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Resumo

Embora muito poderosa e bem-sucedida, a teoria de perturbações tem limitações e não pode

ser utilizada para explicar diversos problemas em Teoria Quântica de Campos. Assim, torna-se

necessário desenvolver abordagens alternativas não-perturbativas, uma das quais são as equações

de Dyson-Schwinger. Estas são um conjunto de equações que relacionam as funções de Green de

diferentes ordens de uma teoria entre si, formando uma torre infinita de equações integrais não

lineares acopladas. Este trabalho explora a aplicação deste método à Eletrodinâmica Quântica,

com a derivação de um conjunto mínimo de equações no espaço-tempo de Minkowski para uma

gauge linear covariante geral que transcende os propagadores. Este conjunto de equações inclui

as equações de Dyson-Schwinger para o propagador do fermião e do fotão, bem como para o

vértice irredutível fotão-fermião de forma exata. A fim de construir um conjunto fechado de

equações, a equação de Dyson-Schwinger para o vértice irredutível de dois-fotões-dois-fermiões

também é derivada, embora em uma versão truncada para evitar a necessidade de invocar as

funções de Green com um maior número de pernas externas. As identidades de Ward-Takahashi

para os vértices irredutíveis fotão-fermião e dois-fotões-dois-fermiões também são derivadas. Um

estudo do sistema acoplado fotão-fermião é feito utilizando o vértice de Ball-Chiu para substi-

tuir o vértice fotão-fermião. As equações são avaliadas no espaço-tempo Euclidiano e alguns

resultados numéricos preliminares são discutidos.

Palavras-chave: Equações de Dyson-Schwinger; Vértice Dois-Fotões-Dois-Fermiões; Identi-

dade de Ward-Takahashi; Teoria Quântica de Campos Não-perturbativa; Eletrodinâmica Quân-

tica.
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Abstract

Although very powerful and highly successful, perturbation theory has its limitations and cannot

be used to explain several problems in Quantum Field Theories. Therefore, it becomes neces-

sary to develop alternative non-perturbative approaches, one of which are the Dyson-Schwinger

equations. These are a set of equations that relate the Green’s functions of different orders of a

theory to each other, forming an infinite tower of coupled nonlinear integral equations. This work

explores the application of this method to Quantum Electrodynamics, with the derivation of a

minimal set of equations in Minkowski spacetime for a general linear covariant gauge that goes

beyond the propagators in QED. This set of equations includes the Dyson-Schwinger equations

for the fermion and photon propagator, as well as for the one-particle irreducible photon-fermion

vertex in exact form. In order to build a closed set of equations, the Dyson-Schwinger equa-

tion for the one-particle irreducible two-photon-two-fermion vertex is also derived, although in

a truncated version to avoid the need for invoking Green’s functions with a greater number of

external legs. The Ward-Takahashi identities for the photon-fermion and the two-photon-two-

fermion irreducible vertices are also derived. A study of the photon-fermion coupled system is

made using the Ball-Chiu vertex to replace the photon-fermion vertex, where the equations are

evaluated in Euclidean spacetime and some preliminary numerical results are discussed.

Keywords: Dyson-Schwinger Equations; Two-Photon-Two-Fermion Vertex; Ward-Takahashi

Identity; Non-perturbative Quantum Field Theory; Quantum Electrodynamics.
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1 Introduction

The standard textbook approach used to solve interacting quantum field theories (QFTs) is per-

turbation theory [3, 4], in which the Green’s functions are expanded in powers of the coupling

constant. This is highly successful in some cases, such as Quantum Electrodynamics (QED),

whose predictions are the most accurate of all fundamental theories in physics. However, the

perturbative expansion breaks down if the coupling constant is not small enough and, therefore,

cannot be used to explain several problems in QFT. For example, confinement in Quantum

Chromodynamics (QCD) [5, 6, 7] and the dynamical mass generation in strongly coupled QED

[5, 8, 9, 10, 11, 12, 13, 14] cannot be addressed in perturbation theory.

Hence, in order to study these non-perturbative problems, one needs to resort to non-perturbative

methods. Although there are many possible techniques that can be used, this work will focus

on the Dyson-Schwinger equations (DSEs) [15, 16, 17]. They form a set of infinite coupled

nonlinear integral equations that relate the Green’s functions of different orders to each other,

structured in such a way that, in general, the equation for the n-point Green’s function contains

(n + 1)-point Green’s functions [5, 18]. The main challenge associated with this approach lies

on the fact that it is not possible to solve the full set of equations simultaneously and one needs

to introduce a truncation to obtain a closed set of equations. For example, in the literature, one

studies the set of equations for the photon and fermion propagators in QED by replacing the

photon-fermion vertex by a suitable Ansatz [11, 19, 20, 21, 22, 23].

Our main goal is to go a step further and solve QED via a minimal set of equations that go

beyond the propagators equations. Thus, in this work, the Dyson-Schwinger equations for the

photon and fermion propagators and for the one-particle irreducible (1PI) photon-fermion and

two-photon-two-fermion vertices are derived. To obtain a closed set of equations, we consider

the first three equations in their exact form and only the final one in a truncated version that

does not contain higher-order Green’s functions. Furthermore, the Ward-Takahashi identities

(WTIs) for the two studied vertices are also derived. This can be found summarised in [18],
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along with other analyses.

This work is organised as follows. In Chapter 2, we go through the theoretical background

needed to build the Dyson-Schwinger equations formalism in QED, which includes the defini-

tions of the QED Lagrangian density and the various generating functionals in the path integral

formulation. We also provide some useful relations used afterwards and the starting point of the

DSE derivation. The Dyson-Schwinger equations for the fermion and photon propagators and

for the 1PI photon-fermion and the two-photon-two-fermion vertices are derived in Chapter 3.

In this chapter, we also derive the WTIs for the vertices in question and touch on the renormal-

isation procedure in QED. Chapter 4 regards the study of the fermion-photon coupled system.

This includes solving the WTI for the photon-fermion vertex, which fixes the longitudinal part

of the vertex, known as the Ball-Chiu vertex [24]. This solution is used to obtain a closed set

of the propagators equations in Minkowski and in Euclidean spacetime. The latter are then

solved numerically and some preliminary results are presented. Finally, Chapter 5 summarises

and concludes this work, as well as mentioning some directions for future investigations. In the

appendices, we provide details about some auxiliary results used throughout this work, namely

the decomposition of the connected Green’s functions in terms of 1PI functions and useful results

involving the trace of gamma matrices.
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2 Theoretical Background

This chapter reviews the theoretical foundations needed to study the Dyson-Schwinger equations

in QED. To do that, we start by building the classical Lagrangian of QED using the gauge

invariance principle. Afterwards, the path integral formalism and the generating functionals

for the various types of Green’s functions will be introduced, which allows us to derive the

Dyson-Schwinger equations.

2.1 Quantum Electrodynamics

Quantum Electrodynamics is the quantum field theory of the electromagnetic force, describing

the interaction between light (photons) and charged particles. To arrive at its Lagrangian

density, one starts by writing the Dirac Lagrangian density, which describes the behaviour of

free spin-1/2 particles, given by

LDirac = ψ̄ (i γµ ∂µ −m)ψ , (2.1)

where ψ is a fermionic field, γµ the Dirac gamma matrices and m the fermion mass. This

Lagrangian is invariant under U(1) global gauge transformations

ψ → ψ′ ≡ ei λ ψ and ψ̄ → ψ̄′ ≡ ψ̄ e−i λ , (2.2)

where λ is a constant. One generalises this global symmetry to a local one by allowing the trans-

formations to depend on the local spacetime coordinate, i.e, λ → λ(x). Then, the transformed

Dirac Lagrangian density gains an extra term

L′Dirac = LDirac − ψ̄ γµ ψ ∂µ λ(x) . (2.3)

In order to recover the gauge invariance of LDirac, the derivative ∂µ is replaced by the covariant

derivative

∂µ → Dµ = ∂µ + i g Aµ , (2.4)

4



where g refers to the electric charge of the spinor field and Aµ is the new vector field, which

transforms as

Aµ → A′µ ≡ Aµ −
1
g
∂µ λ(x) (2.5)

to ensure the invariance of the Lagrangian. In order to introduce dynamics to the vector field,

it is necessary to include a kinetic term associated to this field to the Lagrangian density, which

becomes

L = ψ̄ (i γµDµ −m)ψ − 1
4 Fµν F

µν , (2.6)

where the field strength tensor Fµν is defined as

Fµν = ∂µAν − ∂ν Aµ . (2.7)

This Lagrangian is invariant under the following local gauge transformations:

ψ → ei λ(x) ψ , (2.8)

ψ̄ → ψ̄ e−i λ(x) , (2.9)

Aµ → Aµ −
1
g
∂µ λ(x) . (2.10)

There are an infinite number of fields Aµ which are related through a gauge transformation

and therefore belong to the same gauge orbit. However, since the Lagrangian density is gauge

invariant, an integration over this field would be infinite. One can avoid this problem by imposing

a gauge condition which is only satisfied by one field in each orbit. This can be achieved in QED

by introducing a gauge fixing term to the Lagrangian density, so it becomes

LQED = ψ̄ (i /D −m)ψ − 1
4 Fµν F

µν − 1
2 ξ (∂µAµ)2 , (2.11)

where /D = γµDµ and ξ is the gauge parameter.

It is worth mentioning that the calculations and results in this work assume natural units and

the Minkowski metric with signature (+ − −−).
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2.2 Path Integral Formalism

With the QED Lagrangian defined in Eq. (2.11), it is now possible to quantise the theory.

This can be done through different methods and herein we will use the path integral approach

[3, 25, 4]. This formalism is based on the superposition principle, which states that in Quan-

tum Mechanics the probability amplitude for a certain particle to be created at the point x1,

travel through spacetime and then be detected at the point x2 is obtained by summing over

all possible paths between these points, with each path contributing with a phase given by its

action. Therefore, in QFT a functional integral represents an integration over all possible field

configurations and it is denoted by
∫
Dφ, where φ is the field.

A QFT is completely characterised by its Green’s functions [25], which can be defined using the

path integral formalism. Using the scalar theory as an example, the vacuum expectation value

of a time-ordered product of n field operators, i.e., the n-point Green’s function can be written

as:

G(n)(x1, . . . , xn) ≡ 〈0|T [φ̂(x1) · · · φ̂(xn)] |0〉

=
∫
Dφ φ(x1) · · ·φ(xn) ei S∫

Dφ ei S
, (2.12)

where φ(x) is the scalar field at a spacetime point x, T indicates the time-ordering of the

operators and S is the action, given by S =
∫
d4xL(x). However, it is possible to write this in

a simpler way by defining the generating functional for the Green’s functions Z[J ] as

Z[J ] = 1
Z[0]

∫
Dφ exp

{
i

∫
d4x

[
L(x) + J(x)φ(x)

]}
, (2.13)

where an external source J(x) was introduced. Then, the n-point Green’s function can be

generated by

G(n)(x1, . . . , xn) = (−i)n δn Z[J ]
δJ(x1) · · · δJ(xn)

∣∣∣∣
J = 0

. (2.14)

Here we have also introduced a new concept: functional differentiation [4], i.e., the derivative of

6



a functional with respect to a function, defined as

δF [f(x)]
δf(y) = lim

ε→0

F [f(x) + εδ(x− y)]− F [f(x)]
ε

, (2.15)

where δ(x− y) is the usual Dirac function.

When doing calculations using the generating functional, it is very often useful to replace the

field inside the path integral by a functional derivative with respect to its source acting upon

the generating functional, since:

δ

i δJ(x)

∫
Dφ exp

{
i

∫
d4x

[
L+ Jφ

]}
=
∫
Dφ φ(x) exp

{
i

∫
d4x

[
L+ Jφ

]}
. (2.16)

In the case of QED, the expression for the generating functional is given by

Z[J, η̄, η] = 1
Z[0, 0, 0]

∫
DADψ̄Dψ exp

{
i

∫
d4x

[
LQED(x)

+ Jµ(x)Aµ(x) + η̄(x)ψ(x) + ψ̄(x) η(x)
]}

, (2.17)

where LQED is defined in Eq. (2.11), Jµ is the external source associated with the gauge field

Aµ and the sources η̄ and η are associated with the fermion fields ψ and ψ̄, respectively. It is

worth noting that the fermionic fields and sources are Grassmann variables.

