power consumption decreasing slightly as well.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on the number of layers resulted in a value of 0.752 with a corresponding
p-value of 1.26 × 10−14. We reject the null hypothesis since the p-value is less
than α.

Following the assessment of normality using both Q-Q plots (Figures 4.8b and
4.8c) and the Shapiro-Wilk tests, it was determined that the data does not follow
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(a) Accuracy (b) Power usage

(c) Num. of Layers (d) Trainable Parameters

Figure 4.8: Q-Q plots showcasing the distribution comparisons for accuracy,
power usage, number of layers, and number of trainable parameters over five
runs of the power experiment.

a normal distribution.

To formally assess the correlation between the number of layers and power us-
age, we calculated the Spearman’s rank correlation coefficient, which showed
ρ = 0.173 and a p-value of 3.43× 10−2 which is less than α. This indicates that
the correlation between the number of layers and power usage is statistically sig-
nificant, thus suggesting that there is a trend in how power usage increases with
the number of layers.

Correlation between the number of trainable parameters and power usage

Figure 4.10 shows how the number of trainable parameters and power usage
evolve over 150 generations. We can observe that these two metrics apparently
follow each other. That is, when there is an increase in the number of trainable
parameters, there is also an increase in power usage. This behavior is opposite
to the baseline experiment, perhaps because when minimizing power consump-
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Figure 4.9: Evolution of the number of layers and power usage over 150 genera-
tions of the power experiment.

tion, the number of trainable parameters is somewhat enforced to be reduced,
thus being closely linked to the power consumption.

Figure 4.10: Evolution of the number of trainable parameters and power usage
over 150 generations of the power experiment.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on the number of trainable parameters resulted in a value of 0.939 with
a corresponding p-value of 4.57× 10−6. We reject the null hypothesis since the
p-value is less than α.

Following the assessment of normality using both Q-Q plots (Figures 4.8b and
4.8d) and the Shapiro-Wilk tests, it was determined that the data does not follow
a normal distribution.

To formally assess the correlation between the number of trainable parameters
and power usage, we calculated Spearman’s rank correlation coefficient, which
showed ρ = 0.844 and a p-value of 7.29 × 10−42 which is less than α. This
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indicates that the correlation between the number of trainable parameters and
power usage is statistically significant, thus suggesting that there is a trend in
how power usage increases with the number of trainable parameters.

Layer composition breakdown

The evolution of layer composition of each generation’s best model by percent-
age is presented in Figure 4.11a with Figure 4.11b presenting the power usage
over 150 generations. Table 4.3 showcases the values of every 30th generation
to facilitate the analysis. The first generation has a predominance of fc layers,
followed by a similar composition of pool-avg and conv layers. After an initial in-
crease in power usage up to the 30th generation, the most noticeable changes in
composition are the increase of fc layers from 40.7%± 6.0% to 49.2%± 27.2% and
a decrease of pool-avg layers from 20.3%± 14.5% to 7.5%± 10.4%. After a stable
phase, there is a substantial increase in power usage, likely motivated by a slight
increase in the percentage of fc layers. The last generation culminates in models
predominated by fc layers, followed by conv layers. Noticeably, there are no pool-
max layers and the percentage of dropout layers is significantly reduced, which is
different from what is observed in the baseline experiment, where dropout layers
compose around 20% of the total of layers. This behavior might be explained
by the fact that partitioning the model into two models creates a regularization
mechanism that makes dropout layers unnecessary.

When comparing the first and last generations, we observe that both have a sim-
ilar power consumption and a slight increase in the percentage of fc layers and
a slight decrease in batch-norm layers. At the same time, we observe that dropout
and pool-avg layers drop substantially and that the conv layers increase by more
than 50%.

Table 4.3: Evolution of layer composition by percentage over 150 generations of
the power experiment, showcasing data for every 30th generation.

Layer
Generation

1 30 60 90 120 150

fc 40.7%± 6.0% 49.2%± 27.2% 41.3%± 28.0% 41.1%± 26.5% 45.0%± 29.7% 42.3%± 23.9%

dropout 4.0%± 8.9% 8.4%± 9.4% 5.1%± 7.5% 5.4%± 9.6% 5.4%± 9.6% 1.4%± 3.2%

pool-max 0.0%± 0.0% 2.0%± 4.5% 2.0%± 4.5% 0.0%± 0.0% 0.0%± 0.0% 0.0%± 0.0%

pool-avg 20.3%± 14.5% 7.5%± 10.4% 5.9%± 8.2% 6.3%± 8.7% 6.3%± 8.7% 6.2%± 8.5%

batch-norm 13.0%± 12.0% 8.1%± 13.1% 9.9%± 9.4% 7.8%± 7.5% 7.3%± 7.2% 15.0%± 8.6%

conv 22.0%± 22.8% 24.8%± 19.3% 35.8%± 23.2% 39.3%± 28.0% 35.9%± 32.5% 35.1%± 23.7%
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(a) Layer composition

(b) Power usage

Figure 4.11: Evolution of layer composition by percentage and power consump-
tion over 150 generations of the power experiment.

Model partitioning results

As described in Section 3.2, a new attribute was given to each individual - an
intermediate point index. That point corresponds to the index of the layer where
an additional output is added. After training, two models are created: one with
all the layers - denominated left model -, and another one with the layers up to
the mentioned point - denominated right model.

The evolution of the intermediate point index is presented in Figure 4.12a. We can
observe that the index increases until generation 50, nearly stabilizing afterwards.
An increase in this parameter results in a right model with more layers of the left
model (as observed in Figure 4.12b). Thus, we conclude that even though the
right model is smaller than the left model, it does not evolve towards a smaller
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model. This is likely due to the weight attributed to the power usage in the fitness
function. Smaller models are more likely to be discarded due to their inferior
accuracy.

