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Abstract: The successful clinical application of nucleic acid-based therapeutic strategies 

has been limited by the poor delivery efficiency achieved by existing vectors. The 

development of alternative delivery systems for improved biological activity is, therefore, 

mandatory. Since the seminal observations two decades ago that the Tat protein, and derived 

peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs) 

have been considered one of the most promising tools to improve non-invasive cellular 

delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this 

purpose, the exact mechanisms underlying their cellular uptake and that of peptide 

conjugates remain controversial. Over the last years, our research group has been focused 

on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results 

from the combination of 13-amino-acid cell penetrating sequence derived from the 

Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By 

performing an extensive biophysical and biochemical characterization of this peptide and its 

analogs, we have gained important insights into the mechanisms governing the interaction 

of CPPs with cells and their translocation across biological membranes. More recently, we 

have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid 

DNA, siRNA and oligonucleotides). In this review we discuss the current knowledge of the 

mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the 

S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid 

delivery. 
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1. Introduction  

During the last two decades a number of peptides presenting the ability to be translocated across 

biological membranes were identified and thoroughly studied, resulting in the characterization of a 

new family of peptides known as cell-penetrating peptides (CPPs), in some cases also frequently 

referred to as protein transduction domains (PTDs) [1]. The profound interest that CPPs evoked among 

the scientific community was associated not only with their ability to cross cellular membranes by a 

non-toxic process, apparently independent of membrane receptors and energy consumption, but mainly 

due to their capacity to promote the efficient cellular internalization of biomolecules associated to 

these peptides. Since the lack of permeability of the cellular membranes to hydrophilic biomolecules 

constitutes one of the most important barriers to the delivery of therapeutic agents, this discovery has 

been regarded as an important step towards the development of novel strategies to increase the 

intracellular availability of molecules with high therapeutic interest but low membrane permeability, 

such as peptides, proteins and nucleic acids. Regardless of the great variability in their amino acid 

sequence, cell-penetrating peptides are usually short peptide sequences rich in basic amino acids 

(lysine and arginine), in some cases exhibiting the ability to be arranged in amphipathic alpha-helical 

structures. Among all CPPs described to date, which include protein transduction domains, chimeric 

peptides and peptides of synthetic origin, the peptides derived from the HIV-1 Tat protein [2,3] and 

from the homoeodomain of the Antennapedia protein of Drosophila [4,5] (Tat and Penetratin peptides, 

respectively), as well as the synthetic Pep-1 peptide [6], are among the best characterized. These 

peptides have been successfully used for the intracellular delivery of different cargoes [7-19], 

including nanoparticles, full-length proteins, liposomes and nucleic acids, both in vitro and in vivo, 

resulting in successful transduction in animal tissues, including the brain.  

Despite the extensive use of CPPs for delivery purposes, the exact mechanisms underlying their 

cellular uptake, and that of peptide conjugates, remain poorly understood and are still the object of 

some controversy. In contrast with other classes of peptides (such as fusogenic peptides of viral origin 

and antimicrobial peptides) which are also able to cross cellular membranes, the mechanisms behind 

CPP internalization are highly efficient and harmless to the cells, avoiding membrane destabilization 

and loss of cellular integrity. However, the high heterogeneity present in this family of peptides, 

together with contradicting reports later attributed to cell fixation-derived artifactual observations [20-

22], have hampered the clarification of the exact mechanisms responsible for CPP uptake.  

In this review we discuss several mechanisms of cellular internalization described for CPPs, in the 

presence or absence of cargo, with a special emphasis on the S413-PV peptide, a karyophilic CPP [23] 

which has been extensively studied in our laboratory, both in terms of its cellular uptake, as well as of 

its potential for delivery of biomolecules. We also discuss recent advances in the use of CPPs, 

including the S413-PV peptide, for the delivery of DNA and siRNAs, aiming at their application in a 

therapeutic context. 
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2. Mechanisms of Cellular Internalization of CPPs 

Initial reports that CPP internalization occurred even at low temperatures excluded endocytotic 

pathways as the main mechanism responsible for the uptake of these peptides and suggested the 

existence of alternative energy-independent internalization mechanisms. Studies employing peptides 

prepared with D enantiomers and peptides with reverted sequences demonstrated that the translocation 

efficiency of these peptides was similar (or superior, in the case of D enantiomers) to that of 

corresponding L enantiomers and non-reversed peptides, also dismissing the involvement of membrane 

receptors in peptide uptake [24-26]. As a result of these observations, several models were proposed to 

explain CPP translocation across cellular membranes as a consequence of a direct interaction of this 

class of peptides with phospholipids and other membrane components. 