Just like it was done in the scalar theory example in Eq. (2.16), in the functional integration over

the fields Aµ, ψ̄ and ψ, these fields can be substituted by a functional derivative with respect

to their respective source. Thus, we can do the following replacements, where in the case of

differentiation with respect with Grassmann numbers we consider left differentiation:

ψ(x) ↔ δ

i δη̄(x) , ψ̄(x) ↔ δ

−i δη(x) and Aµ(x) ↔ δ

i δJµ(x) . (2.18)

Furthermore, while Z generates both disconnected and connected diagrams, it is useful to define

a generating functional only for the connected Green’s functions, denoted by W . These two

types of generating functionals are related by

Z[J, η̄, η] = eiW [J,η̄,η] (2.19)

and from this, one defines the classical fields:

7



Acl, µ(x) = δW [J, η̄, η]
δJµ(x) , (2.20)

ψ̄cl(x) = −δW [J, η̄, η]
δη(x) , (2.21)

ψcl(x) = δW [J, η̄, η]
δη̄(x) . (2.22)

These, in turn, can be used to obtain the generating functional for one-particle irreducible (1PI)

diagrams, i.e., diagrams that cannot be separated into two disconnected pieces by cutting any

internal line. This generating functional is denoted by Γ and it is defined via the following

Legendre transformation:

Γ[Acl, ψcl, ψ̄cl] = W [J, η̄, η]− (J,Acl)− (η̄, ψcl)− (ψ̄cl, η) . (2.23)

Here we have introduced the notation

(J,Acl) =
∫
d4x Jµ(x)Acl, µ(x) , (2.24)

(η̄, ψcl) =
∫
d4x η̄α(x)ψcl, α(x) , (2.25)

(ψ̄cl, η) =
∫
d4x ψ̄cl, α(x) ηα(x) (2.26)

where α is the index associated with the Dirac spinor. It follows that

δ Γ[Acl, ψcl, ψ̄cl]
δAcl, µ(x) = −Jµ(x) (2.27)

δ Γ[Acl, ψcl, ψ̄cl]
δψcl, α(x) = η̄α(x) , (2.28)

δ Γ[Acl, ψcl, ψ̄cl]
δψ̄cl, α(x)

= −ηα(x) . (2.29)

Having stablished the various types of generating functionals, Eqs. (2.17), (2.19) and (2.23), one

defines the following Green’s functions which will be used in the study of the Dyson-Schwinger

equations in QED. The two-point Green’s functions, also known as the photon and fermion

propagators, are given, respectively, by

8



iDµν(x− y) = −i
(

δ2W [J, η̄, η]
δJµ(x) δJν(y)

)∣∣∣∣∣
J, η̄, η= 0

, (2.30)

i Sαβ(x− y) = i

(
δ2W [J, η̄, η]
δη̄α(x) δηβ(y)

)∣∣∣∣∣
J, η̄, η= 0

= −i
(

δ2W [J, η̄, η]
δηβ(y) δη̄α(x)

)∣∣∣∣∣
J, η̄, η= 0

. (2.31)

While the photon-fermion vertex, or the 1PI three-point Green’s function, is defined as

−i g Γµαβ(x, y; z) = i

(
δ3Γ[Acl, ψcl, ψ̄cl]

δAcl, µ(z) δψcl, β(y) δψ̄cl, α(x)

)∣∣∣∣∣
J, η̄, η= 0

(2.32)

and the two-photon-two-fermion vertex, or the 1PI four-point Green’s function, as

−i g2 Γµναβ(x, y; z, w) = i

(
δ4Γ[Acl, ψcl, ψ̄cl]

δAcl, µ(z) δAcl, ν(w) δψcl, β(y) δψ̄cl, α(x)

)∣∣∣∣∣
J, η̄, η= 0

. (2.33)

These functions in momentum space [25] are defined as

G(n)(x1, . . . , xn) =
∫

d4p1
(2π)4 · · ·

d4pn
(2π)4 e

−i (p1 x1 + ··· + pn xn)

δ(p1 + · · · + pn)G(n)(p1, . . . , pn) , (2.34)

where all momenta are incoming. Fig. 2.1 shows the diagrammatic representation of the 1PI

two- and three-point Green’s function, where the straight lines with arrows refers to fermion

legs and the wavy lines to photon legs.

Finally, the following identities relate the second derivatives of Γ with the inverse of the propa-

gators of QED and will be useful in the derivation of the Dyson-Schwinger equations

∫
d4z

(
δ2W [J, η̄, η]
δJµ(x) δJζ(z)

)(
δ2Γ[Acl, ψcl, ψ̄cl]
δAcl, ζ(z) δA ν

cl (y)

)
= −gµν δ(x− y) , (2.35)

∫
d4z

(
δ2W [J, η̄, η]
δηι(z) δη̄α(x)

)(
δ2Γ[Acl, ψcl, ψ̄cl]
δψcl, β(y) δψ̄cl, ι(z)

)
= −δαβ δ(x− y) , (2.36)

∫
d4z

(
δ2W [J, η̄, η]
δη̄ι(z) δηα(x)

)(
δ2Γ[Acl, ψcl, ψ̄cl]
δψ̄cl, β(y) δψcl, ι(z)

)
= −δαβ δ(x− y) . (2.37)
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−i g Γµ(p′, p; k) = p′ −p

k

−i g2 Γµν(p′, p; k, q) =
p′ −p

k q

Figure 2.1: Diagrammatic representation of the photon-fermion (top) and the two-photon-two-

fermion (bottom) one-particle irreducible vertices in momentum space. The straight lines with

arrows refers to fermion legs and the wavy lines to photon legs. All Feynman diagrams were

built using TikZ-FeynHand [1, 2].

2.3 Derivation of the Dyson-Schwinger Equations

The Dyson-Schwinger equations [3, 26], also known as the field equations of motion for a QFT,

follow from the vanishing of the functional integral of a functional derivative with respect to a

field

∫
Dφ δ

δ φ(x) ≡ 0 . (2.38)

Applying this to the scalar theory as an example, one writes:

0 =
∫
Dφ δ

δ φ(x) exp
{
i

(
S(φ) +

∫
d4x J(x)φ(x)

)}

=
∫
Dφ i

[
δ S

δ φ
+ J

]
exp

{
i

(
S(φ) +

∫
d4x J(x)φ(x)

)}
. (2.39)

And, by using the replacement explained in Eq. (2.16), this can be written as a differential

equation in terms of the generating functional:

[
δ S

δ φ

(
δ

i δJ

)
+ J

]
Z[J ] = 0 . (2.40)

Naturally, these are just the first few steps of the full derivation and one would need to do other

derivatives, in accordance with the Green’s function in question, as well as setting the sources

to zero. In chapter 3 the Dyson-Schwinger equations for the fermion and photon propagator,
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as well as for the photon-fermion vertex for the two-photon-two-fermion vertex in QED will be

derived.
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3 Dyson-Schwinger equations for QED

The Dyson-Schwinger equations are a set of equations that relate all the Green’s functions

of the theory. In this chapter, we will use the definitions given in Sec. 2.2 and follow the

procedure that was introduced in Sec. 2.3 applied to QED to derive the DSE for the fermion

and photon propagator, the photon-fermion vertex and the two-photon-two-fermion vertex. For

the latter, we will present an approximate equation in order to build a closed set of equations.

Furthermore, we will derive the Ward-Takahashi identities for the two studied vertices and

discuss the renormalisation of QED.

3.1 Fermion Dyson-Schwinger Equation

To get the DSE for the fermion propagator, also known as the fermion gap equation, we follow

the procedure introduced in Sec. 2.3, taking in this case a derivative with respect to ψ̄α(x),

which reads

0 =
∫
DADψ̄Dψ δ

δψ̄α(x)
exp

{
i SQED(A, ψ̄, ψ)

+ i

∫
d4z [Jµ(z)Aµ(z) + η̄(z)ψ(z) + ψ̄(z) η(z)]

}

=
[
δ SQED

δψ̄α(x)

(
δ

i δJ
,

δ

−i δη
,
δ

i δη̄

)
+ ηα(x)

]
Z[J, η̄, η] . (3.1)

Using the Lagrangian density for QED, defined in Eq. (2.11), we can write

δ SQED

δψ̄α(x)
= δ

δψ̄α(x)

∫
d4z LQED(z)

= (i /∂x − m)αβ ψβ(x) − g (γµ)αβ Aµ(x)ψβ(x) , (3.2)
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so that Eq. (3.1) becomes

{
[i /∂x − m]αβ

(
δ

i δη̄β(x)

)
− g (γµ)αβ

(
δ

i δη̄β(x)

)(
δ

i δJµ(x)

)
+ ηα(x)

}
Z[J, η̄, η] = 0 , (3.3)

where the index in /∂x indicates that the partial derivative is taken with respect to x. Since we

are interested in obtaining the equation for the fermion 2-point Green’s function, we still need

to take one additional functional derivative. Thus, deriving Eq. (3.2) with respect to i δ/δηθ(y),

it becomes

[i /∂x − m]αβ
(

δ2Z[J, η̄, η]
δηθ(y) δη̄β(x)

)
+ g (γµ)αβ i

(
δ3Z[J, η̄, η]

δηθ(y) δη̄β(x) δJµ(x)

)

+ i δαθ δ(x− y)Z[J, η̄, η] + ηα(x) i δZ[J, η̄, η]
δηθ(y) = 0 . (3.4)

Next, using the definition of the generating functional of the connected Green’s functions,

Eq. (2.19), and the chain rule, as well as setting the sources to zero, we obtain

{
i [i /∂x − m]αβ

(
δ2W [J, η̄, η]
δηθ(y) δη̄β(x)

)∣∣∣∣∣
J, η̄, η= 0

− g (γµ)αβ
(

δ3W [J, η̄, η]
δηθ(y) δη̄β(x) δJµ(x)

)∣∣∣∣∣
J, η̄, η= 0

+ i δαθ δ(x− y)
}
Z[0, 0, 0] = 0 . (3.5)

The normalisation of the generating functional, see Eq. (2.17), sets Z[0, 0, 0] = 1. We can also

substitute the fermion propagator, defined in Eq. (2.31), so that

− i [i /∂x − m]αβ Sβθ(x− y) − g (γµ)αβ
(

δ3W [J, η̄, η]
δηθ(y) δη̄β(x) δJµ(x)

)∣∣∣∣∣
J, η̄, η= 0

+ i δαθ δ(x− y) = 0 . (3.6)

By multiplying this whole equation by the inverse of the fermion propagator S−1
θθ′ (y − y′), inte-

grating it with respect to y and relabelling, we find

S−1
αβ (x− y) = [i /∂x − m]αβ δ(x− y)

− i g (γµ)αα′
∫
d4z

(
δ3W [J, η̄, η]

δηβ′(z) δη̄α′(x) δJµ(x)

)∣∣∣∣∣
J, η̄, η= 0

S−1
β′β(z − y) . (3.7)
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Furthermore, we can use the results obtained in Appendix A, more specifically Eq. (A.5), to

rewrite the connected three-point Green’s function in terms of one-particle irreducible functions.

Then, doing the integrations with respect to z and u3, we obtain the fermion gap equation in

coordinate space:

S−1(x− y) = [i /∂x − m] δ(x− y)

− i g2
∫
d4u1 d

4u2 Dµµ′(x− u1)
[
γµS(x− u2) Γµ′(u2, y;u1)

]
, (3.8)

where the vertex Γµ is defined in Eq. (2.32). Using the Fourier transform defined in Eq. (2.34),

we obtain the fermion gap equation in momentum space:

S−1(p) = (/p − m) − i g2
∫

d4k

(2π)4 Dµν(k) γµ S(p− k) Γν(p− k,−p; k) , (3.9)

where the vertex in defined with all momenta incoming, see Fig. 2.1. In this equation, we can

identify −i (/p−m) as the inverse of the tree-level fermion propagator and −i g γµ as the tree-level

vertex. Eq. (3.9) is represented diagrammatically in Fig. 3.1, where the propagators with solid

blobs are full quantities and the vertex with an empty blob is 1PI.. The vertex with a dot refers

to the tree-level vertex.

−1

=

−1

−

Figure 3.1: Diagrammatic representation of the fermion gap equation in momentum space.

The solid blobs indicate full quantities, while the empty blobs indicate one-particle irreducible

quantities. The vertex with a dot refers to the tree-level vertex. This notation is used in all

diagrams.
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3.1.1 The Fermion Propagator

In general, we can decompose the Dirac structure of the fermion propagator and write it in

terms of two scalar functions as

i S(p) = i
F(p2)

/p − M(p2) + iε
, (3.10)

where F(p2) is the fermion wave-function renormalisation and M(p2) the dynamical fermion

mass. Or, equivalently,

i S−1(p) = i
[
A(p2) /p − B(p2) + iε

]
(3.11)

where F(p2) = 1/A(p2) andM(p2) = B(p2)/A(p2).