(a) Intermediate Point Index

(b) Layers used by the "right" model, as a percentage of total

Figure 4.12: Evolution of the intermediate point index over 150 generations of the
power experiment.

Figures 4.13a and 4.13b present the evolution of accuracy and power usage over
150 generations on both left and right models. The first one also includes two
horizontal, dotted lines showcasing the threshold required in the fitness function,
with the blue line relative to the left model and the orange line relative to the
right model. When both the lines fall under or on the threshold lines, the fitness
function does not consider the power usage.

We can observe that, on average, the right model - the smaller model - has an infe-
rior accuracy compared to its counterpart, even though the difference is marginal
in most generations. Specifically accle f t − accright ranges from −5.20 × 10−3 to
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7.42× 10−2 with a mean value of 7.16× 10−3. The negative values are relative to
the cases where the accuracy of the right model surpasses the accuracy of the left
model. Furthermore, this difference is larger at the beginning of the evolutionary
process. It decreases afterwards due to the fact that, as seen in Figure 4.12b, the
right model usage of layers increases, thus making it more closely related to its
counterpart partition.

More importantly, the power usage of the right model is, on average, always in-
ferior to the power usage of its counterpart. Specifically, powerle f t − powerright

ranges from 0.85 W to 4.70 W with a mean value of 1.53 W.

(a) Accuracy

(b) Power usage

Figure 4.13: Evolution of accuracy and power usage over 150 generations of the
power experiment on both model partitions.
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Summary

We conclude that there is no statistically significant correlation between accuracy
and power consumption. This is because the power consumption stabilizes dur-
ing most of the process, thus not exhibiting any substantial increase or decrease.
We also conclude that there is a positive correlation between the number of lay-
ers and power usage and between the number of trainable parameters and power
usage.

We verify that, at the end of the evolutionary process, the most predominant
types of layers are fc and conv and that, notably, the percentage of dropout layers
is low, which might be explained by the fact that partitioning the model into two
models creates a regularization mechanism that makes these layers unnecessary.

We also show that partitioning the models as described results in smaller and
more efficient models with comparable accuracy relative to the whole model.

4.5 Skip Connections Experiment

Similar to the Power Experiment (described in Section 4.4), this experiment uti-
lizes the approaches described in Section 3 (except for the one that uses pre-
trained models as seed, as described in Section 3.5) but allows the utilization
of skip connections by having non-zero values for the Add connection and Remove
connection fields. More specifically and as presented in Table 4.1, both fields have
a probability of 15%. The employed fitness function is presented in Equation 3.3.

Correlation between accuracy and power usage

Figure 4.14 presents the accuracy and power usage evolution of each generation’s
best individual over 150 generations. Accuracy increases mainly at the beginning
of the evolutionary process, accompanied by a decrease in power usage. After
the 40th generation, both stabilize with accuracy slightly increasing until the last
generation.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on accuracy yielded a value of 0.654 with a corresponding p-value of
2.74× 10−17, and on power, it resulted in a value of 0.774 with a p-value of 6.40×
10−14. Since, in both cases, the p-value is less than α, we reject the null hypothesis.

Following the assessment of normality using both Q-Q plots (Figures 4.15a and
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Figure 4.14: Evolution of accuracy and power usage over 150 generations of the
skip connections experiment.

4.15b) and the Shapiro-Wilk tests, it was determined that the data does not follow
a normal distribution.

To formally assess the correlation between accuracy and power usage, we calcu-
lated Spearman’s rank correlation coefficient, which showed ρ = −0.312 and a
p-value of 1.03× 10−4 less than α. These results collectively suggest a statistically
significant negative correlation between accuracy and power usage, i.e., there is
evidence to indicate that as accuracy increases, there tends to be a decrease in
power usage.

Correlation between the number of layers and power usage

Figure 4.16 presents the number of layers and power usage evolution of each
generation’s best individual over 150 generations. Unlike previous experiments,
an increase in the number of layers apparently does not increase the power usage.
On the contrary, we can observe that the power usage drops although the number
of layers increases. This is likely due to the fact that this experiment allows skip
connections.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on the number of layers resulted in a value of 0.912 with a corresponding
p-value of 7.00× 10−8. We reject the null hypothesis since the p-value is less than
α.

Following the assessment of normality using both Q-Q plots (Figures 4.15c and
4.15b) and the Shapiro-Wilk tests, it was determined that the data does not follow
a normal distribution.
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(a) Accuracy (b) Power usage

(c) Num. of Layers (d) Trainable Parameters

Figure 4.15: Q-Q plots showcasing the distribution comparisons for accuracy,
power usage, number of layers, and number of trainable parameters over five
runs of the skip connections experiment.
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Figure 4.16: Evolution of the number of layers and power usage over 150 gener-
ations of the skip connections experiment.

To formally assess the correlation between the number of layers and power us-
age, we calculated the Spearman’s rank correlation coefficient, which showed
ρ = −0.44 and a p-value of 1.27× 10−8 which is less than α. These results collec-
tively suggest a statistically significant negative correlation between the number
of layers and power usage, i.e., evidence indicates that as the number of layers
increases, there tends to be a decrease in power usage.

Correlation between the number of trainable parameters and power usage

Figure 4.17 shows how the number of trainable parameters and power usage
evolve over 150 generations. From the 10th generation to the 30th generation,
we can observe an apparent relation between the number of trainable parameters
and power usage, i.e., when the first one is relatively high, so is the other. Af-
ter this, the number of trainable parameters drops and stabilizes with the power
usage, presenting the same behavior.