Later, several studies suggested that the apparent membrane translocation of CPPs and their 

accumulation in intracellular compartments was due to artifacts related to cell fixation rather than to an 

energy-free and receptor-independent uptake process [20-22]. These observations led to a full re-

evaluation of the mechanisms involved in CPP internalization.  

Results from comprehensive re-evaluation studies, performed in live cells, provided evidence that 

in addition to the already described endocytosis-independent mechanisms, involving the direct 

translocation of CPPs through cellular membranes, several endocytotic pathways, such as caveolae-

mediated endocytosis [27,28], macropiynocytosis [29,30] and clathrin-mediated endocytosis [31], 

played a role in peptide internalization. Furthermore, several differences were observed between the 

internalization of unconjugated CPPs and CPPs conjugated with high molecular-weight molecules, 

such as proteins and DNA, suggesting the existence of distinct internalization mechanisms for the 

same peptide, depending on the presence or absence of cargo. Moreover, and in agreement with the 

efficient uptake of CPPs by a vast number of cell types and tissues, an important role was attributed to 

cell surface heparan sulfate proteoglycans (HSPG) in the CPP internalization process. It should be 

emphasized that proteoglycan contribution to CPP internalization is consistent with any of the possible 

uptake mechanisms discussed so far [32]. Indeed, biding of these permeating peptides to cell surface 

proteoglycans could promote the interaction of CPPs with the cellular membranes, facilitating the 

subsequent interactions necessary to the translocation process; in an alternative scenario, this same 

binding step could induce by itself certain endocytotic mechanisms, leading to CPP internalization. 

According to recent studies, the cellular internalization of the R9 peptide and of other arginine 

oligomers was shown to be mediated by an endocytotic mechanism dependent on peptide binding to 

heparan sulfate proteoglycans [33]. The authors of this study also proposed that once inside the 

endosome, the heparan sulfate chains would be degraded by heparanases, leading to dissociation of the 

peptides and consequent interaction of the CPPs with the endosomal membrane, thus promoting its 

destabilization and peptide release into the cytoplasm.  

Below we illustrate the different mechanisms proposed to explain the internalization of free or 

cargo-conjugated CPPs (Figure 1). These mechanisms fall into two broad categories: endocytosis and 

direct membrane translocation.  
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Figure 1. Mechanisms of peptide uptake across the cellular membrane. A variety of 

internalization mechanisms have been proposed to explain cellular uptake of CPPs. These 

mechanisms include well-characterized energy-dependent pathways, based on vesicle 

formation and collectively referred as endocytosis, and direct translocation or cell 

penetration models, which involve the formation of hydrophilic pores or local 

destabilization of the lipid bilayer. 

 

2.1. Direct Translocation of CPPs across Biological Membranes 

The models proposed to explain the direct translocation of CPPs across biological membranes 

include the “inverted micelle model”, the models involving the formation of membrane pores and the 

“carpet model”. According to the “inverted micelle model”, described initially by Derossi et al. [24] in 

an attempt to explain the results obtained with the pAntp peptide, the interaction of cell-penetrating 

peptides with biological membranes would lead to a disturbance of the lipid bilayer, resulting in the 

formation of inverted hexagonal structures (inverted micelles). The peptides would be trapped in the 

hydrophilic environment present in the micelle core until their interaction with the membrane 

components would lead to the occurrence of an inverse process, resulting in the destabilization of the 

inverted micelles and consequent release of the peptides into the intracellular compartment. This 
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model is supported by data obtained from nuclear magnetic resonance (NMR) studies showing that the 

interaction of the pAntp peptide with membranes can result in the formation of inverted structures 

[34]. Additionally, this model provides an acceptable explanation to the translocation of a small 

hydrophilic peptide across a lipid membrane, without having to overcome the energetic barrier 

presented by the hydrophobic interior of the lipid bilayer. However, the “inverted micelle model” is 

not compatible with the translocation of high molecular weight conjugates, since the formation of 

these inverted hexagonal structures, containing molecules of considerable size in their hydrophilic 

core, is not likely to occur. 