It follows that, by considering the parametrisation given in Eq. (3.11), taking the trace of the

fermion gap equation, Eq. (3.9), and dividing the resulting equation by (−4), we find an equation

for B(p2):

B(p2) = m + 1
4 Tr

[
Σ(p)

]
, (3.12)

where the fermion self-energy Σ(p) is defined as

Σ(p) = i g2
∫

d4k

(2π)4 Dµν(k) γµ S(p− k) Γν(p− k,−p; k) . (3.13)

Just as we did with the fermion propagator, we can also decompose the fermion self-energy in

terms of a scalar and a vectorial functions, Σs(p2) and Σs(p2) respectively,

Σ(p) = Σv(p2) /p + Σs(p2) , (3.14)

so Eq. (3.12) becomes

B(p2) = m + Σs(p2) . (3.15)

On the other hand, if we first multiply Eq. (3.9) by /p and then take the trace, followed by

dividing the resulting equation by (4 p2), we obtain the equation for A(p2):
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A(p2) = 1 − 1
4 p2 Tr

[
/pΣ(p)

]
= 1 − Σv(p2) . (3.16)

3.2 Photon Dyson-Schwinger Equation

To derive the Dyson-Schwinger equation for the photon propagator, we follow a very similar

procedure to the one employed in the case of the fermion gap equation and start by taking a

derivative with respect to the field Aµ(x):

0 =
∫
DADψ̄Dψ δ

δAµ(x) exp
{
i SQED(A, ψ̄, ψ)

+ i

∫
d4z [Jλ(z)Aλ(z) + η̄(z)ψ(z) + ψ̄(z) η(z)]

}

=
[
δ SQED
δAµ(x)

(
δ

i δJ
,

δ

−i δη
,
δ

i δη̄

)
+ Jµ(x)

]
Z[J, η̄, η] . (3.17)

Performing the derivative of the action, we find:

{[
�x g

µµ′ −
(

1 − 1
ξ

)
∂µx ∂

µ′
x

](
δ

i δJµ′(x)

)

− g (γµ)αβ
(
− δ

i δηα(x)

)(
δ

i δη̄β(x)

)
+ Jµ(x)

}
Z[J, η̄, η] = 0 , (3.18)

where �x = ∂λx ∂λ,x is the d’Alembert operator with respect to x. Taking a further derivative

with respect to Jν(y) and writing the equation in terms of the generating functional of the

connected Green’s functions, using for that the definition given in Eq. (2.19) and the chain rule,

this becomes

{[
�x g

µµ′ −
(

1 − 1
ξ

)
∂µx ∂

µ′
x

](
δ2W [J, η̄, η]
δJν(y) δJµ′(x)

)

− i g (γµ)αβ
(

δ3W [J, η̄, η]
δJν(y) δηα(x) δη̄β(x)

)
+ gµν δ(x− y) + · · ·

}
Z[J, η̄, η] = 0 , (3.19)
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where · · · represents the terms that vanish when the sources are set to zero. Using the definition

of the photon propagator, given in Eq. (2.30), after setting the sources to zero, Eq. (3.19)

becomes

[
�x g

µµ′ −
(

1 − 1
ξ

)
∂µx ∂

µ′
x

]
Dµ′ν(x− y)

+ i g (γµ)αβ
(

δ3W [J, η̄, η]
δJν(y) δηα(x) δη̄β(x)

)
− gµν δ(x− y) = 0 . (3.20)

Considering a linear covariant gauge with ξ 6= 0, we can multiply Eq. (3.20) by the inverse of

the photon propagator [Dνν′ ]−1(y − z), integrate with respect to y and relabel. This leaves us

with

[Dµν(x− y)]−1 =
[
�x g

µν −
(

1 − 1
ξ

)
∂µx ∂

ν
x

]
δ(x− y)

+ i g (γµ)αβ
∫
d4z

(
δ3W [J, η̄, η]

δJσ(z) δηα(x) δη̄β(x)

)
[Dσν(z − y)]−1 . (3.21)

We can use once again the decomposition of the three-point connected Green’s function given

in Eq. (A.5). Substituting this in Eq. (3.21) and doing the integrations with respect to z and

u1, we obtain the Dyson-Schwinger equation for the photon propagator in coordinate space:

[Dµν(x− y)]−1 =
[
�x g

µν −
(

1 − 1
ξ

)
∂µx ∂

ν
x

]
δ(x− y)

+ i g2Nf

∫
d4u2 d

4u3 Tr[γµ S(x− u2) Γν(u2, u3; y)S(u3 − y)] , (3.22)

where Nf stands for the number of fermion flavours, assuming that all of them couple to the

electromagnetic field with the same strength g. This accounts for the number of distinct flavour

loops which can occur.

Using the Fourier transformation defined in Eq. (2.34) we obtain the photon DSE in momentum

space, given by
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[Dµν(k)]−1 = k2
[
− gµν +

(
1 − 1

ξ

)
kµ kν

k2

]

+ i g2Nf

∫
d4p

(2π)4 Tr[γµ S(p) Γν(p,−p+ k;−k)S(p− k)] , (3.23)

where the first term in the right-hand side of the equation can be identified as the tree-level

photon propagator. The diagrammatic representation of Eq. (3.23) is shown in Fig. 3.2.

−1

=

−1

+ Nf

Figure 3.2: Diagrammatic representation of the Dyson-Schwinger equation for the photon prop-

agator in momentum space.

It is worth mentioning that the results for the Landau gauge must be obtained from the ones

derived for a general linear covariant gauge by setting the gauge parameter to zero. Since there

is no inverse for the photon propagator in the Landau gauge, some of the formal manipulations

done here would be meaningless if we considered ξ = 0 from the very beginning.

3.2.1 The Photon Propagator

Similarly to what we did in Sec. 3.1.1, the photon propagator can be written as

iDµν(k) = i

[
− P Tµν(k) G(k2)

k2 − ξ

k2 P
L
µν(k)

]
, (3.24)

where G(k2) is a scalar function called the photon wave-function renormalisation and P Tµν(k)

and PLµν(k) are, respectively, the transverse and longitudinal projection operators with respect

to the photon momentum, defined as

P Tµν(k) = gµν −
kµ kν
k2 , (3.25)

PLµν(k) = kµ kν
k2 . (3.26)
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Substituting the expression for the photon propagator in momentum space given in Eq. (3.24)

into the DSE given in Eq. (3.23), it becomes

k2 P Tµν(k)
G(k2) = k2 P Tµν(k) − i g2

∫
d4p

(2π)4 Tr[γµ S(p) Γν(p,−p+ k;−k)S(p− k)] . (3.27)

And by contracting the Lorentz indices, we obtain an equation for the inverse of G(k2):

1
G(k2) = 1 + Π(k2) , (3.28)

where the scalar photon polarisation Π(k2) is given by

Π(k2) = −iNf
g2

3
1
k2

∫
d4p

(2π)4 Tr
[
γµ S(p) Γµ(p,−p+ k;−k)S(p− k)

]
. (3.29)

3.3 Photon-Fermion Vertex Dyson-Schwinger Equation

To obtain the Dyson-Schwinger equation for the photon-fermion vertex, we start by taking an

additional derivative with respect to δ/iδJν(w) of Eq. (3.4), which reads

− i [i /∂x − m]αβ
(

δ3Z[J, η̄, η]
δJν(w) δηθ(y) δη̄β(x)

)
+ g (γµ)αβ

(
δ4Z[J, η̄, η]

δJν(w) δJµ(x) δηθ(y) δη̄β(x)

)

+ δαθ δ(x− y) Z[J, η̄, η]
δ Jν(w) + ηα(x)

(
δ2Z[J, η̄, η]
δJν(w) δηθ(y)

)
= 0 . (3.30)

It follows from Eq. (2.19) and the chain rule that, after relabelling,

[i /∂x − m]αβ′
(

δ3W [J, η̄, η]
δJν(w) δηβ(y) δη̄β′(x)

)∣∣∣∣∣
J, η̄, η= 0

+ i g (γµ)αβ′
(

δ4W [J, η̄, η]
δJν(w) δJµ(x) δηβ(y) δη̄β′(x)

)∣∣∣∣∣
J, η̄, η= 0

− g (γµ)αβ′ Sβ′β(x− y)Dµν(x− w) = 0 , (3.31)

where the sources are set to zero and the photon and fermion propagators are defined in

Eqs. (2.30) and (2.31). Following the same procedure used before, we can decompose the
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connected Green’s functions in terms of 1PI functions. The decomposition of the three- and

four-point connected Green’s functions can be found in Eqs. (A.5) and (A.10) of Appendix A,

respectively. Thus, in momentum space we obtain

[
γσ (pσ − kσ)−m

]
αβ′

Dνν′(k)
[
S(p− k) Γν′(p− k,−p; k)S(p)

]
β′β

− i g2
∫

d4q

(2π)4 Dνν′(k)Dµµ′

{
γµ S(p− k − q)

[
Γν′µ′(p− k − q,−p; k, q)

+ Γµ′(p− k − q,−p+ k; q)S(p− k) Γν′(p− k,−p; k)

+ Γν′(p− k − q,−p+ q; k)S(p− q) Γµ′(p− q,−p; q)
]
S(p)

}
αβ

− Dνν′

[
γν
′
S(p)

]
αβ

= 0 . (3.32)

We can simplify this further by using the fermion gap equation, Eq. (3.9), in the first term. This

will result in two terms, one of which cancels exactly with the second term inside the integral.

Then, after multiplying the equation by the inverse of the photon and fermion propagators and

relabelling, the DSE for the photon-fermion vertex in momentum space becomes

Γµ(p,−p− k; k) = γµ + i g2
∫

d4q

(2π)4Dνν′(q)
[
γν S(p− q) Γµν′(p− q,−p− k; k, q)

+ γν S(p− q) Γµ(p− q,−p− k + q; k)S(p+ k − q) Γν′(p+ k − q,−p− k; q)
]

(3.33)

and it is diagrammatically represented in Fig. 3.3.
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p p+ k

k

= + +

Figure 3.3: Diagrammatic representation of the Dyson-Schwinger equation for the photon-

fermion vertex in momentum space.

3.4 Two-Photon-Two-Fermion Vertex Dyson-Schwinger

Equation

Finally, by differentiating once more Eq. (3.30) with respect to δ/iδJρ(z), we obtain

[i /∂x − m]αβ
(

δ4Z[J, η̄, η]
δJρ(z) δJν(w) δηθ(y) δη̄β(x)

)

+ i g (γµ)αβ
(

δ5Z[J, η̄, η]
δJρ(z) δJν(w) δJµ(x) δηθ(y) δη̄β(x)

)

+ δαθ δ(x− y)
(

δ2Z[J, η̄, η]
δJρ(z) δJν(w)

)
+ ηα(x)

(
δ3Z[J, η̄, η]

δJρ(z) δJν(w) δηθ(y)

)
= 0 . (3.34)

Following the usual procedure, we can write this in terms of the connected Green’s functions

generating functional W , Eq. (2.19). Thus, after relabelling and setting the sources to zero, it

becomes
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[i /∂x − m]αβ
(

δ4W [J, η̄, η]
δJρ(z) δJν(w) δηβ(y) δη̄β′(x)

)∣∣∣∣∣
J, η̄, η= 0

+ g (γµ)αβ′
[
i

(
δ5W [J, η̄, η]

δJρ(z) δJν(w) δJµ(x) δηβ(y) δη̄β′(x)

)

−
(

δ3W [J, η̄, η]
δJν(w) δηβ(y) δη̄β′(x)

)(
δ2W [J, η̄, η]
δJρ(z) δJµ(x)

)

−
(

δ3W [J, η̄, η]
δJρ(z) δηβ(y) δη̄β′(x)

)(
δ2W [J, η̄, η]
δJν(w) δJµ(x)

)

−
(

δ3W [J, η̄, η]
δJρ(z) δJν(w) δJµ(x)

)(
δ2W [J, η̄, η]
δηβ(y) δη̄β′(x)

) ]∣∣∣∣∣
J, η̄, η= 0

+
[
i (i /∂x − m)αβ′

(
δ2W [J, η̄, η]
δηβ(y) δη̄β′(x)

)
− g (γµ)αβ′

(
δ3W [J, η̄, η]

δJµ(x) δηβ(y) δη̄β′(x)

)

+ δαβ δ(x− y)
]∣∣∣∣∣
J, η̄, η= 0

(
δ2W [J, η̄, η]
δJρ(z) δJν(w)

)∣∣∣∣∣
J, η̄, η= 0

= 0 , (3.35)

where, using Eq. (3.6), the expression inside the brackets in the last line vanish. Furthermore,

applying Furry’s theorem1, the term proportional to the three-photon one-particle irreducible

vertex also vanishes for QED. Thus, after identifying the photon propagators, see Eq. (2.30), we

obtain

[i /∂x − m]αβ
(

δ4W [J, η̄, η]
δJρ(z) δJν(w) δηβ(y) δη̄β′(x)

)∣∣∣∣∣
J, η̄, η= 0

+ g (γµ)αβ′
[
i

(
δ5W [J, η̄, η]

δJρ(z) δJν(w) δJµ(x) δηβ(y) δη̄β′(x)

)

+
(

δ3W [J, η̄, η]
δJν(w) δηβ(y) δη̄β′(x)

)
Dµρ(x− z)

−
(

δ3W [J, η̄, η]
δJρ(z) δηβ(y) δη̄β′(x)

)
Dµν(x− w)

]∣∣∣∣∣
J, η̄, η= 0

= 0 . (3.36)

Using the results obtained in Appendix A, see Eqs. (A.5), (A.10) and (A.12), we can replace

the connected Green’s functions by their one-particle irreducible decompositions. Specifically
1Furry’s theorem states that, in QED, the contribution of a diagram that consists of a closed fermion loop and

an odd number of vertices vanishes.
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for the 5-point connected Green’s function, its complete decomposition, given in Eq. (A.12),

includes higher-order one-particle irreducible functions that have not been considered so far and

would therefore require the introduction of the Dyson-Schwinger equations associated with these

new vertices. As mentioned previously, the Dyson-Schwinger equations form an infinite tower

of coupled non-linear integral equations and consequently it is impossible to handle all Green’s

functions simultaneously. Hence, we need to introduce a truncation to obtain a closed set of

equations. In our case, we will ignore the contributions of the five-point 1PI Green’s function

and the four-photon 1PI Green’s function:

(
δ5Γ[Acl, ψcl, ψ̄cl]

δAcl, ρ(x5) δAcl, ν(x4) δAcl, µ(x3) δψcl, β′(x2) δψ̄cl, α(x1)

)
≈ 0 , (3.37)

(
δ4Γ[Acl, ψcl, ψ̄cl]

δAcl, ρ(x4) δAcl, ν(x3) δAcl, µ(x2) δAcl, σ(x1)

)
≈ 0 . (3.38)