To assess the normality of the data, we conducted a Shapiro-Wilk test. The test
statistic on the number of trainable parameters resulted in a value of 0.625 with
a corresponding p-value of 5.57× 10−18. We reject the null hypothesis since the
p-value is less than α.

Following the assessment of normality using both Q-Q plots (Figures 4.15d and
4.15b) and the Shapiro-Wilk tests, it was determined that the data does not follow
a normal distribution.

To formally assess the correlation between the number of trainable parameters
and power usage, we calculated Spearman’s rank correlation coefficient, which
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Figure 4.17: Evolution of the number of trainable parameters and power usage
over 150 generations of the skip connections experiment.

showed ρ = 0.37 and a p-value of 4.16× 10−6, less than α. This indicates that
the correlation between the number of trainable parameters and power usage is
statistically significant, thus suggesting that there is a trend in how power usage
increases with the number of trainable parameters.

Layer composition breakdown

The evolution of layer composition of each generation’s best model by percent-
age is presented in Figure 4.18a with Figure 4.18b presenting the power usage
over 150 generations. Table 4.4 showcases the values of every 30th generation to
facilitate the analysis.

At the beginning of the evolutionary process, the power consumption shows an
accentuated decrease, after which it stabilizes. To analyze the sudden decrease af-
ter the 30th generation, we can compare the layer composition of that generation
to the layer composition of the 60th generation. There is a decrease of dropout,
pool-max, and batch-norm layers and an increase of conv layers. As the process
continues, there is a noticeable decrease in the percentage of fc layers and a no-
ticeable increase of batch-norm layers. The last generation culminates in models
where conv layers are predominant, accounting for 42.5% of the layers. This is fol-
lowed by fc and batch-norm layers, which contribute 19% and 16%, respectively.

When comparing the first and last generations, we observe that the last one has a
relatively reduced power consumption and a significant increase in the percent-
age of conv and pool-max layers. There was also a significant decrease in fc and
dropout layers. This decrease in dropout layers might have a similar explanation as
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the one of the Power Experiment: partitioning the model into two models creates
a regularization mechanism that renders these layers unnecessary.

(a) Layer composition

(b) Power usage

Figure 4.18: Evolution of layer composition by percentage and power consump-
tion over 150 generations of the skip connections experiment.

Model partitioning results

As described in Section 3.2, a new attribute was given to each individual - an
intermediate point index. That point corresponds to the index of the layer where
an additional output is added. After training, two models are created: one with
all the layers - denominated left model -, and another one with the layers up to
the mentioned point - denominated right model.

The evolution of the intermediate point index is presented in Figure 4.19a. We
can observe that the index increases until generation 60, not having substantial
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Table 4.4: Evolution of layer composition by percentage over 150 generations of
the skip connections experiment, showcasing data for every 30th generation.

Layer
Generation

1 30 60 90 120 150

fc 32.0%± 12.5% 29.3%± 7.7% 30.0%± 12.9% 25.8%± 13.9% 21.8%± 15.0% 19.0%± 12.2%

dropout 14.0%± 12.9% 8.2%± 12.6% 5.7%± 5.5% 4.2%± 5.9% 3.8%± 5.6% 6.2%± 6.2%

pool-max 4.0%± 8.9% 12.5%± 12.5% 10.4%± 10.3% 11.6%± 12.6% 13.6%± 18.7% 11.3%± 17.6%

pool-avg 4.0%± 8.9% 2.9%± 6.4% 4.5%± 6.5% 3.9%± 5.4% 3.2%± 4.4% 4.9%± 6.8%

batch-norm 14.0%± 12.9% 10.4%± 10.6% 8.6%± 5.5% 11.0%± 8.2% 13.6%± 11.9% 16.0%± 9.9%

conv 32.0%± 12.5% 36.8%± 10.2% 40.8%± 8.3% 43.6%± 6.9% 44.0%± 10.6% 42.5%± 14.8%

increases or decreases afterward. An increase in this parameter results in a right
model with more layers of the left model (as observed in Figure 4.19b). Thus, we
conclude that even though, on average, the right model is smaller than the left
model, it does not evolve towards an even smaller model. This is likely due to
the weight attributed to the power usage in the fitness function. Smaller models
are more likely to be discarded due to their inferior accuracy.

Figures 4.20a and 4.20b present the evolution of accuracy and power usage over
150 generations on both left and right models. The first one also includes two
horizontal, dotted lines showcasing the threshold required in the fitness function,
with the blue line relative to the left model and the orange line relative to the
right model. When both the lines fall under or on the threshold lines, the fitness
function does not consider the power usage.

Generally, we can observe that, on average, the right model - the smaller model -
has an inferior accuracy compared to its counterpart, even though the difference
is marginal in most generations, emphasizing the generations posterior to the
70th generation. Specifically accle f t − accright ranges from −1.79× 10−2 to 2.31×
10−2 with a mean value of 4.40× 10−3. The negative values are relative to the
cases where the accuracy of the right model surpasses the accuracy of the left
model. The difference between the two models in terms of accuracy decreases
during the evolutionary process since the right model usage of the total number
of layers increases as seen in Figure 4.19b.

More importantly, the power usage of the right model is, on average, always in-
ferior to the power usage of its counterpart. Specifically, powerle f t − powerright

ranges from −8.63 W to 15.66 W with a mean value of 0.79 W. The negative val-
ues mean that the right model obtained a larger power usage than the left model.
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(a) Intermediate Point Index

(b) Layers used by the "right" model, as a percentage of total

Figure 4.19: Evolution of the intermediate point index over 150 generations of the
skip connections experiment.