By analogy with the mechanisms of membrane disturbance initially proposed to explain the 

translocation of antimicrobial peptides and toxins, alternative models were described to explain CPP 

uptake. According to the models involving the formation of “barrel stave” or toroidal pores, the 

translocation of peptides and their conjugates across biological membranes would result from the 

formation of transient pores, produced upon peptide insertion into the membrane, and oligomerization 

of the inserted peptides in a ring-shape structure. In the case of “barrel stave” pores, the peptides 

would assume an amphipathic alpha-helix structure when inserted into the membrane, where the 

hydrophobic face of the amphipathic helices would interact with the aliphatic chains of the bilayer 

phospholipids and the hydrophilic face would form the interior of the pore [35-38]. The model 

involving the formation of toroidal pores is similar, except that in this model the peptides inserted in 

the membrane would interact exclusively with the polar groups of membrane phospholipids, inducing 

significant rearrangement of the lipid bilayer [38,39]. According to the “carpet model”, the membrane 

translocation of permeating peptides and their conjugates would occur as a consequence of a transient 

destabilization of the cellular membrane, induced by the extensive association of the peptide to its 

surface, and consequent phospholipid reorganization [35-38]. 

Although the previously described models share several common features, it is important to 

highlight some significant differences: (i) according to the “inverted micelle model”, the peptides 

remain associated to the membrane surface during translocation and never experience direct contact 

with the hydrophobic interior of the lipid bilayer, in contrast to what is described in the models that 

assume pore formation, where the insertion of the peptides in the membrane and the resulting 

transmembrane conformation are important steps of the translocation process; (ii) both the “toroidal 

pore” and the “carpet model” describe an extensive reorganization of membrane phospholipids, in 

contrast to the “barrel stave” model, in which the structure of the lipid bilayer would not be 

significantly disturbed; (iii) the interaction of cell-penetrating peptides with cellular membranes would 

result in the formation of concave membrane surfaces according to the “inverted micelle” model, 

whereas convex membrane surfaces would be formed according to the “toroidal pore” model; (iv) the 

models involving the formation of “barrel-stave” or “toroidal” pores, in which homo-oligomerization 

of the membrane-inserted peptides occurs, predicts the existence of a well-defined structure, in 

contrast with the highly disorganized structure responsible for the destabilization of the cellular 

membrane described in the “carpet model”.  

With the exception of the “inverted micelle” model, all reported models are compatible with the 

translocation of large size molecules across biological membranes. In addition, these models require 

the presence of amphipathic alpha-helix secondary structures, a feature shared by many CPPs. 

However, the translocation of large molecules by any of these mechanisms would imply an extensive 
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destabilization of the cellular membrane, not compatible with the low cytotoxicity usually associated 

with the membrane translocation of CPPs and their conjugates. Accordingly, we can conclude that 

none of the above described models completely explains all the experimental data obtained with 

different CPPs, indicating that alternative mechanisms should play a role in peptide translocation, 

specially when conjugated with high molecular weight cargoes.  

2.2. Endocytosis as a Pathway for CPP Internalization 

Although recent studies have clearly demonstrated the involvement of endocytosis in the 

internalization of several CPPs and their conjugates, some controversy still exists regarding the exact 

endocytotic pathways which contribute to this process.  

Endocytosis comprises different cellular mechanisms responsible for the uptake of biomolecules, 

toxins and even other cells. These mechanisms can be divided into two main categories: phagocytosis, 

a process which occurs only in specialized cells, such as macrophages, and pinocytosis, a set of 

internalization pathways active in most cells, which includes macropinocytosis, clathrin-mediated 

endocytosis, caveolae-mediated endocytosis and other less well-characterized pathways [40-43].  