Nevertheless, by doing the decomposition of the four-point connected Green’s function following

the same procedure done in Appendix A, we find that it consists of a sum of the term containing

the four-photon irreducible vertex and other terms that are proportional to the three-photon

irreducible vertex, which vanishes in QED according to Furry’s theorem. Thus, by neglecting

the contribution of the four-photon 1PI Green’s function, the contribution of the four-photon

connected Green’s function can also be disregarded. Then, applying that truncation and replac-

ing the three- and four-point connected Green’s function by their decompositions, the five-point

connected Green’s function in momentum space reads
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(
δ5W [J, η̄, η]

δJρ(s) δJν(w) δJµ(z) δηβ(y) δη̄α(x)

)∣∣∣∣∣
J, η̄, η= 0

=

= g3
∫

d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

d4p1
(2π)4

d4p2
(2π)4 e

−i (k1 s + k2 w + k3 z + p1 x − p2 y)

(2π)4 δ(k1 + k1 + k2 + k3 + p1 − p2)

Dρρ′(k1)Dνν′(k2)Dµµ′(k3){
S(p1)

[
Γρ′(p1,−p1 − k1; k1)S(p1 + k1) Γν′(p1 + k1,−p2 + k3; k2)

S(p2 − k3) Γµ′(p2 − k3,−p2; k3)

+ Γρ′(p1,−p1 − k1; k1)S(p1 + k1) Γµ′(p1 + k1,−p2 + k2; k3)

S(p2 − k2) Γν′(p2 − k2,−p2; k2)

+ Γν′(p1,−p1 − k2; k2)S(p1 + k2) Γρ′(p1 + k2,−p2 + k3; k1)

S(p2 − k3) Γµ′(p2 − k3,−p2; k3)

+ Γν′(p1,−p1 − k2; k2)S(p1 + k2) Γµ′(p1 + k2,−p2 + k1; k3)

S(p2 − k1) Γρ′(p2 − k1,−p2; k1)

+ Γµ′(p1,−p1 − k3; k3)S(p1 + k3) Γρ′(p1 + k3,−p2 + k2; k1)

S(p2 − k2) Γν′(p2 − k2,−p2; k2)

+ Γµ′(p1,−p1 − k3; k3)S(p1 + k3) Γν′(p1 + k3,−p2 + k1; k2)

S(p2 − k1) Γν′(p2 − k1,−p2; k1)

+ Γρ′(p1,−p1 − k1; k1)S(p1 + k1) Γν′µ′(p1 + k1,−p2; k2, k3)

+ Γν′(p1,−p1 − k2; k2)S(p1 + k2) Γρ′µ′(p1 + k2,−p2; k1, k3)

+ Γµ′(p1,−p1 − k3; k3)S(p1 + k3) Γρ′ν′(p1 + k3,−p2; k1, k2)

+ Γν′µ′(p1,−p2 + k1; k2, k3)S(p2 − k1) Γρ′(p2 − k1,−p2; k1)

+ Γρ′µ′(p1,−p2 + k2; k1, k3)S(p2 − k2) Γν′(p2 − k2,−p2; k2)

+ Γρ′ν′(p1,−p2 + k3; k1, k2)S(p2 − k3) Γµ′(p2 − k3,−p2; k3)
]
S(p2)

}
αβ

, (3.39)
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where the irreducible vertices are defined in Eqs. (2.32) and (2.33). Then, proceeding as usual, we

can replace the connected Green’s functions in Eq. (3.36) by their decompositions and perform

the necessary Fourier transformations. After multiplying the resulting equation by the inverse

of the fermion and photon propagators and relabelling, it becomes

(/p − m)S(p)
[

Γρν(p,−p− k − q; k, q)

+ Γρ(p,−p− k; k)S(p+ k) Γν(p+ k,−p− k − q; q)

+ Γν(p,−p− q; q)S(p+ q) Γρ(p+ q,−p− k − q; k)
]

− γρ S(p+ k) Γν(p+ k,−p− k − q; q)

− γν S(p+ q) Γρ(p+ q,−p− k − q; k)

− i g2
∫

d4w

(2π)4 Dµµ′(w) γµ S(p− w)

{
Γρ(p− w,−p− k + w; k)S(p+ k − w)

[
Γν(p+ k − w,−p− k − q + w; q)S(p+ k + q − w)

Γµ′(p+ k + q − w,−p− k − q;w)

+ Γµ′(p+ k − w,−p− k;w)S(p+ k) Γν(p+ k,−p− k − q; q)
]

+ Γν(p− w,−p− q + w; q)S(p+ q − w)[
Γρ(p+ q − w,−p− k − q + w; q)S(p+ k + q − w)

Γµ′(p+ k + q − w,−p− k − q;w)

+ Γµ′(p+ q − w,−p− q;w)S(p+ q) Γρ(p+ q,−p− k − q; k)
]

+ Γµ′(p− w,−p;w)S(p)[
Γρ(p,−p− k; k)S(p+ k) Γν(p+ k,−p− k − q; q)

+ Γν(p,−p− q; q)S(p+ q) Γρ(p+ q,−p− k − q; k)
]

+ Γρ(p− w,−p− k + w; k)S(p+ k − w) Γνµ′(p+ k − w,−p− k − q; q, w)
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+ Γν(p− w,−p− q + w; q)S(p+ q − w) Γρµ′(p+ q − w,−p− k − q; k,w)

+ Γµ′(p− w,−p;w)S(p) Γρν(p,−p− k − q; k, q)

+ Γρν(p− w,−p− k − q + w; k, q)S(p+ k + q − w) Γµ′(p+ k + q − w,−p− k − q;w)

+ Γρµ′(p− w,−p− k; k,w)S(p+ k) Γν(p+ k,−p− k − q; q)

+ Γνµ′(p− w,−p− q; q, w)S(p+ q) Γν(p+ q,−p− k − q; k)
}

= 0 . (3.40)

Next, using the fermion gap equation, given in Eq. (3.9), we can simplify the terms that are

multiplied by (/p − m) together with the appropriated integral terms, i.e.

[
(/p − m) − i g2

∫
d4w

(2π)4 Dµµ′(w) γµ S(p− w)
]
S(p)

[
Γρν(p,−p− k − q; k, q)

+ Γρ(p,−p− k; k)S(p+ k) Γν(p+ k,−p− k − q; q)

+ Γν(p,−p− q; q)S(p+ q) Γρ(p+ q,−p− k − q; k)
]

=

= Γρν(p,−p− k − q; k, q)

+ Γρ(p,−p− k; k)S(p+ k) Γν(p+ k,−p− k − q; q)

+ Γν(p,−p− q; q)S(p+ q) Γρ(p+ q,−p− k − q; k) . (3.41)

Additionally, we can also use the Dyson-Schwinger equation for the photon-fermion vertex,

Eq. (3.33), to further simplify the equation. Indeed, we can write the two last terms in Eq. (3.41)

as
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Γρ(p,−p− k; k)S(p+ k) Γν(p+ k,−p− k − q; q)

+ Γν(p,−p− q; q)S(p+ q) Γρ(p+ q,−p− k − q; k) =

=
{
γρ + i g2

∫
d4w

(2π)4Dµµ′(w) γµ S(p− w)
[

Γρµ′(p− w,−p− k; k,w)

+ Γρ(p− w,−p− k + w; k)S(p+ k − w) Γµ′(p+ k − w,−p− k;w)
]}

S(p+ k) Γν(p+ k,−p− k − q; q)

+
{
γν + i g2

∫
d4w

(2π)4Dµµ′(w) γµ S(p− w)
[

Γνµ′(p− w,−p− q; q, w)

+ Γν(p− w,−p− q + w; q)S(p+ q − w) Γµ′(p+ q − w,−p− q;w)
]}

S(p+ q) Γρ(p+ q,−p− k − q; k) , (3.42)

which yields cancellations with other terms of Eq. (3.40). Thus, the truncated Dyson-Schwinger

equation for the two-photon-two-fermion vertex in momentum space becomes

Γµν(p,−p− k − q; k, q) =

= i g2
∫

d4w

(2π)4 Dσσ′(w) γσ S(p− w)

{[
Γµ(p− w,−p− k + w; k)S(p+ k − w) Γν(p+ k − w,−p− k − q + w; q)

+ Γν(p− w,−p− q + w; q)S(p+ q − w) Γµ(p+ q − w,−p− k − q + w; q)

+ Γµν(p− w,−p− k − q + w; k, q)
]

S(p+ k + q − w) Γσ′(p+ k + q − w,−p− k − q;w)

+ Γµ(p− w,−p− k + w; k)S(p+ k − w) Γνσ′(p+ k − w,−p− k − q; q, w)

+ Γν(p− w,−p− q + w; q)S(p+ q − w) Γµσ′(p+ q − w,−p− k − q; k,w)
}

(3.43)

and it is represented diagrammatically in Fig. 3.4.
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p p+ k + q

k q

µ ν

= +

+ + +

Figure 3.4: Diagrammatic representation of the truncated Dyson-Schwinger equation for the

two-photon-two-fermion vertex in momentum space.

3.5 Ward-Takahashi Identities

In Sec. 2.1, the Lagrangian density for QED was built to respect the gauge invariance princi-

ple. However, we are forced to introduce the gauge fixing term in order to remove the infinite

contribution associated with the gauge freedom of the field Aµ and doing so breaks the gauge

invariance of the QED Lagrangian density, Eq. (2.11). Nevertheless, the generating functional

Z must be gauge invariant, which leads to the Ward-Takahashi identities (WTIs) [4, 27, 28].

In order to derive the Ward-Takahashi identities, let us consider the generating functional of

QED, given by Eq. (2.17),

Z[J, η̄, η] =
∫
DADψ̄Dψ exp

{
i

∫
d4x

[
ψ̄ (i /D − m)ψ − 1

4 Fµν F
µν

− 1
2 ξ (∂µAµ)2 + JµAµ + η̄ ψ + ψ̄ η

]}
, (3.44)

Where the normalising factor 1/Z[0, 0, 0] is implicit. Performing the infinitesimal local gauge

transformations, see Eqs. (2.8) - (2.10),
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ψ(x) → ψ(x) + i λ(x)ψ(x) , (3.45)

ψ̄(x) → ψ̄(x) − i λ(x) ψ̄(x) , (3.46)

Aµ(x) → Aµ(x)− 1
g
∂µ λ(x) , (3.47)

we can write the generating functional as

Z + δZ =
∫
DADψ̄Dψ exp

{
i

∫
d4x

[
LQED(Aµ, ψ̄, ψ) + JµAµ + η̄ ψ + ψ̄ η

+
( 1
g ξ

� (∂µAµ) + 1
g

(∂µ Jµ) + i (η̄ ψ − ψ̄ η)
)
λ
]}

. (3.48)

Then, expanding the exponential of the extra terms to O(λ) the variation δZ becomes

δZ =
∫
DADψ̄Dψ

[ 1
g ξ

� (∂µAµ) + 1
g

(∂µ Jµ) + i (η̄ ψ − ψ̄ η)
]
λ

exp
{
i

∫
d4x

[
LQED(Aµ, ψ̄, ψ) + JµAµ + η̄ ψ + ψ̄ η

]}
(3.49)

and, making the replacements given in Eq. (2.18), we can write the condition δZ = 0 as

1
g ξ

�x ∂
µ
x

(
δZ[J, η̄, η]
i Jµ(x)

)
+ 1

g
(∂µx Jµ(x))Z[J, η̄, η]

+ η̄σ(x)
(
δZ[J, η̄, η]
δη̄σ(x)

)
+
(
δZ[J, η̄, η]
δησ(x)

)
ησ(x) = 0 . (3.50)

Since we are interested in the Ward-Takahashi identity for the photon-fermion vertex, we must

take additional functional derivatives with respect to η̄α(y) and ηβ(z), which reads

− i

g ξ
�x ∂

µ
x

(
δ3Z[J, η̄, η]

δJµ(x) δηβ(z) δη̄α(y)

)
+ 1

g
(∂µx Jµ(x))

(
δ2Z[J, η̄, η]
δηβ(z) δη̄α(y)

)

+ δ(x− y)
(

δ2Z[J, η̄, η]
δηβ(z) δη̄α(x)

)
+ η̄σ(x)

(
δ3Z[J, η̄, η]

δηβ(z) δη̄α(y) δη̄σ(x)

)

+
(

δ3Z[J, η̄, η]
δηβ(z) δη̄α(y) δησ(x)

)
ησ(x) + δ(x− z)

(
δ2Z[J, η̄, η]
δη̄α(y) δηβ(x)

)
= 0 . (3.51)
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Using Eq. (2.19), we can rewrite this equation in terms of the connected generating functional

W . Then, setting the sources to zero and identifying the fermion propagator, given in Eq. (2.31),

we find:

1
g ξ

�x ∂
µ
x

(
δ3W [J, η̄, η]

δJµ(x) δηβ(z) δη̄α(y)

)
− i δ(x− y)Sαβ(x− z)

+ i δ(x− z)Sαβ(y − x) = 0 (3.52)

Finally, replacing the three-point connected Green’s function by its decomposition in 1PI func-

tions, given in Eq. (A.5), performing the Fourier transform and multiplying the resulting equa-

tion by the inverse of the fermion propagators, we obtain the WTI for the photon-fermion vertex

in momentum space:

kµ Γµ(p,−p− k; k) = S−1(p+ k) − S−1(p) . (3.53)

In order to get the WTI for the two-photon-two-fermion vertex, we need to derivate Eq. (3.51)

once more with respect to Jν(w), obtaining

− i

g ξ
�x ∂

µ
x

(
δ4Z[J, η̄, η]