Summary

We conclude that there is a negative correlation between accuracy and power
usage and between the number of layers and power usage. The existence of a
correlation between accuracy and power usage is contrary to the Power Experi-
ment where no correlation is shown. This happens since, in this experiment, the
initial generations present higher power consumption and end up showing a sig-
nificant reduction, thus presenting a decreasing trend. We also conclude there
is a positive correlation between the number of trainable parameters and power
usage.

We verify that, at the end of the evolutionary process, the most predominant
types of layers are conv at 42.5%, followed by fc and batch-norm at 19% and 16%,
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(a) Accuracy

(b) Power usage

Figure 4.20: Evolution of accuracy and power usage over 150 generations of the
skip connections experiment on both model partitions.

respectively.

We also show that partitioning the models as described results in a smaller and
more efficient model with comparable accuracy relative to the complete model.

4.6 Experiments Comparison

This section will compare the three experiments through statistical tests, line
charts, and other relevant statistical values.

We consider five groups: one for the baseline experiment (Section 4.3), two for
the power experiment (Section 4.4), and another two for the skip (connections)
experiment (Section 4.5). In the latter two experiments, we consider the mea-
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surements of the accuracy of the partitioned models: left and right. Each group
corresponds to the mean value of a measured metric over the five experimental
runs for each generation.

4.6.1 Accuracy

To assess the normality of the data, we conducted a Shapiro-Wilk test where the
null hypothesis (H0) is that the data follows a normal distribution and the alter-
native hypothesis (H1) is that the data does not follow a normal distribution. The
results are presented in Table 4.5. From these, we can conclude that the data does
not follow a normal distribution since, for every case, the p-value is less than α.

Table 4.5: Shapiro-Wilk test on accuracy of the three experiments.

Experiment Metric Test Statistic P-value Reject H0

Baseline Accuracy 0.601 1.64 ×10−18 Yes

Power
Accuracyle f t 0.593 1.09 ×10−18 Yes

Accuracyright 0.545 1.12 ×10−19 Yes

Skip
Accuracyle f t 0.612 2.91 ×10−18 Yes

Accuracyright 0.692 2.45 ×10−16 Yes

Since there are more than two groups, neither follow a normal distribution, and
since the samples are independent, we performed the Kruskal-Wallis test. We
obtained a statistic value of 99.49 and a p-value of 1.26× 10−20, which is inferior
to α. Therefore, we reject H0 and conclude that the median of at least one group
is different from the others.

Having confirmed substantial differences between the groups, we performed the
Mann-Whitney U test post-hoc between groups and then adjusted the p-values
using Bonferroni correction. The results from this test are presented in Table 4.6
with the bold values denoting statistically significant differences, i.e., the cases
where the p-value is less than α, which suggest that the differences observed in
those cases are unlikely to have occurred by random change and should be better
analyzed.

Figures 4.21a and 4.21b show the comparison between the five mentioned groups.
That is the evolution of accuracy over 150 generations on the three experiments,
with the accuracy of partitioned models shown as well, when applicable. The
latter, Figure 4.21b, focuses on the evolution after the 40th generation, showcasing
the range [40, 150] on the X axis and the range [0.895, 0.931] on the Y axis.
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(a) Full view

(b) Close up view from generation 40 to 150

Figure 4.21: Evolution of the accuracy over 150 generations on the three experi-
ments.
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Table 4.6: Pair-wise comparison of used groups on accuracy metric, using Mann-
Whitney U post-hoc test with Bonferroni correction with bold values denoting
statistically significative differences.

Experiment

Baseline Power Skip

Metric Accuracy Accuracyle f t Accuracyright Accuracyle f t Accuracyright

Baseline Accuracy

Accuracyle f t 3.62 × 10−4

Power
Accuracyright 3.82 × 10−7 3.87 × 10−4

Accuracyle f t 1.00 2.49 × 10−12 4.99 × 10−17

Ex
pe

ri
m

en
t

Skip
Accuracyright 1.00 9.63 × 10−5 2.48 × 10−8 0.111

Table 4.7 presents, for each experiment and for each of the two partitioned mod-
els (when applicable), the mean value, the standard deviation, the median, and
the difference between the median value and the median value of the baseline
experiment.

Table 4.7: Mean value, standard deviation, median and difference to baseline
median of the experiments accuracy.

Experiment Metric Mean SD Median Diff. to Baseline

Baseline Accuracy 0.904 0.037 0.916

Power
Accuracyle f t 0.902 0.024 0.911 -0.005

Accuracyright 0.895 0.034 0.907 -0.009

Skip
Accuracyle f t 0.905 0.035 0.918 0.002

Accuracyright 0.901 0.035 0.916 0.000

Analyzing Table 4.6, we can conclude that there are statistically significative dif-
ferences between the accuracy of the baseline experiment and all measured accu-
racies of the power experiment; all measured accuracies of the power experiment
and all measured accuracies of the skip experiment; and, in the power experi-
ment, there is a statistically significative difference between the accuracy of the
left model and the accuracy of the right model. Contrarily, there are no statistically
significant differences between the baseline experiment and the skip experiment’s
measured accuracies and, in the skip experiment, between the accuracy of the left
model and the accuracy of the right model.

At the beginning, the left model of the power experiment has the highest accuracy
value up until generation 35, where it is surpassed by the left model of the skip
experiment. After this, between the 82nd and the 120th generations, the baseline
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experiment obtains the highest accuracy value. It is later overtaken by the left
model of the skip experiment, which is the most accurate on average.