Studies performed to clarify the involvement of these internalization pathways in CPP translocation 

have employed different experimental approaches such as: (i) peptide/cell interaction at low 

temperatures (approximately 4ºC) or in energy depletion conditions; (ii) incubation with drugs that 

selectively compromise different internalization pathways; (iii) evaluation of peptide or peptide 

conjugate co-localization with molecules known to be internalized by specific endocytotic pathways 

(e.g., transferrin, cholera toxin G subunit) or with molecular markers of known internalization 

pathways (e.g., Caveolin-1, early endosome antigen-1 - EEA1); and (iv) overexpression of  dominant 

negative mutants of proteins involved in the internalization process (e.g., Dynamin). By using these 

approaches, different studies demonstrated the contribution of several pinocytosis pathways to the 

cellular internalization of Tat. The fusion protein GST-Tat-GFP was found to enter cells mainly by 

caveolae-mediated endocytosis [28,44], while the Tat peptide and the Tat-HA2 fusion peptide were 

described to be internalized mainly through macropinocytosis [29,30,45,46]; clathrin-coated vesicles 

have also been implicated in the internalization of unconjugated Tat peptide [31]. To prevent possible 

side-effects associated with the use of endocytosis inhibitors Ter-Avetisyan et al., performed studies 

on the uptake of arginine-rich peptides in genetically engineered cells, lacking functional clathrin-

mediated or cavoleae-dependent internalization pathways [47]. In parallel, experiments the authors 

took advantage of physical methods, such as temperature decrease, to inhibit all endocytotic pathways 

simultaneously. In this study Tat was not excluded from cells in any of the tested conditions, 

suggesting that Tat cell uptake can also be endocytosis-independent. 

In another interesting work, Duchardt and collegues [42] compared the cellular uptake of three 

known CPPs: Antennapedia homeodomain-derived peptide (Antp), Tat and the nona-arginine peptide 

R9. The authors concluded that all three peptides simultaneously use three endocytotic pathways: 

macropinocytosis, clathrin-mediated endocytosis and caveolae-dependent endocytosis.  The Antp 

peptide was found to differ from the other two peptides in the extent by which the different 

mechanisms contribute to CPP uptake, showing a higher contribution of clathrin-mediated 

endocytosis. Moreover, the authors also reported a endocytosis-independent internalization pathway 
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for Antp, present at high peptide concentrations. The differences in the results obtained in all these 

studies can in part be explained by the unspecificity and toxicity associated with the endocytosis 

inhibitors frequently employed in this kind of experiments [47,48] and by the different experimental 

conditions with respect to cell lines, incubation times and peptide concentrations, but can also translate 

different internalization mechanisms associated with the same peptide. 

Regarding cargo-associated CPPs, most studies suggest that endocytosis is the main mechanism 

responsible for CPP-cargo uptake, although the exact pathway of internalization can vary according to 

both peptide and cargo properties. For example, Lundin et al. [49] compared the internalization route 

of several cationic and amphipathic CPPs, including penetratin, M918, transportan and a modification 

of transportan referred as TP10 [50] when conjugated with PNA molecules. The results suggested that 

while cationic conjugates relied more on macropinocytosis for internalization, amphipathic peptides 

conjugated with PNAs were internalized mainly by clathrin-mediated endocytosis.    

Independently of the endocytotic pathway responsible for the cellular internalization of a certain 

CPP or its conjugate, several studies have suggested that endosomal release is the main obstacle to the 

intracellular delivery and biological activity of the conjugated molecules [29,51]. In this context, 

several strategies have been developed to overcome the endosomal barrier, such as the use of drugs 

that prevent endosomal acidification [29,52], fusogenic peptides or photosensitizer molecules capable 

of promoting endosome disruption [53,54]. Chloroquine [29,52] is an example of a well-known 

endosomolytic reagent, which has been largely employed in combination with CPPs. Several studies 

have demonstrated an enhancement of the activity of cargo molecules following addition of 

chloroquine to the cell culture medium. An illustrative example is the work of Veldhoen et al. [55], 

which showed that siRNA delivery by MPGα, a peptide derived from MPG by mutation of its 

hydrophobic domain, was potentiated in the presence of this drug, leading to an increase in gene 

silencing efficiency. However, this kind of chemical reagents may not be suitable for in vivo 

therapeutic use, since their effective concentrations are often associated with high cytotoxicity. As an 

alternative strategy, peptides which promote the destabilization of the endosome membrane upon 

acidification of this compartment have been employed to facilitate the release of the endosome-

entrapped molecules in the absence of significant toxicity. In 2004, Wadia and colleagues described a 

strategy to enhance the endosomal release of a Tat-Cre construct, in which the Tat peptide was fused 

to the HA2 pH-sensitive fusogenic peptide derived from the hemagglutinin protein of influenza virus 