δJν(w) δJµ(x) δηβ(z) δη̄α(y)

)
+ 1

g
(∂xν δ(x− w))

(
δ2Z[J, η̄, η]
δηβ(z) δη̄α(y)

)

+ δ(x− y)
(

δ3Z[J, η̄, η]
δJν(w) δηβ(z) δη̄α(x)

)
+ δ(x− z)

(
δ3Z[J, η̄, η]

δJν(w) δη̄α(y) δηβ(x)

)

+ · · · = 0 , (3.54)

where · · · indicates the terms that vanish when the sources are set to zero. Writing this equation

in terms of the connected generating functional W , setting the sources to zero and identifying

the fermion and photon propagators, we find

1
g ξ

�x ∂
µ
x

[ (
δ4W [J, η̄, η]

δJν(w) δJµ(x) δηβ(z) δη̄α(y)

)∣∣∣∣∣
J, η̄, η= 0

+ i Sαβ(y − z)Dµν(x− w)
]

− i

g
(∂xν δ(x− w))Sαβ(y − z) + i δ(x− y)

(
δ3W [J, η̄, η]

δJν(w) δηβ(z) δη̄α(x)

)∣∣∣∣∣
J, η̄, η= 0

− i δ(x− z)
(

δ3W [J, η̄, η]
δJν(w) δηβ(x) δη̄α(y)

)∣∣∣∣∣
J, η̄, η= 0

= 0 . (3.55)
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Furthermore, using the expression for the photon propagator given in Eq. (3.24) together with

the transversality condition kµ P Tµν(k) = 0, we have that

1
ξ
�x ∂

µ
x Dµν(x− w) = ∂xν δ(x− w) . (3.56)

Therefore, the second and third terms in Eq. (3.55) cancel exactly and the equation becomes

simply

1
g ξ

�x ∂
µ
x

(
δ4W [J, η̄, η]

δJν(w) δJµ(x) δηβ(z) δη̄α(y)

)∣∣∣∣∣
J, η̄, η= 0

+ i δ(x− y)
(

δ3W [J, η̄, η]
δJν(w) δηβ(z) δη̄α(x)

)∣∣∣∣∣
J, η̄, η= 0

− i δ(x− z)
(

δ3W [J, η̄, η]
δJν(w) δηβ(x) δη̄α(y)

)∣∣∣∣∣
J, η̄, η= 0

= 0 . (3.57)

Replacing the three- and four-point connected Green’s function by their decompositions given

in Eqs. (A.5) and (A.10), respectively, and performing a Fourier transform, we obtain

kµDνν′(q)S(p)
[
Γµ(p,−p− k; k)S(p+ k) Γν′(p+ k,−p− k − q; q)

+ Γν′(p,−p− q; q)S(p+ q) Γµ(p+ q,−p− k − q; k)

+ Γµν′(p,−p− k − q; k, q)
]
S(p+ k + q)

+ Dνν′(q)S(p+ k) Γν′(p+ k,−p− k − q; q)S(p+ k + q)

+ Dνν′(q)S(p) Γν′(p,−p− q; q)S(p+ q) = 0 , (3.58)

where we have ignored the term proportional to the three-photon irreducible vertex, according to

Furry’s theorem. Then, using the WTI for the photon-fermion vertex to simplify the contractions

kµ Γµ and multiplying the equation by the inverse of the photon and fermion propagators, we

find the Ward-Takahashi identity for the two-photon-two-fermion vertex in momentum space:

kµ Γµν(p,−p− k − q; k, q) = Γν(p,−p− q; q) − Γν(p+ k,−p− k − q; q) . (3.59)
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Furthermore, we can also write a scalar version of the WTI by contracting Eq. (3.59) with the

momentum qν :

kµ qν Γµν(p,−p− k− q; k, q) = S−1(p+ k) + S−1(p+ q) − S−1(p+ k+ q) − S−1(p) . (3.60)

3.6 Renormalisation in QED

Very often when doing calculations in quantum field theories, one encounters divergent quanti-

ties. In order to enable the theory to make meaningful physical predictions, one needs to remove

these ultraviolet divergences. This can be done by implementing a regularisation procedure and

subsequently performing renormalisation. There are several ways of regularising a theory making

it finite, such as cutoff regularisation, dimensional regularisation and Pauli-Villars regularisation

[3]. The renormalisation procedure for QED [3, 35] consists in introducing the multiplicative

factors Zi as follows

ψ = Z
1
2
2 ψ

(phys) , Aµ = Z
1
2
3 A

(phys)
µ ,

m = Z0
Z2

m(phys) , ξ = Z3 ξ
(phys) and g = Z1

Z2 Z
1
2
3

g(phys) ,
(3.61)

where the subscript "phys" indicates the physical quantities. Thus, from the definitions given in

Eqs. (2.30) - (2.33), the prescription described in Eq. (3.61) leads to the following renormalisation

for the fermion and photon propagators:

S(p) = Z2 S
(phys)(p) (3.62)

Dµν(k) = Z3D
(phys)
µν (k) , (3.63)

and for the vertices:

Γµ(p′, p; k) = 1
Z1

Γ(phys)
µ (p′, p; k) (3.64)

Γµν(p′, p; k, q) = Z2
Z2

1
Γ(phys)
µν (p′, p; k, q) . (3.65)

On the other hand, from the Ward-Takahashi identities, Eqs. (3.53) and (3.59), and the fermion

propagator renormalisation, Eq. (3.62), it follows that, respectively,
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Γµ(p′, p; k) = 1
Z2

Γ(phys)
µ (p′, p; k) (3.66)

Γµν(p′, p; k, q) = 1
Z2

Γ(phys)
µν (p′, p; k, q) , (3.67)

which implies that

Z1 = Z2 . (3.68)

This leaves the renormalisation of the electric charge simply g = Z
− 1

2
3 g(phys) and, consequently,

the coupling constant α = g2/(4π) renormalisation becomes α = Z−1
3 α(phys). Thus, we can

write the renormalised Dyson-Schwinger equations, in which the subscript "phys" will be omitted

for the purpose of simplifying the notation. The fermion gap equation, Eq. (3.9), becomes

S−1(p) = Z2

[
/p−

Z0
Z2

m− Σ(p)
]
, (3.69)

where the self-energy Σ(p) is defined in Eq. (3.13) and written in terms of renormalised (physical)

fields. Using the decompositions for the inverse fermion propagator and fermion self-energy,

Eqs. (3.11) and (3.14) respectively, we find the following renormalised equations for the A(p2)

and B(p2) functions:

A(p2) = Z2

[
1 − Σv(p2)

]
(3.70)

B(p2) = Z0m + Z2 Σs(p2) . (3.71)

The renormalised photon DSE in terms of the function G(k2), see Eq. (3.28), is given by

1
G(k2) = Z3 + Z2 Π(k2) , (3.72)

where the scalar photon polarisation Π(k2) is defined in Eq. (3.29) and written in terms of

renormalised fields. Finally, the renormalised equations for the photon-fermion and the two-

photon-two-fermion vertices, see Eqs. (3.33) and (3.43), are, respectively:
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Γµ(p,−p− k; k) =

= Z2

{
γµ + i g2

∫
d4q

(2π)4Dνν′(q)
[
γν S(p− q) Γµν′(p− q,−p− k; k, q)

+ γν S(p− q) Γµ(p− q,−p− k + q; k)S(p+ k − q) Γν′(p+ k − q,−p− k; q)
]}

, (3.73)

Γµν(p,−p− k − q; k, q) =

= i Z2 g
2
∫

d4w

(2π)4 Dσσ′(w) γσ S(p− w)

{[
Γµ(p− w,−p− k + w; k)S(p+ k − w) Γν(p+ k − w,−p− k − q + w; q)

+ Γν(p− w,−p− q + w; q)S(p+ q − w) Γµ(p+ q − w,−p− k − q + w; q)

+ Γρν(p− w,−p− k − q + w; k, q)
]

S(p+ k + q − w) Γσ′(p+ k + q − w,−p− k − q;w)

+ Γµ(p− w,−p− k + w; k)S(p+ k − w) Γνσ′(p+ k − w,−p− k − q; q, w)

+ Γν(p− w,−p− q + w; q)S(p+ q − w) Γρµ′(p+ q − w,−p− k − q; k,w)
}
. (3.74)

The renormalisation conditions needed to determine the constants Z0, Z2 and Z3 can be obtained

using Eqs. (3.70) - (3.72). Thus, based on the tree-level propagators, we can set

A(µ2
f ) = 1 , B(µ2

f ) = m and G(µ2
ph) = 1 , (3.75)

obtaining

Z2 = 1
1 − Σv(µ2

f )
, (3.76)

Z0 = 1 − Z2
Σs(µ2

f )
m

, (3.77)

Z3 = 1 − Z2 Π(µ2
ph) , (3.78)
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where µf and µ ph and the renormalisation scales for the fermion and the photon, respectively.

Therefore, we can write the renormalised equations as

A(p2) = 1 − Z2

[
Σv(p2) − Σv(µ2

f )
]
, (3.79)

B(p2) = m+ Z2

[
Σs(p2) − Σs(µ2

f )
]
, (3.80)

1
G(k2) = 1 + Z2

[
Π(k2) − Π(µ2

ph)
]
, (3.81)

where Z2 is determined in Eq. (3.76).
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4 The Fermion-Photon Coupled System

In this chapter we will study the fermion-photon coupled system, described by Eqs. (3.9) and

(3.23). However, because of the way that the Dyson-Schwinger equations are naturally struc-

tured, these equations contain the one-particle irreducible photon-fermion vertex, which is itself

dependent on higher order Green’s functions. Thus, in order to decouple the fermion and photon

equations from the other DSEs, we will approximate the result of the DSE for the photon-fermion

vertex, Eq. (3.23), by an Ansatz, which we can substitute into the equations for the propagators.

The choice of the vertex Ansatz can vary greatly, depending of the focus of the study. How-

ever, in general the Ansatz should meet several criteria [10, 11, 19, 20, 29], such as satisfying

the Ward-Takahashi identity and being free of kinetic singularities. In the free-field limit, the

vertex Γµ(p′, p; k) should reduce to γµ and they must have the same transformation law under

charge conjugation C. Finally, it should also ensure that the DSEs respect local gauge covariance

and multiplicative renormalizability. In this study, we will consider mainly the Ball-Chiu vertex

Ansatz, which is built upon the satisfaction of the Ward-Takahashi identity.

Furthermore, we will also look at the Dyson-Schwinger equations in Euclidean spacetime and

analyse some preliminary numerical solutions.

4.1 Ball-Chiu Vertex

As discussed in Sec. 3.5, the Ward-Takahashi identities are a consequence of the gauge invariance

of the theory and, therefore, any acceptable Ansatz for the photon-fermion vertex should comply

with it. Thus, the WTI for the photon-fermion vertex, given in Eq. (3.53),

kµ Γµ(p1, p2; k) = S−1(−p2) − S−1(p1) , (4.1)

where k = −(p2 + p1), is going to play a central role in modelling the vertex. We start by

writing the vertex in terms of longitudinal and transverse components, relative to the photon
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momentum:

Γµ(p1, p2; k) = ΓµL(p1, p2; k) + ΓµT (p1, p2; k) . (4.2)

However, by definition,

kµ ΓµT (p1, p2; k) = 0 . (4.3)

As a result, the transverse part of the vertex is blind to the WTI and Eq. (4.1) becomes

kµ ΓµL(p1, p2; k) = S−1(−p2) − S−1(p1) . (4.4)

In general, we can write the longitudinal vertex as

ΓµL(p1, p2; k) =
4∑
i=1

λi(p2
1, p

2
2, k

2)Lµi (p1, p2; k) , (4.5)

where λi are Lorentz scalar form factors and Lµi are the longitudinal basis vectors determined

by Ball and Chiu [24]. The latter are defined as

L1(p1, p2; k) = γµ ,

L2(p1, p2; k) = ( /p2 − /p1) (p2 − p1)µ ,

L3(p1, p2; k) = (p2 − p1)µ ,

L4(p1, p2; k) = σµν (p2 − p1)ν ,

(4.6)

with σµν = [γµ, γν ]/2. Then, using the parametrisation of the fermion propagator given in

Eq. (3.11),

S−1(p) = A(p2) /p − B(p2) , (4.7)

and the longitudinal vertex decomposition in Eq. (4.5), we can solve the Ward-Takahashi iden-

tity, Eq. (4.1), and determine the form factors λi in terms of A and B:
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λ1(p2
1, p

2
2, k

2) = 1
2

[
A(p2

2) + A(p2
1)
]
, (4.8)

λ2(p2
1, p

2
2, k

2) = 1
2 (p2

2 − p2
1)

[
A(p2

2) − A(p2
1)
]
, (4.9)

λ3(p2
1, p

2
2, k

2) = 1
(p2

2 − p2
1)

[
B(p2

2) − B(p2
1)
]
, (4.10)

λ4(p2
1, p

2
2, k

2) = 0 . (4.11)

This fixes the longitudinal component of the vertex and it is known in literature as the Ball-Chiu

vertex:

ΓµL(p1, p2; k) = ΓµBC(p1, p2; k)

= 1
2

[
A(p2

2) + A(p2
1)
]
γµ

+ 1
2 (p2

2 − p2
1)

[
A(p2

2) − A(p2
1)
]

( /p2 − /p1) (p2 − p1)µ

+ 1
(p2

2 − p2
1)

[
B(p2

2) − B(p2
1)
]

(p2 − p1)µ . (4.12)

It is worth noticing that the non-vanishing form factors, Eqs. (4.8) - (4.10), are symmetric

under the exchange of the two fermion momenta and therefore this vertex respects the charge

conjugation transformation law. Furthermore, assuming that A and B are smooth functions

of the momentum, in the limit where p1 → p2 it follows that λ2 and λ3 are proportional to

the derivatives of A and B, respectively. Thus, these form factors are also free of kinematic

singularities.