Interestingly, after the 74th generation, the formation of two groups is most no-
ticeable: one composed of the two models of the power experiment and the other
composed of the remaining lines, with the former obtaining higher accuracy val-
ues than the latter. These differences are corroborated by the fact that there are
statistically significant differences between the power experiment and the other
two experiments.

Although marginal, there is also a noticeable difference between the measured
accuracies of the power experiment’s two models, with the left model achieving
higher values. This is confirmed by the fact that there are statistically significant
differences between the measured values on the two models of this experiment.

With this information, we can conclude that the baseline and skip experiments
present better accuracy than the power experiment, having no statistically sig-
nificant differences. We can also conclude that, in the power experiment, the left
model is more accurate than the right model.

4.6.2 Power Usage

To assess the normality of the data, we conducted a Shapiro-Wilk test where the
null hypothesis (H0) is that the data follows a normal distribution and the alter-
native hypothesis (H1) is that the data does not follow a normal distribution. The
results are presented in Table 4.8. From these, we can conclude that the data does
not follow a normal distribution since, for every case, the p-value is less than α.

Table 4.8: Shapiro-Wilk test on power usage of the three experiments.

Experiment Metric Test Statistic P-value Reject H0

Baseline Power 0.893 5.77 ×10−9 Yes

Power
Powerle f t 0.937 3.07 ×10−6 Yes

Powerright 0.901 1.51 ×10−8 Yes

Skip
Powerle f t 0.699 3.80 ×10−16 Yes

Powerright 0.814 1.59 ×10−12 Yes

Since there are more than two groups, neither follow a normal distribution and
since the samples are independent, we performed the Kruskal-Wallis test. We
obtained a statistic value of 494.53 and a p-value of 1.02× 10−105, which is inferior
to α. Therefore, we reject H0 and conclude that the median of at least one group
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is different from the others.

Having confirmed substantial differences between the groups, we performed the
Mann-Whitney U test post-hoc between groups and then adjusted the p-values
using Bonferroni correction. The results from this test are presented in Table 4.9
with the bold values denoting statistically significant differences, i.e., the cases
where the p-value is less than α, which suggest that the differences observed in
those cases are unlikely to have occurred by random change and should be better
analyzed.

Table 4.9: Pair-wise comparison of used groups on power metric, using Mann-
Whitney U post-hoc test with Bonferroni correction with bold values denoting
statistically significant differences.

Experiment

Baseline Power Skip

Metric Power Powerle f t Powerright Powerle f t Powerright

Baseline Power

Powerle f t 9.06 × 10−29

Power
Powerright 2.95 × 10−31 1.22 × 10−18

Powerle f t 3.23 × 10−15 1.22 × 10−49 1.08 × 10−49

Ex
pe

ri
m

en
t

Skip
Powerright 1.15 × 10−18 1.32 × 10−49 1.08 × 10−49 0.204

Figure 4.22 shows the comparison between the five mentioned groups. That is,
the evolution of power usage over 150 generations in the three experiments with
the power usage of partitioned models shown as well, when applicable.

Table 4.10 presents, for each experiment and each of the two partitioned mod-
els (when applicable), the mean value, the standard deviation, the median, and
the difference between the median value and the median value of the baseline
experiment.

Table 4.10: Mean value, standard deviation, median, and difference to baseline
median of the experiments’ power usage.

Experiment Metric Mean SD Median Diff. to Baseline

Baseline Power 97.80 W 18.84 W 99.89 W

Power
Powerle f t 71.92 W 1.60 W 72.20 W -27.69 W

Powerright 70.40 W 1.30 W 70.71 W -29.18 W

Skip
Powerle f t 84.33 W 7.40 W 80.39 W -19.50 W

Powerright 83.54 W 4.92 W 81.44 W -18.45 W
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Figure 4.22: Evolution of the power usage over 150 generations on the three ex-
periments.

Analyzing Table 4.9, we can conclude that there are statistically significative dif-
ferences between all experiments except for, in the skip experiment, between the
power usage of the left model and the power usage of the right model.

In the beginning, we can observe that the skip experiment presents the highest
power usage, decreasing after the 35th generation and stabilizing soon after. On
the contrary, we observe a spike in the power usage of the baseline experiment,
rising from 40 W to 110 W in the 35th generation. Except for the steep decrease
around the 50th generation, which corresponds most likely to an error, the base-
line experiment has the highest power usage values until the end of the process.
After the 60th generation, the power experiment always has the lowest power
usage. These differences are corroborated by the fact that there are statistically
significant differences between all experiments except in the case of the skip ex-
periment’s two models, which, as the figure shows, almost overlap after the 100th
generation.

With this information, we can conclude that the power experiment presents the
best (lowest) power usage compared to the other experiments and that its right
model achieves, on average, the lowest power usage of all. The skip experiment
presents lower power usage than the baseline experiment with statistically sig-
nificant differences. Contrarily to the power experiment, there are no statistically
significant differences between the measurements of its two partitioned models
on the skip experiment.
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4.6.3 Layer Composition

Table 4.11 showcases the comparison between the median values of each layer
type on all experiments over 5 runs. As previously concluded, the baseline ex-
periment is the most power-intensive experiment with a consumption of 99.89
W, followed by the skip experiment with a consumption of 80.39 W on its left
partition, and by the power experiment - the most power-efficient - with a con-
sumption of 72.20 W on its left partition.

Table 4.11: Median comparison of layer types in all experiments over 5 runs.