[29]. As expected, the resulting construct had higher transduction efficiency than the initial Tat-Cre 

peptide and led to a significant enhancement of the biological activity of this CPP [29]. In addition to 

endosomolytic reagents and fusogenic peptides, photosensitizer and fluorescent molecules have also 

been used to enhance the diffusion of molecules from endosomes to the cytosol. Maiolo et al. [53] 

demonstrated that fluorescent dyes covalently bound to penetratin and polyarginine peptides led to 

cytosolic diffusion of these CPPs, following photostimulation at a wavelength close to the excitation 

maximum of the fluorescent dye. This excitation is proposed to generate reactive oxygen species and 

induce rupture of the endosomal membrane.  In another study [56] a similar photostimulation strategy 

was employed to enhance siRNA delivery in CHO cells, using a TatU1A peptide labeled at the C-

terminus with Alexa Fluor 546. Stimulation at 540 nm, which is the excitation wavelength of this 

Alexa dye, resulted in RNAi-mediated silencing of EGFP in CHO cells and of the epidermal growth 

factor gene in A431 cells. 
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2.3. Mechanisms of Internalization of S413-PV Peptide 

The S413-PV karyophilic cell-penetrating peptide is a synthetic peptide which results from the 

combination of a 13-amino-acid cell penetrating sequence, derived from the Dermaseptin S4 peptide, 

with the SV40 (Simian Virus 40) large T antigen nuclear localization signal [23]. Our research group 

has shown that this peptide accumulates inside live cells and particularly inside the nucleus, through a 

rapid, dose-dependent and nontoxic process [57,58]. In addition, and similarly to what has been 

reported for other CPPs, this peptide has been successfully used to promote intracellular delivery of 

high molecular weight cargo molecules, in particular DNA, oligonucleotides (ONs) and siRNAs [59]. 

A comparative study performed recently to assess the internalization capacity of 22 cell-penetrating 

peptides in four different cell lines has revealed that the S413-PV is one of the peptides exhibiting 

higher cellular uptake, together with penetratin and transportan [58]. To clarify the mechanisms 

involved in the internalization of the S413-PV cell-penetrating peptide, we performed a detailed 

analysis of the cellular uptake and subcellular localization of this peptide in HeLa cells. Results 

obtained by confocal microscopy and flow cytometry using live cells clearly demonstrated that both 

low temperatures and depletion of cellular ATP dramatically decreases the number of cells containing 

the peptide, strongly suggesting that the cellular uptake of S413-PV is mostly mediated by an energy-

dependent process [57]. These results are in agreement with other studies performed in live cells, 

which revealed that some CPPs, such as the Tat peptide, are in fact, internalized mainly by endocytosis 

[28,29,31]. In this context, the possible involvement of endocytosis in the cellular uptake of the S413-

PV peptide was also thoroughly investigated by analyzing peptide uptake in the presence of drugs that 

selectively compromise different endocytotic pathways, as well as in cells overexpressing a dominant-

negative mutant of Dynamin. The fact that S413-PV internalization is not reduced in the presence of 

these drugs or in the presence of the dynamin-K44A dominant-negative mutant, clearly indicates that 

endocytosis is not involved in the uptake of this peptide, at least for moderately high S413-PV 

concentrations (1 µM). In agreement with our results, a recent study confirmed that several inhibitors 

of the endocytotic pathway, tested in four different cell lines, had little effect on S413-PV 

internalization [58]. It is important to note that, when we performed studies at very low peptide 

concentrations (0.1 μM), a reduced uptake of S413-PV was observed upon cell treatment with 

chloropromazine and nystatin suggesting that, under these experimental conditions, endocytosis may 

be involved in the internalization of the S413-PV peptide [57]. 

Similar to what was previously observed with the Tat peptide and Tat fusion proteins [31], a 

significant inhibition of S413-PV uptake was observed in the presence of low concentrations of heparin 

[57]. This result suggested that the positively charged peptide has high affinity for the GAG moieties 

of cell surface proteoglycans. However, comparative analysis of the cellular uptake of S413-PV in 

normal cells and in cells deficient in proteoglycan biosynthesis showed that although heparan sulphate 

proteoglycans potentiate the uptake of the S413-PV peptide, their presence at the cell surface is not 

mandatory for peptide internalization. In fact, the effect of proteoglycans on peptide uptake was shown 

to be relevant only at low peptide concentrations, whereas at high concentrations almost no differences 

were observed between cells containing, or not, proteoglycans [57].  