4.2 Equations in Minkowski Spacetime

We can now substitute the Ball-Chiu (BC) vertex, Eq. (4.12), into the DSEs for the fermion and

photon propagators, obtaining a closed set of coupled non-linear integral equations that allow

us to study the fermion-photon system. Thus, using the renormalised equations, Eqs. (3.79) -

(3.81), we have a system of three coupled equations that determine the form factors associated

with the fermion (A and B) and photon (G) propagators:
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A(p2) = 1 − Z2

[
ΣBC
v (p2) − ΣBC

v (µ2
f )
]
, (4.13)

B(p2) = m+ Z2

[
ΣBC
s (p2) − ΣBC

s (µ2
f )
]
, (4.14)

1
G(k2) = 1 + Z2

[
ΠBC(k2) − ΠBC(µ2

ph)
]
, (4.15)

where the fermion self-energy and scalar photon polarisation with the BC vertex are

ΣBC
v (p2) = i g2 1

4 p2 Tr
[
/p

∫
d4k

(2π)4 Dµν(k) γµ S(p− k) ΓνBC(p− k,−p; k)
]
, (4.16)

ΣBC
s (p2) = i g2 1

4 Tr
[ ∫

d4k

(2π)4 Dµν(k) γµ S(p− k) ΓνBC(p− k,−p; k)
]
, (4.17)

ΠBC(k2) = −iNf
g2

3
1
k2

∫
d4p

(2π)4 Tr
[
γµ S(p) ΓµBC(p,−p+ k;−k)S(p− k)

]
. (4.18)

Let us first focus our attention on the equations related to the fermion propagators, Eqs. (4.13)

and (4.14). Using the BC vertex, Eq. (4.12), we can write

ΓνBC(p− k,−p; k) = λ1 γ
ν + λ2 (/k − 2 /p)(k − 2 p)ν + λ3 (k − 2 p)ν , (4.19)

where λi ≡ λi((p − k)2, p2, k2) are defined in Eqs. (4.8) - (4.11). The fermion and photon

propagators, see Eqs. (3.11) and (3.24), are given by

S(p) = 1
A2(p2) p2 − B2(p2) + i ε

[
A(p2) /p + B(p2)

]

= Y (p2)
[
A(p2) /p + B(p2)

]
. (4.20)

Dµν(k) = G(k2)
k2

(
kµ kν
k2 − gµν

)
− ξ

kµ kν
k4 , (4.21)

Then, the computation of the traces in Eqs. (4.16) and (4.17), see Appendix B for some useful

results, leaves us with
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ΣBC
v (p2) = i g2 1

p2

∫
d4k

(2π)4 Y ((p− k)2)

{
G(k2)
k2

[
A((p− k)2) λ1

(
2 (kp)2

k2 − 3(kp) + p2
)

+ 2A((p− k)2) λ2

(
2 p2 (kp)2 − (kp)3

k2 + (kp)2

+ 2 p2 (kp) − k2 p2 − 2 p4
)

+ 2B((p− k)2) λ3

(
p2 − (kp)2

k2

)]

+ ξ

k2

[
A((p− k)2) λ1

(
(kp) + p2 − 2 (kp)2

k2

)

+ A((p− k)2) λ2

(
4 (kp)3 − p2 (kp)2

k2 − 4 (kp)2

+ 4 p2 (kp) + k2 (kp) − k2 p2
)

+ B((p− k)2) λ3

(
2 (kp)2

k2 − (kp)
)]}

(4.22)

and

ΣBC
s (p2) = i g2

∫
d4k

(2π)4 Y ((p− k)2)

{
G(k2)
k2

[
− 3B((p− k)2) λ1

+ 4B((p− k)2) λ2

(
(kp)2

k2 − p2
)

+ 2A((p− k)2) λ3

(
p2 − (kp)2

k2

)]

+ ξ

k2

[
− B((p− k)2) λ1

+ B((p− k)2) λ2

(
− 4 (kp)2

k2 + 4 (kp) − k2
)

+ A((p− k)2) λ3

(
2 (kp)2

k2 − 3 (kp) + k2
)]}

, (4.23)
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where (kp) is the scalar product between the two momenta. However it is possible to write

these equations in another way. By writing the photon propagator as

Dµν(k) = −gµν
G(k2)
k2 +

(
G(k2) − ξ

)
kµ kν
k4 , (4.24)

we can use the WTI, Eq. (4.1), to simplify the contraction between the second term of Eq. (4.24)

and the photon-fermion vertex. This leaves the integral in Eqs. (4.16) and (4.17) as

∫
d4k

(2π)4 Dµν(k) γµ S(p− k) ΓνBC(p− k,−p; k) =

= − G(k2)
k2 γν S(p− k) ΓνBC(p− k,−p; k)

+ 1
k4

(
G(k2)− ξ

)
/k

[
S(p− k) − S−1(p) − 1

]
. (4.25)

Calculating the respective traces, see Appendix B, the simplified equations for ΣBC
v (p2) and

ΣBC
s (p2) become

ΣBC
v (p2) = i g2 Z2

1
p2

∫
d4k

(2π)4

{
Y ((p− k)2) G(k2)

k2

[
2A((p− k)2) λ1

(
p2 − (kp)

)

+ A((p− k)2) λ2

((
− 2 (kp) + 8 p2 + k2

)
(kp)

−
(
3 k2 + 4 p2

)
p2
)

+ B((p− k)2) λ3

(
2 p2 − (kp)

)]

+ 1
k2

(
G(k2) − ξ

)
[
Y ((p− k)2)A(p2)A((p− k)2) p2

(
(kp)
k2 − 1

)

− Y ((p− k)2)B(p2)B((p− k)2) (kp)
k2

− (kp)
k2

]}
(4.26)
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and

ΣBC
s (p2) = i g2

∫
d4k

(2π)4 Y ((p− k)2)

{
G(k2)
k2

[
− 4B((p− k)2) λ1

+ B((p− k)2) λ2

(
4 (kp) − 4 p2 − k2

)

+ A((p− k)2) λ3

(
− 3 (kp) + 2 p2 + k2

)]

+ 1
k2

(
G(k2) − ξ

) [
A((p− k)2)B(p2)

(
1 − (kp)

k2

)

+ A(p2)B((p− k)2) (kp)
k2

]}
. (4.27)

Finally, we can now look at the equation for the photon, Eq. (4.15). Using once again the BC

Ansatz, Eq. (4.12), we can write the vertex contained in the definition of ΠBC(k2), see Eq. (4.18),

as

ΓνBC(p,−p+ k;−k) = λ′1 γ
ν + λ′2 (/k − 2 /p)(k − 2 p)ν + λ′3 (k − 2 p)ν , (4.28)

where λ′i ≡ λi(p2, (p − k)2, k2). Writing the fermion propagator one more time as Eq. (4.20)

and computing the trace in Eq. (4.18), see Appendix B, it becomes
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ΠBC(k2) = − iNf
4 g2

3
1
k2

∫
d4p

(2π)4 Y (p2)Y ((p− k)2)

{
λ′1

[
2A(p2)A((p− k)2)

(
(kp) − p2

)

+ 4B(p2)B((p− k)2)
]

+ λ′2

[
A(p2)A((p− k)2)

((
2(kp) − k2 − 8 p2

)
(kp)

+
(
3 k2 + 4 p2

)
p2
)

+ B(p2)B((p− k)2)
(
− 4 (kp) + k2 + 4 p2

)]

+ λ′3

[
A(p2)B((p− k)2)

(
(kp) − 2 p2

)

+ A((p− k)2)B(p2)
(

3 (pk) − k2 − 2 p2
)]}

. (4.29)

4.3 Equations in Euclidean Spacetime

So far all equations presented here were in Minkowski spacetime, however, it is easier to perform

the integrations if we write them in Euclidean spacetime. To do this, we need to effectuate a

Wick rotation [25, 3, 18], which consists in transforming the four-momentum as p0 → i p0 and
−→p → −→p . This transforms the original Minkowski metric p2 = p2

0 −
−→p 2 into an Euclidean

metric −p2 = −(p2
0 + −→p 2). In practice, it is equivalent to making the following replacements:

p2 → −p2 A(p2) → A(p2)

(pk) → −(pk) B(p2) → B(p2)∫
d4k → i

∫
d4k G(p2) → G(p2)

(4.30)

In order to keep the definitions given in Eqs. (4.8) - (4.10) also valid in Euclidean spacetime, we
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also consider

λ1(p′ 2, p2, k2) → λ1(p′ 2, p2, k2) ,

λ2(p′ 2, p2, k2) → −λ2(p′ 2, p2, k2) ,

λ3(p′ 2, p2, k2) → −λ3(p′ 2, p2, k2) .

(4.31)

Furthermore, in Euclidean spacetime Y (p2) is defined as

Y (p2) = 1
A2(p2) p2 + B2(p2) . (4.32)

Then, in Euclidean spacetime, Eqs. (4.22) and (4.23) become

ΣBC
v (p2) = − g2 1

p2

∫
d4k

(2π)4 Y ((p− k)2)

{
G(k2)
k2

[
A((p− k)2) λ1

(
2 (kp)2

k2 − 3(kp) + p2
)

+ 2A((p− k)2) λ2

(
2 p2 (kp)2 − (kp)3

k2 + (kp)2

+ 2 p2 (kp) − k2 p2 − 2 p4
)

+ 2B((p− k)2) λ3

(
(kp)2

k2 − p2
)]

+ ξ

k2

[
A((p− k)2) λ1

(
(kp) + p2 − 2 (kp)2

k2

)

+ A((p− k)2) λ2

(
4 (kp)3 − p2 (kp)2

k2 − 4 (kp)2

+ 4 p2 (kp) + k2 (kp) − k2 p2
)

+ B((p− k)2) λ3

(
(kp) − 2 (kp)2

k2

)]}
(4.33)
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ΣBC
s (p2) = g2

∫
d4k

(2π)4 Y ((p− k)2)

{
G(k2)
k2

[
3B((p− k)2) λ1

+ 4B((p− k)2) λ2

(
p2 − (kp)2

k2

)

+ 2A((p− k)2) λ3

(
(kp)2

k2 − p2
)]

+ ξ

k2

[
B((p− k)2) λ1

+ B((p− k)2) λ2

(
4 (kp)2

k2 − 4 (kp) + k2
)

+ A((p− k)2) λ3

(
− 2 (kp)2

k2 + 3 (kp) − k2
)]}

, (4.34)

while the simplified version using the WTI, Eqs. (4.26) and (4.27), become
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ΣBC
v (p2) = −g2 1

p2

∫
d4k

(2π)4

{
Y ((p− k)2) G(k2)

k2

[
2A((p− k)2) λ1

(
p2 − (kp)

)

+ A((p− k)2) λ2

((
− 2 (kp) + 8 p2 + k2

)
(kp)

−
(
3 k2 + 4 p2

)
p2
)

+ B((p− k)2) λ3

(
(kp) − 2 p2

)]

+ 1
k2

(
G(k2) − ξ

)
[
Y ((p− k)2)A(p2)A((p− k)2) p2

(
(kp)
k2 − 1

)

+ Y ((p− k)2)B(p2)B((p− k)2) (kp)
k2

− (kp)
k2

]}
(4.35)

ΣBC
s (p2) = g2

∫
d4k

(2π)4 Y ((p− k)2)

{
G(k2)
k2

[
4B((p− k)2) λ1

+ B((p− k)2) λ2

(
− 4 (kp) + 4 p2 + k2

)

+ A((p− k)2) λ3

(
3 (kp) − 2 p2 − k2

)]

+ 1
k2

(
G(k2) − ξ

) [
A((p− k)2)B(p2)

(
(kp)
k2 − 1

)

− A(p2)B((p− k)2) (kp)
k2

]}
. (4.36)

Lastly, the scalar photon polarisation, Eq. (4.29), in Euclidean spacetime is
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ΠBC(k2) = 4
3Z2Nf g

2 1
k2

∫
d4p

(2π)4 Y (p2)Y ((p− k)2)

{
λ′1

[
2A(p2)A((p− k)2)

(
(kp) − p2

)

− 4B(p2)B((p− k)2)
]

+ λ′2

[
A(p2)A((p− k)2)

((
2(kp) − k2 − 8 p2

)
(kp)

+
(
3 k2 + 4 p2

)
p2
)

+ B(p2)B((p− k)2)
(

4 (kp) − k2 − 4 p2
)]

+ λ′3

[
A(p2)B((p− k)2)

(
2 p2 − (kp)

)

+ A((p− k)2)B(p2)
(
k2 + 2 p2 − 3 (pk)

)]}
. (4.37)

With the equations now written in Euclidean spacetime, we can define the four-dimensional

spherical coordinate system. We choose the external momentum, associated with the incoming

particle, as pµ = (p, 0, 0, 0) and the internal momentum, associated with the loop, as

kµ = (k cos θ, k sin θ cosφ, k sin θ sinφ cosψ, k sin θ sinφ sinψ) , (4.38)

where k = (k2
0 + k2

1 + k2
2 + k2

3)1/2 and the integration ranges are

k ∈ [0,+∞[ , θ, φ ∈ [0, π] and ψ ∈ [0, 2π] . (4.39)

The volume element d4k then becomes

d4k = k3 sin2θ sinφdk dθ dφ dψ . (4.40)

Since θ is the angle between the two momenta, it follows that (kp) = kp cos θ and there is no

dependence on φ and ψ. Therefore, we can write the momentum and angular integration as
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∫ ∞
0

k3 dk

∫ π

0
sin2 θ dθ

∫ π

0
sinφdφ

∫ 2π

0
dψ = 4π

∫ ∞
0

k3 dk

∫ 1

−1
sin θ d(cos θ)

= 4π
∫ ∞

0
k3 dk

∫ 1

−1

√
1 − x2 dx , (4.41)

where x = cos θ.