Experiment

Layer Baseline Power Skip

conv 25.3% 33.8% 41.1%

pool-avg 3.3% 6.3% 3.8%

pool-max 2.2% 0.0% 11.6%

batch-norm 17.5% 9.4% 10.8%

dropout 15.0% 5.4% 4.3%

fc 34.9% 44.7% 27.9%

Relatively to the conv layer, we observe a higher prevalence in the power and in
the skip experiments relative to the baseline.

The dropout layers have lower median percentages on the power and skip ex-
periments, likely due to them relying on other mechanisms for regularization,
such as the strategy for model partitioning, which might affect regularization.
The fc layer type is mainly used in the power experiment with a median percent-
age of almost fifty percent. Contrarily, the skip experiment uses only 27.9% of
these layers, likely because skip connections are performed in it, thus requiring
less of these layers. Interestingly, pooling layers have a reduced percentage in
most cases, except the skip experiment, where the layers consist of 3.8%pool-avg
and 11.6% pool-max, showing that this experiment relies more on the mechanisms
these types of layers provide. The baseline experiment uses more batch-norm lay-
ers than the other two experiments, showcasing that to have more efficient mod-
els, there needs to be fewer of these layers due to the number of operations they
perform when normalizing data.
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4.6.4 Conclusions

We conclude that the baseline and skip experiments are more accurate than the
power experiment with statistical significance. Considering the median values,
the left and right models of the power experiment are 0.5% and 0.9% worse than
the baseline experiment, respectively. The baseline and skip experiments have
no statistically significant differences. The latter shows a median accuracy 0.2%
higher than the baseline on its left model and an identical median accuracy on its
right model compared with the baseline.

Concerning power usage, we conclude that the power experiment presents the
lowest power usage. Specifically, its right model has the lowest power usage of
all, followed by its counterpart, the left model. Considering the median values,
the left and right models of the power experiment consume 27.69 W and 29.18 W
less than the baseline experiment, respectively. The skip experiment also presents
a significantly inferior power usage than the baseline. Its left and right models
consume 19.50 W and 18.45 W less, respectively.

Even though the power experiment trades off accuracy for lower power usage,
the traded-off accuracy is marginal compared to the decrease in power usage.
Similarly, the skip experiment achieves higher or similar accuracy scores even
though it uses less power than the baseline but more power than the power ex-
periment.
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Visualization

5.1 NeuroView

When conducting experiments on NE, tracking the results over the generations
and the various runs of the experiment is essential. This allows researchers to
comprehensively understand the evolutionary progress and assess which strate-
gies work better.

We introduce NeuroView, a tool that enables interactive visualization of data
from NE frameworks, which is currently tailored to Fast-DENSER. Through its
interactive interface, this tool enhances our ability to gain insights from experi-
ments conducted on Fast-DENSER. It supports comparing up to two metrics of a
single experiment, comparing two different experiments, and examining an indi-
vidual’s data within an experiment, among other functionalities.

In the context of our work, this tool allowed us to readily analyze the results from
experiments without requiring the programmatic creation of charts with tools
such as Python’s matplotlib, thus enhancing our ability to analyze and discuss
results.

An example usage of NeuroView is shown in Figure 5.3, where the average value
of fitness and power consumption evolution over 150 generations on five runs is
compared. Any adjustments made to the controls lead to instantaneous updates
in the displayed charts.

NeuroView was demoed at the first all-hands meeting of NextGenAI - Centre For
Responsible AI at Sword Health’s headquarters in Porto on June 29th, 2023.
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5.1.1 Architecture

NeuroView is a web app with a Python backend developed with Flask and a
Javascript frontend developed with React and its ecosystem. As shown in Figure
5.1, the backend server gets the experimental results from the server where they
are executed, and it sends the experimental settings and results to the frontend
after being requested to do so. The end-user accesses the NeuroView frontend
through the HTTP port. NeuroView can be deployed in a single Docker container
where its execution is managed through gunicorn, a Python WSGI HTTP server.

For simplification and efficiency purposes, the results can be periodically cached
in the NeuroView machine with tools such as rsync to prevent redundant requests
of the same resources.

All data manipulation is performed directly on the frontend to minimize the
number of requests from the frontend to the backend and the execution time after
modifying any controls.

Figure 5.1: NeuroView architecture.

5.1.2 Features

Experiment visualization

The core functionality of NeuroView, the basic visualization of results (Figure
5.2), is presented on a chart that the user’s controls can modify. The X axis is
relative to the number of generations in all cases. The Y axis is relative to the
selected metric on the chart controls when two metrics of different scales are se-
lected (e.g., fitness and power, as shown in Figure 5.3), and an additional Y axis
is shown relative to the second metric.
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Figure 5.2: Example visualization of results on NeuroView with a single chart.

Setting grid size

This tool (Figure 5.4) allows the user to define the number of chart blocks shown
on the page. When expanding the grid size, existing charts maintain their posi-
tions and settings. On the other hand, reducing the grid size deletes any charts
that exist on the removed positions.

Data controls

The data controls widget (Figure 5.5a) shows the number of runs an experiment
has and how many completed generations each run has and allows the user to
select which generations shall be considered. It also permits the user to decide if
the overall data should consider every individual of a generation or if only each
generation’s best individual by fitness. If one experiment is being compared with
another, the widget shows controls for the data of both experiments.

Chart controls

The chart controls widget (Figure 5.5b) is associated with each shown chart. It
allows the selection of up to two metrics when a single experiment is being ana-
lyzed or of one metric if one is being compared with another. The Sync ID field
can be input with an arbitrary string that allows the synchronization of two or
more charts; that is, when hovering over one of the synced charts, a pointer will
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Figure 5.3: Example visualization of results on NeuroView with a single chart
and two metrics.