4.4 Numerical solutions

Finally, we can use the results obtained so far in this chapter to solve numerically the equations

for the fermion and photon propagators in Euclidean spacetime. In order to do this, we followed

the usual iterative method using the Gauss-Legendre quadrature [30] to approximate the angular

and momentum integrals, see Eq. (4.41). The upper limit of the integral is also replaced by an

ultraviolet cutoff. The convergence criteria utilised was based in the value of the relative error

between solutions obtained in consecutive iterations, defined as

∆F = ‖Fi−1 − Fi‖
‖Fi‖

, (4.42)

where F is the function in question and the index i represents the iteration number. In the case

of this preliminary study, we considered that the solutions had converged when ∆F ≤ 1× 10−6.

In these circumstances, we find that G(k2) has a singularity in the infrared limit which can be

removed by renormalising the photon propagator at zero momentum. In this study, we used the

same renormalisation scale for the fermion and the photon, so that µ2
ph = µ2

f = 0. Further-

more, we considered the coupling constant α ≈ 1/137 and, in the massive case, the electron

mass m ≈ 0.511MeV [31]. If not stated otherwise, we consider the Ball-Chiu Ansatz for the

photon-fermion vertex.

Thus, Figs. 4.1 - 4.3 show the numerical solutions obtained for the A(p2), B(p2) and G(p2)

functions. It compares the results obtained for the two different set of equations, with and

without the simplification due to the WTI, see Eqs. (4.35), (4.36), (4.37) and Eqs. (4.33),

(4.34) (4.37), respectively. They were computed in the Landau gauge and with Nf = 1. The

relative error between the solutions obtained with the two different sets of equations, calculated

analogously to Eq. (4.42), is smaller than the precision considered in this study. This was also

verified for the solutions in the Feynman gauge and there was no relevant difference in efficiency
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regarding the computational time. Therefore, using either set of equations yields equivalent

results and from now on we will only consider the solutions obtained without the WTI.

Figure 4.1: Function A(p2) obtained using the Ball-Chiu vertex in the Landau gauge (ξ = 0),

with and without the WTI.

Figure 4.2: Function B(p2) obtained using the Ball-Chiu vertex in the Landau gauge (ξ = 0),

with and without the WTI.
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Figure 4.3: Function G(p2) obtained using the Ball-Chiu vertex in the Landau gauge (ξ = 0),

with and without the WTI.

4.4.1 Dependence on the Number of Fermion Flavours

In the DSE for the photon propagator, given in Eq. (3.23), the number of fermion flavours

multiplies the term containing the fermion loop. Thus, if Nf = 0, then G(p2) = 1 and the

photon propagator reduces to its tree-level form. This is known as the quenched case. In order

to explore the effects of varying the number of fermion flavours, we can analyse the solutions

obtained in the massless1 case for Nf = 0, 1, 2, 3. As expected, the main difference appears in

the photon propagator, as shown in Fig. 4.4. This only includes the solutions for the unquenched

case, since G(p2) is trivial otherwise, and it is possible to see a non-negligible shift for different

values of Nf . On the other hand, Figs. 4.5 and 4.6 show the indirect effect that the quenched

approximation has on the fermion solutions. The solutions for Nf = 2, 3 are not represented,

since the relative errors with respect to the default solution with Nf = 1 in these cases are

smaller than the convergence precision.

1To avoid numerical problems, the fermion was only approximately massless, with m ≈ 10−17.
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Figure 4.4: Function G(p2) in the Landau gauge (ξ = 0), in the unquenched case with the

number of fermion flavours varying from 1 to 3.

Figure 4.5: Function A(p2) in the Landau gauge (ξ = 0), in the quenched (Nf = 0) and

unquenched (Nf = 1) cases.
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Figure 4.6: Function B(p2) in the Landau gauge (ξ = 0), in the quenched (Nf = 0) and

unquenched (Nf = 1) cases.

4.4.2 Tree-level Vertex

In the perturbative limit, the photon-fermion vertex is given simply by γµ, which can be obtained

from the Ball-Chiu vertex by setting λ1 ≈ 1 and λ2 = λ3 ≈ 0. However, from the behaviour

observed so far for the A(p2) and B(p2) functions, the overall variation tends to be small, and

therefore, from the definitions of the BC form factors given in Eqs. (4.8) - (4.10), we expect that

the solutions obtained using the tree-level and the Ball-Chiu vertex will be very similar. Indeed,

this is observed in Figs. 4.7 - 4.9.
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Figure 4.7: Function A(p2) in the Landau gauge (ξ = 0) obtained using the tree-level and the

Ball-Chiu vertex.

Figure 4.8: Function B(p2) in the Landau gauge (ξ = 0) obtained using the tree-level and the

Ball-Chiu vertex.
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Figure 4.9: Function G(p2) in the Landau gauge (ξ = 0) obtained using the tree-level and the

Ball-Chiu vertex.

4.4.3 Gauge Dependence

The main characteristic of the Ball-Chiu vertex, as discussed in Sec. 4.1, is that it satisfies

the Ward-Takahashi identity for the photon-fermion vertex and therefore it affects the gauge

dependency of the solution. To analyse the behaviour of the fermion and photon propagator

in different gauges, Figs. 4.10 - 4.12 show solutions obtained for each function in the Landau,

Feynman and Yennie gauges, with ξ = 0, 1, 3, respectively.
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Figure 4.10: Function A(p2) obtained in different gauges, with ξ = 1, 2, 3.

Figure 4.11: Function B(p2) obtained in different gauges, with ξ = 1, 2, 3.
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Figure 4.12: Function G(p2) obtained in different gauges, with ξ = 1, 2, 3.

According to the Landau-Khalatnikov-Fradkin transformations [5, 11, 23], in QED the photon

wave-function renormalisation G(p2) should be gauge invariant. However, although small, it is

possible to observe some gauge dependence in Fig. 4.13. This can be attributed to the fact that

the WTI only acts upon the longitudinal part of the vertex, and therefore by itself it is not

sufficient to guarantee that the solution respects gauge invariance. Nonetheless, when compared

to the solution obtained with the tree-level vertex, the solution with the Ball-Chiu vertex is less

gauge dependent, as can be seen in Figs. 4.13 and 4.14.
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Figure 4.13: Function G(p2) in the region with p2 > 1000MeV2 obtained in different gauges,

with ξ = 1, 2, 3.

Figure 4.14: Function G(p2) in the region with p2 > 1000MeV2 obtained in different gauges

using the tree-level vertex, with ξ = 1, 2, 3.
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5 Conclusions

Throughout this work, we explored the Dyson-Schwinger equations formalism applied to QED

in a general linear covariant gauge. In order to build a minimal set of equations for the pho-

ton and fermion propagators and the photon-fermion vertex, the DSEs for the two- and three-

point functions in Minkowski spacetime were derived exactly. However, since the equation for

the latter includes the 1PI two-photon-two-fermion vertex, we also considered the approximated

equation for the four-point Green’s function to build a closed set of equations. The DSEs consti-

tute an infinite tower of coupled equations, hence it becomes necessary to introduce a truncation

in order to investigate only a subset of equations.

Along with the Dyson-Schwinger equations, the Ward-Takahashi identities for the photon-

fermion and the two-photon-two-fermion vertices were also derived. These identities are a direct

consequence of the gauge invariance of the theory and can be used to determine the longitudinal

part of these vertices.

No attempts were made to solve the complete set of equation that was derived due to its com-

plexity. Nevertheless, a preliminary numerical study was made for the coupled photon-fermion

system using mainly the Ball-Chiu Ansatz to replace the photon-fermion vertex. In this study,

it was possible to observe an improvement of the Ball-Chiu vertex in comparison to the lowest

order perturbative solution regarding the gauge dependence of the theory. Furthermore, there

was no difference in the solutions nor in the computational efficiency regarding the two different

set of equations obtained with and without the additional simplification using the WTI. The

dependence on the number of fermion flavours was also investigated, where the photon propa-

gator is the most affected. On the other hand, there is a difference in the fermion propagator

regarding the quenched and unquenched cases, but it remains unaltered when varying the num-

ber of fermion flavours from 1 to 3.

Further work may include a more extensive numerical study of the photon-fermion coupled
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system, in which we could investigate the origin of the infrared pole observed in the photon

propagator as well as the dynamical mass generation in QED. It would also be interesting to solve

the equation for the photon-fermion vertex, along with the previous propagators. To do this, we

could use the longitudinal vertex ΓµνL obtained in [18] from the solution of the two-photon-two-

fermion vertex WTI to model this vertex. In this case, in order to guarantee that the photon-

fermion vertex would still satisfy the WTI, we could fix the longitudinal vertex component as

the Ball-Chiu vertex and solve the transverse projection of the photon-fermion vertex DSE, i.e.,

contracting Eq. (3.33) with the transverse projection operator given in Eq. (3.25). Finally, the

research developed in this work can be extended to non-Abelian gauge theories, such as QCD,

see e.g. [32, 33, 34] for some applications of the Dyson-Schwinger equations.
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Appendix A

Decomposition of the Connected

Green’s Function

Throughout the derivation of the various DSEs, it is necessary on many occasions to write the

connected Green’s functions in terms of one-particle irreducible vertices. In this Appendix, we

discuss the decomposition of different order Green’s functions.

A.1 Three-point Green’s function decomposition

To obtain the decomposition of the three-point connected Green’s function, we start from

Eq. (2.29) and take two additional functional derivatives, the first one with respect to ηβ(y)

and the second with respect to Acl, µ(z). Step by step, the first derivative reads

δ2Γ[Acl, ψcl, ψ̄cl]
δηβ(y) δψ̄cl, α(x)

= δηα(x)
δηβ(y)

⇔
∫
d4u1

δψcl, β′(u1)
δηβ(y)

δ2Γ[Acl, ψcl, ψ̄cl]
δψcl, β′(u1) δψ̄cl, α(x)

= − δαβ δ(x− y)

⇔
∫
d4u1

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

δ2Γ[Acl, ψcl, ψ̄cl]
δψcl, β′(u1) δψ̄cl, α(x)

= − δαβ δ(x− y) , (A.1)

where Eq. (2.22) was used to go from the second to the third line. Then, taking the second

derivative, we obtain
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δ

δAcl, µ(z)

[ ∫
d4u1

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

δ2Γ[Acl, ψcl, ψ̄cl]
δψcl, β′(u1) δψ̄cl, α(x)

]
= 0

⇔
∫
d4u1 d

4u2
δJµ′(u2)
δAcl, µ(z)

δ3W [J, η̄, η]
δJµ′(u2) δηβ(y) δη̄β′(u1)

δ2Γ[Acl, ψcl, ψ̄cl]
δηβ′(u1) δψ̄cl, α(x)

+
∫
d4u1

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

= 0

⇔
∫
d4u1 d

4u2
δ2Γ[Acl, ψcl, ψ̄cl]

δAcl, µ(z) δA µ′

cl (u2)
δ2Γ[Acl, ψcl, ψ̄cl]
δηβ′(u1) δψ̄cl, α(x)

δ3W [J, η̄, η]
δJµ′(u2) δηβ(y) δη̄β′(u1) =

=
∫
d4u1

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1) , (A.2)

where Eq. (2.27) was used in the last step. This equation can be solved using the orthogonality

relations given in Eqs. (2.35) and (2.36). Thus, multiplying Eq. (A.2) by the appropriate terms

and integrating it, the left-hand side becomes

∫
d4u1 d

4u2 d
4z d4x

δ2Γ[Acl, ψcl, ψ̄cl]
δAcl, µ(z) δA µ′

cl (u2)
δ2W [J, η̄, η]

δJ µ̄(v2) δJµ(z)

δ2Γ[Acl, ψcl, ψ̄cl]
δηβ′(u1) δψ̄cl, α(x)

δ2W [J, η̄, η]
δηα(x) δη̄ᾱ(v1)

δ3W [J, η̄, η]
δJµ′(u2) δηβ(y) δη̄β′(u1)

=
∫
d4u1 d

4u2
(
− gµ̄µ′ δ(v2 − u2)

) (
− δᾱβ′ δ(v1 − u1)

) δ3W [J, η̄, η]
δJµ′(u2) δηβ(y) δη̄β′(u1)

= δ3W [J, η̄, η]
δJ µ̄(v2) δηβ(y) δη̄ᾱ(v1) . (A.3)

While the right-hand side is given by

∫
d4u1 d

4z d4x
δ2W [J, η̄, η]