Figure 5.4: Grid size selector that allows control of the number of charts.

be shown on the other ones, allowing for a faster comparison of data. When acti-
vated, the Tighten select field modifies the domain on the Y-axis to range from the
minimum to the maximum value instead of showing the default range from zero
to a higher-than-maximum value.

Individual inspection

When analyzing the results from NE experiments, it is essential to analyze partic-
ular individuals due to the metrics they show. To fulfill this, we allow inspecting
one individual, i.e., a point in the chart. To do this, it is required to have only one
run selected in the data controls. With this requirement satisfied, clicking on the
desired point opens a modal window with its information (Figure 5.6).

It shows information on the run and generation of the individual, metrics such as
accuracy, training time, number of epochs, number of trainable parameters, and
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(a) Data options (b) Chart options

Figure 5.5: Example visualization of the user’s control on Neuroview.

power consumption. A list of the individual’s modules of layers is also shown
with the enumeration of the module’s types of layers. The power consumption
of the module is also presented.

Figure 5.6: Example inspection of an individual on NeuroView.

Experiment selection

An experiment can be selected through a modal window that lists all available
experiments and the configurations of the one selected, such as the evolutionary
parameters (Figure 5.7). This modal window is used in both Select experiment
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and Compare with. As expected, selecting an experiment affects the overall page
through the changes on the charts and the data controls information.

Figure 5.7: Example selection of an experiment on NeuroView.

Experiment comparison

After selecting an experiment to be compared with the currently selected one,
some minor but essential changes are performed. The data controls block changes
its behavior to show information and settings about both experiments, and each
chart controls stop allowing the selection of more than one metric.

Figure 5.8: Example visualization of comparison of experiments on NeuroView.
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Backend

The backend was developed in Python 3.9.13 with the Flask 2.3.1 framework at
its center.

For deployment purposes, the backend server requires the type of environment it
will execute on, i.e., ’development’ or ’production.’ This serves to indicate where
the experimental settings and results are located.

The data files read by the NeuroView backend are exactly the JSON files that re-
sult from Fast-DENSER execution. They are files generated for each generation,
and each one is essentially an array of individuals where every individual con-
tains its phenotype, multiple measures over the epochs, and metrics such as accu-
racy, the number of trainable parameters, and power consumption. The settings
files read by the backend are also in the JSON format specified bt Fast-DENSER.

The backend has two endpoints, one for obtaining all the experiments and their
settings and another for getting an experiment’s results.

The first endpoint, /experiment/, loads all the experiments’ settings JSON files,
parses them, and inserts them into a hash map. Afterward, the map is sorted by
the experiments’ titles, converted to JSON, and returned by the server.

The other endpoint, /experiment/<title>, receives an argument, <title>, which is
the title of the experiment the client wants. All files related to the solicited ex-
periment are loaded and parsed, i.e., all generations from all runs available, and
added into a map organized by the run number and the generation number. Each
generation’s data is tidied to reduce the size of the HTTP response by discarding
unnecessary metrics and measures. The server then returns all this data.

Frontend

The frontend was developed in Javascript within the React 18.2.0 framework
ecosystem, i.e., using the framework and its packages through the npm package
manager. As standard in React, it was designed with modularity and reactivity
in mind, allowing for trivial structural modifications if required.

The Bootstrap CSS framework provides the overall design template and inter-
face components, and they are used through the react-bootstrap package, a React
wrapper for Bootstrap elements. The charts are powered by the recharts package,
a chart library built within React with D3.js.

71



Chapter 5

NeuroView consists of a single web page with the following sections: navigation
bar, data controls, and N × M chart blocks, where the user defines N and M in
the Set grid functionality. Each chart block consists of the chart itself and the chart
controls.

Interactivity is obtained using the basilar useState and useEffect methods of Re-
act. The first one is responsible for managing the state within the React compo-
nents, allowing for dynamic updates and re-rendering based on user interaction
or data changes. The latter, useEffect, assists in handling side effects based on
state updates or data changes. It also fetches data from the backend server on an
async/await strategy.

As mentioned in 5.1.1, data manipulation is performed in the frontend to min-
imize loading time. To this matter, the lodash package is used. It is a versatile
library with various utility functions that allow for simple and more efficient ex-
ecution of tasks from data manipulation to array iteration.

5.1.3 Future development

An application of this type can continuously be enhanced based on user feedback
and needs. In the future, Neuroview could benefit from an enhanced overall
design (UI), an improved plan for user interactions and experience (UX), further
testing to detect and address possible errors, and optimizations on the various
Reactive states.

5.1.4 Summary

In this chapter, we introduced NeuroView, a tool to facilitate the interactive vi-
sualization of data originating from NE frameworks. NeuroView provides an
intuitive and interactive interface to explore experiment results comprehensively.
It allows the comparison of single and multiple metrics within and between ex-
periments and a detailed examination of individual experiment data.

Its architecture comprises a Python backend built on Flask and a JavaScript fron-
tend developed using React.

72



Chapter 6

Conclusion

In this work, we developed approaches integrated into Fast-DENSER, which em-
power it to generate DNN models with better power efficiency.

The basilar approach measures the power consumed by the GPU on the infer-
ence phase of the DNN. We use the measure provided by the GPU to do this.
Using this metric, we developed multi-objective fitness functions that steer the
evolutionary process in a path that minimizes power consumption.