δJ µ̄(v2) δJµ(z)
δ2W [J, η̄, η]
δηα(x) δη̄ᾱ(v1)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

. (A.4)
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Thus, after setting the sources to zero and relabelling, we can use Eqs. (2.30), (2.31) and (2.32)

to write the three-point connected Green’s function in terms of propagators and the 1PI vertex:

(
δ3W [J, η̄, η]

δJµ(z) δηβ(y) δη̄α(x)

)∣∣∣∣∣
J, η̄, η= 0

= g

∫
d4u1 d

4u2 d
4u3 Dµµ′(z − u1)

[
S(x− u2) Γµ′(u2, u3;u1)S(u3 − y)

]
αβ

. (A.5)

Using Eq. (2.34) we can write this in momentum space, which reads

(
δ3W [J, η̄, η]

δJµ(z) δηβ(y) δη̄α(x)

)∣∣∣∣∣
J, η̄, η= 0

= g

∫
d4p1

(2π)4
d4p2

(2π)4
d4k

(2π)4 e
−i (k z+ p1 x− p2 y)

(2π)4 δ(p1 p2 + k)Dµµ′(k)
[
S(p1) Γµ′(p1,−p2; k)S(p2)

]
αβ

. (A.6)

A.2 Four-point Green’s function decomposition

The four-point connected Green’s function can be decomposed in terms of 1PI functions following

the same procedure as for the three-point function. Starting from Eqs. (A.3) and (A.4), we can

perform an additional functional derivative with respect to Acl, ν(w), arriving at
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∫
d4u3

δ2Γ[Acl, ψcl, ψ̄cl]
δAcl, ν(w) δA ν′

cl (u3)
δ4W [J, η̄, η]

δJν′(u3) δJ µ̄(v2) δηβ(y) δη̄ᾱ(v1) =

=
∫
d4u1 d

4u3 d
4z d4x

δ2Γ[Acl, ψcl, ψ̄cl]
δAcl, ν(w) δA ν′

cl (u3)
δ3Γ[Acl, ψcl, ψ̄cl]

δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

δ3W [J, η̄, η]
δJν′(u3) δJ µ̄(v2) δJµ(z)

δ2W [J, η̄, η]
δηα(x) δη̄ᾱ(v1)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

+
∫
d4u1 d

4u3 d
4z d4x

δ2Γ[Acl, ψcl, ψ̄cl]
δAcl, ν(w) δA ν′

cl (u3)
δ3Γ[Acl, ψcl, ψ̄cl]

δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

δ2W [J, η̄, η]
δJ µ̄(v2) δJµ(z)

δ3W [J, η̄, η]
δJν′(u3) δηα(x) δη̄ᾱ(v1)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

+
∫
d4u1 d

4u3 d
4z d4x

δ2Γ[Acl, ψcl, ψ̄cl]
δAcl, ν(w) δA ν′

cl (u3)
δ3Γ[Acl, ψcl, ψ̄cl]

δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

δ2W [J, η̄, η]
δJ µ̄(v2) δJµ(z)

δ2W [J, η̄, η]
δηα(x) δη̄ᾱ(v1)

δ3W [J, η̄, η]
δJν′(u3) δηβ(y) δη̄β′(u1)

−
∫
d4u1 d

4z d4x
δ2W [J, η̄, η]

δJ µ̄(v2) δJµ(z)
δ2W [J, η̄, η]
δηα(x) δη̄ᾱ(v1)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

δ4Γ[Acl, ψcl, ψ̄cl]
δAcl, ν(w) δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

. (A.7)

Following the same procedure as before, we can use Eq. (2.35) to solve this equation. This leaves

us with
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δ4W [J, η̄, η]
δJ ν̄(v3) δJ µ̄(v2) δηβ(y) δη̄ᾱ(v1) =

=
∫
d4u1 d

4z d4x
δ3W [J, η̄, η]

δJ ν̄(v3) δJ µ̄(v2) δJµ(z)
δ2W [J, η̄, η]
δηα(x) δη̄ᾱ(v1)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

+
∫
d4u1 d

4z d4x
δ2W [J, η̄, η]

δJ µ̄(v2) δJµ(z)
δ3W [J, η̄, η]

δJ ν̄(v3) δηα(x) δη̄ᾱ(v1)
δ2W [J, η̄, η]

δηβ(y) δη̄β′(u1)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

+
∫
d4u1 d

4z d4x
δ2W [J, η̄, η]

δJ µ̄(v2) δJµ(z)
δ2W [J, η̄, η]
δηα(x) δη̄ᾱ(v1)

δ3W [J, η̄, η]
δJ ν̄(v3) δηβ(y) δη̄β′(u1)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

+
∫
d4u1 d

4w d4z d4x
δ2W [J, η̄, η]

δJ ν̄(v3) δJν(w)
δ2W [J, η̄, η]

δJ µ̄(v2) δJµ(z)
δ2W [J, η̄, η]
δηα(x) δη̄ᾱ(v1)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u1)

δ4Γ[Acl, ψcl, ψ̄cl]
δAcl, ν(w) δAcl, µ(z) δψcl, β′(u1) δψ̄cl, α(x)

. (A.8)

The first term is proportional to the three-photon 1PI vertex, since, after setting the sources to

zero,

(
δ3W [J, η̄, η]

δJµ(x) δJν(y) δJρ(z)

)∣∣∣∣∣
J, η̄, η= 0

= g

∫
d4u1 d

4u2 d
4u3

Dµµ′(x− u1)Dνν′(y − u2)Dρρ′(z − u3)

(
δ3Γ[Acl, ψcl, ψ̄cl]

δJµ′(u1) δJν′(u2) δJρ′(u3)

)∣∣∣∣∣
J, η̄, η= 0

, (A.9)

and therefore this vanishes in QED, according to Furry’s theorem. Using the decomposition

given in Eq. (A.5) for the three-point photon-fermion Green’s function, as well as the definitions

in Eqs. (2.30), (2.31) and (2.33), the equation becomes, after some relabelling,
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(
δ4W [J, η̄, η]

δJµ(z) δJν(w) δηβ(y) δη̄α(x)

)∣∣∣∣∣
J, η̄, η= 0

=

= − g2
∫
d4u1 d

4u2 d
4u3 d

4u4 Dµµ′(z − u1)Dνν′(w − u2)

[
S(x− u3) Γµ′ν′(u3, u4;u1, u2)S(u4 − y)

]
αβ

− g2
∫
d4u1 d

4u2 d
4u3d

4u4 d
4u5 d

4u6 Dµµ′(z − u1)Dνν′(w − u2)

[
S(x− u3) Γν′(u3, u4;u2)S(u4 − u5) Γµ′(u5, u6;u1)S(u6 − y)

]
αβ

− g2
∫
d4u1 d

4u2 d
4u3d

4u4 d
4u5 d

4u6 Dµµ′(z − u1)Dνν′(w − u2)

[
S(x− u3) Γµ′(u3, u4;u1)S(u4 − u5) Γν′(u5, u6;u2)S(u6 − y)

]
αβ

. (A.10)

We can write this is momentum space using Eq. (2.34), obtaining

(
δ4W [J, η̄, η]

δJµ(z) δJν(w) δηβ(y) δη̄α(x)

)∣∣∣∣∣
J, η̄, η= 0

=

= − g2
∫

d4p1
(2π)4

d4p2
(2π)4

d4k1
(2π)4

d4k2
(2π)4 e

− i (k1 z+ k2 w+ p1 x− p2 y) (2π)4 δ(p1 − p2 + k1 + k2)

Dµµ′(k1)Dνν′(k2)
{
S(p1)

[
Γµ′ν′(p1,−p2; k1, k2)

+ Γν′(p1,−p1 − k2; k2)S(p1 + k2) Γµ′(p1 + k2,−p2; k1)

+ Γµ′(p1,−p1 − k1; k1)S(p1 + k1) Γν′(p1 + k1,−p2; k2)
]
S(p2)

}
αβ

. (A.11)

A.3 Five-point Green’s function decomposition

Finally, to decompose the five-point connected Green’s function, we follow the same procedure as

before, taking now an additional derivative with respect to Acl, ρ(s). Then, after some straight-

forward algebra, we arrive at the decomposition of the five-point Green’s function in terms of

1PI functions in coordinate space:
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(
δ5W [J, η̄, η]

δJρ(s) δJν(w) δJµ(z) δηβ(y) δη̄α(x)

)
=

=
∫
d4u1 d

4u2 d
4u3 d

4u4 d
4u5

δ2W [J, η̄, η]
δJρ(s) δJρ′(u1)

δ2W [J, η̄, η]
δJν(w) δJν′(u2)

δ2W [J, η̄, η]
δJµ(z) δJµ′(u3)

δ2W [J, η̄, η]
δηα′(u4) δη̄α(x)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u5)

δ5Γ[Acl, ψcl, ψ̄cl]
δAcl, ρ′(u1) δAcl, ν′(u2) δAcl, µ′(u3) δψcl, β′(u5) δψ̄cl, α′(u4)

+
∫
d4u1 d

4u2 d
4u3 d

4u4
δ2W [J, η̄, η]

δJρ(s) δJρ′(u1)
δ2W [J, η̄, η]

δJν(w) δJν′(u2)
δ2W [J, η̄, η]

δηα′(u3) δη̄α(x)

δ3W [J, η̄, η]
δJµ(z) δηβ(y) δη̄β′(u4)

δ4Γ[Acl, ψcl, ψ̄cl]
δAcl, ρ′(u1) δAcl, ν′(u2) δψcl, β′(u4) δψ̄cl, α′(u3)

+
∫
d4u1 d

4u2 d
4u3 d

4u4
δ2W [J, η̄, η]

δJρ(s) δJρ′(u1)
δ2W [J, η̄, η]

δJµ(z) δJµ′(u2)
δ2W [J, η̄, η]

δηα′(u3) δη̄α(x)

δ3W [J, η̄, η]
δJν(w) δηβ(y) δη̄β′(u4)

δ4Γ[Acl, ψcl, ψ̄cl]
δAcl, ρ′(u1) δAcl, µ′(u2) δψcl, β′(u4) δψ̄cl, α′(u3)

+
∫
d4u1 d

4u2 d
4u3 d

4u4
δ2W [J, η̄, η]

δJν(w) δJν′(u1)
δ2W [J, η̄, η]

δJµ(z) δJµ′(u2)
δ2W [J, η̄, η]

δηα′(u3) δη̄α(x)

δ3W [J, η̄, η]
δJρ(s) δηβ(y) δη̄β′(u4)

δ4Γ[Acl, ψcl, ψ̄cl]
δAcl, ν′(u1) δAcl, µ′(u2) δψcl, β′(u4) δψ̄cl, α′(u3)

+
∫
d4u1 d

4u2 d
4u3

δ2W [J, η̄, η]
δJρ(s) δJρ′(u1)

δ2W [J, η̄, η]
δηα′(u2) δη̄α(x)

δ4W [J, η̄, η]
δJν(w) δJµ(z) δηβ(y) δη̄β′(u3)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, ρ′(u1) δψcl, β′(u3) δψ̄cl, α′(u2)

+
∫
d4u1 d

4u2 d
4u3

δ2W [J, η̄, η]
δJν(w) δJν′(u1)

δ2W [J, η̄, η]
δηα′(u2) δη̄α(x)

δ4W [J, η̄, η]
δJρ(s) δJµ(z) δηβ(y) δη̄β′(u3)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, ν′(u1) δψcl, β′(u3) δψ̄cl, α′(u2)

+
∫
d4u1 d

4u2 d
4u3

δ2W [J, η̄, η]
δJµ(z) δJµ′(u1)

δ2W [J, η̄, η]
δηα′(u2) δη̄α(x)

δ4W [J, η̄, η]
δJρ(s) δJν(w) δηβ(y) δη̄β′(u3)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, µ′(u1) δψcl, β′(u3) δψ̄cl, α′(u2)

+
∫
d4u1 d

4u2 d
4u3

δ2W [J, η̄, η]
δηα′(u1) δη̄α(x)

δ2W [J, η̄, η]
δηβ(y) δη̄β′(u2)

δ4W [J, η̄, η]
δJρ(s) δJν(w) δJµ(z) δJσ(u3)

δ3Γ[Acl, ψcl, ψ̄cl]
δAcl, σ′(u3) δψcl, β′(u2) δψ̄cl, α′(u1)

(A.12)

69



where the terms proportional to the three-photon irreducible vertex vanished, due to Furry’s

theorem.
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Appendix B

Trace calculations

In order to obtain the expressions for the propagator’s form factors, one needs to calculate traces

involving gamma matrices. In this appendix, we list some useful results that can be obtained

using the properties of these matrices and of the trace operator:

The trace of any product of an odd number of γµ is zero , (B.1)

Tr [γµ γµ] = 16 , (B.2)

Tr [γµ γν ] = 4 gµν , (B.3)

Tr [γµ γν γµ γρ] = − 8 gνρ , (B.4)

Tr [γµ γν γσ γρ] = 4 (gµν gσρ − gµσ gνρ + gµρ gνσ) . (B.5)

These properties are easily generalised, for example:

Tr
[
γµ /a /b /c

]
= Tr [γµ γν γσ γρ] aν bσ cρ

= 4 (gµν gσρ − gµσ gνρ + gµρ gνσ) aν bσ cρ

= 4 [aµ (b · c) − bµ (a · c) + cµ (a · b)] . (B.6)
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