We created a process by which an additional output is added to a DNN model
and, after being trained, the model is split into two models - a larger one which
consists of all the layers and a smaller one composed of the layers up to the one
where the additional output is connected to. This allows us to create a model
tuned for environments with fewer resources, such as smartphones, while creat-
ing a mode power-intensive model tuned for environments with more resources,
such as servers. This is performed in one training, thus taking less time to train
the two models and saving energy. No prior work has been identified that em-
ploys a similar approach.

We introduced a new mutation strategy to Fast-DENSER that allows the reutiliza-
tion of sets of layers - modules - according to the power consumption of the mod-
ules. We stochastically favor the reintroduction of modules in a model accord-
ing to the inverse of the power they consume, thus incorporating power-efficient
modules into a model.

Furthermore, we developed a way to import previously trained models into Fast-
DENSER and use them as the seed for the evolutionary process. This way, we ex-
pect to tune highly accurate models into models with lower power consumption.

Initially, two research questions were posed:
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RQ1 — Can we train a single network that can be partitioned into a smaller,
accurate, and efficient energy-wise partition? As verified in Chapter 4,
we have validated the possibility of partitioning a model into two models
by adding an additional output layer connected to an intermediate layer.
We have also verified that the differences between the two partitions are
marginal in accuracy and power usage. In the Power Experiment, we ob-
tained smaller models, which are 0.4% less accurate than the full model
whilst consuming less 1.49 W (2.1%). To obtain a more significant gap in
power usage, it is likely necessary to increase the weight attributed to the
power usage to allow the exploration of less accurate models that might
show to be more power efficient.

RQ2 — To what degree does penalizing large energy consumption drive
the search for efficient networks? We can drive the evolutions towards
power-efficient models by using multi-objective fitness functions that pe-
nalize higher power consumption. Concretely, we obtained models that
consume significantly less power than a baseline model whilst maintain-
ing a similar or identical accuracy. This shows that it is possible to obtain
efficient networks that are also accurate.

The results obtained by our proposals show that we can reduce the power con-
sumption of the Artificial Neural Networks (ANNs) without compromising their
predictive performance, showing that it is possible to minimize power consump-
tion while, at the same time, maximizing accuracy through the usage of NE
frameworks such as Fast-DENSER. In concrete, we can obtain models that con-
sume less 19.5 W (19.5%) than a baseline model whilst having an accuracy 0.2%
higher. The best model found regarding power consumes less 29.18 W (29.2%)
whilst having a tiny decrease in performance (less than 1%), proving that a small
trade-off on accuracy can yield a considerable reduction in the power consumed
by the model.

6.1 Future Work

We introduced novel approaches and performed a baseline experiment and ex-
periments where the mentioned strategies were applied. It could be valuable to
explore other approaches and experiment more in the future.

To better understand the individual impact of each strategy on the efficiency of
the models, it would be valuable to perform experiments with the application
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of only one strategy at a time. It would also be interesting to vary the fitness
functions (e.g., the weight(s) used in them) and to vary evolutionary parameters
such as the probabilities of the mutations.

Although we developed a process to start the evolutionary process with already
trained models, a phenotype of the model is required in the format used by Fast-
DENSER. To circumvent this or the manual creation of a phenotype of the model,
it would be beneficial to enhance this process with the possibility of loading a
model not originated in Fast-DENSER automatically. This would allow making
well-established models more efficient power-wise.

One of the most important constraints of our work is GPU-time due to the amount
of operations required to train every model of each generation. To minimize the
required time, it would be noteworthy to research how to employ training-less
strategies in Fast-DENSER, i.e., use strategies that estimate the accuracy of a
model without training it [47, 48]. Such strategies would allow us to perform
more experiments in less time, saving energy in the design process.
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Appendix A

DENSER Grammar

<features> ::= <convolution> | <convolution> | <pooling> | <pooling> |
<dropout> | <batch-norm>

<convolution> ::= layer:conv [num-filters,int,1,32,256]
[filter-shape,int,1,2,5] [stride,int,1,1,3]
<padding> <activation-function> <bias>

<batch-norm> ::= layer:batch-norm
<pooling> ::= <pool-type> [kernel-size,int,1,2,5] [stride,int,1,1,3]

<padding>
<pool-type> ::= layer:pool-avg | layer:pool-max
<padding> ::= padding:same | padding:valid
<dropout> ::= layer:dropout [rate,float,1,0,0.7]
<classification> ::= <fully-connected> | <dropout>
<fully-connected> ::= layer:fc <activation-function>

[num-units,int,1,128,2048] <bias>
<activation-function> ::= act:linear | act:relu | act:sigmoid
<bias> ::= bias:True | bias:False
<softmax> ::= layer:fc act:softmax num-units:10 bias:True
<learning> ::= <gradient-descent> <early-stop> [batch_size,int,1,50,500]

epochs:10000 | <rmsprop> <early-stop> [batch_size,int,1,50,500]
epochs:10000 | <adam> <early-stop> [batch_size,int,1,50,500]
epochs:10000

<gradient-descent> ::= learning:gradient-descent [lr,float,1,0.0001,0.1]
[momentum,float,1,0.68,0.99]
[decay,float,1,0.000001,0.001] <nesterov>

<nesterov> ::= nesterov:True | nesterov:False
<adam> ::= learning:adam [lr,float,1,0.0001,0.1] [beta1,float,1,0.5,1]

[beta2,float,1,0.5,1] [decay,float,1,0.000001,0.001]
<amsgrad> ::= amsgrad:True | amsgrad:False
<rmsprop> ::= learning:rmsprop [lr,float,1,0.0001,0.1] [rho,float,1,0.5,1]

[decay,float,1,0.000001,0.001]
<early-stop> ::= [early_stop,int,1,5,20]
<middle_point> ::= [middle_point,int,1,0,x]
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