Altogether, these results demonstrate that two mechanisms are responsible for S413-PV uptake: a 

GAG- and endocytosis-dependent mechanism, which is dominant at low peptide concentrations, and a 
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GAG- and endocytosis-independent mechanism that occurs preferentially at high peptide 

concentrations. It is also interesting to note that a recent study performed with the Tat peptide showed 

that Tat-induced macropinocytosis and peptide uptake occurs efficiently in CHO mutant cells 

(deficient in heparan sulfate proteoglycans and sialic acid) [46]. These results are in line with our 

previous results using the S413-PV peptide and together support our interpretation that although acidic 

proteoglycans favor the binding of certain CPPs, their presence is not a pre-requisite for CPP uptake. 

Aiming at understanding the sequence of events that are the basis of the endocytosis-independent 

mechanism observed for the S413-PV peptide, which most likely involved direct penetration of the 

peptide across cell membranes, we performed a detailed biophysical characterization of its interaction 

with model membranes [60,61]. These studies revealed a clear change in the intrinsic fluorescence 

spectra of the peptide upon interaction with negatively charged membranes (blue-shift of tryptophan 

fluorescence), indicating changes of the overall hydrophobicity of the peptide environment. 

Interestingly, the extent of the blue-shift observed with this peptide was remarkably high when 

compared with those reported for other CPPs, such as penetratin, transportan [62-64] and Pep-1 [65]. 

Parallel circular dichroism experiments demonstrated that the interaction of the S413-PV peptide with 

negatively charged membranes induces significant changes in the secondary structure of the peptide 

(Figure 2), similarly to what has been previously reported for other CPPs, such as penetratin, 

transportan and Pep-1 [63,65]. 

In the case of penetratin, it has been shown that low membrane surface charge density favors a 

mainly helical conformation, while high charge density promotes a dominating β-structure [63,64,66]. 

In the presence of neutral POPC vesicles, no structure induction takes place relative to the state in 

aqueous solution [66]. More recently, penetratin has been shown to adopt a helical structure only in the 

presence of anionic lipids, with the higher structure content observed in the presence of cardiolipin 

[67]. Pep-1 conformation has been suggested to be helical in the presence of either neutral or charged 

phospholipids [65], while the MPG peptide was found to be non-ordered in water but to fold into a β-

sheet structure upon interacting with phospholipids [68]. In the case of transportan, it has been shown 

that this peptide adopts a helical structure irrespective of the presence or of the nature of the lipids 

[63]. In contrast, Tat derived peptide has not been shown to adopt any secondary structure [69]. 

In our studies, data from circular dichroism analysis showed a general trend towards an increase in 

the alpha-helical structural motif of the peptide, with increasing membrane charge ratio and 

lipid/peptide ratio. In addition, studies performed with S413-PV, reverse NLS (S413-PV peptide in 

which the SV40 NLS sequence is reverted) and scrambled peptides showed that peptide/membrane 

interactions and peptide uptake seem to be highly dependent on the amino acid sequence of the CPP. 

Although the initial binding of all peptides to the cell membrane was found to be similar, significant 

differences were observed in the conformational changes of the S413-PV and reverse NLS peptides as 

compared to the scrambled peptide, induced upon interaction with the negatively charged target 

membranes (Figure 2A) [60]. Moreover, a comparative analysis of the cellular uptake of the three 

peptides, performed by flow cytometry and confocal microscopy (Figure 2B and C), revealed that 

while the translocation of S413-PV and S413-PV reverse peptides was similar, the uptake of the 

scrambled peptide was significantly lower [60,61].  

These results highlight the relevance of the sequence of the S413-PV peptide to the establishment of 

specific peptide/membrane interactions that occur following its binding to cell membranes, and 
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demonstrated a clear link between the peptide conformational changes and the actual translocation 

process leading to cellular uptake. 

Figure 2. Conformational changes and cellular uptake of the S413-PV, reverse NLS and 

scrambled peptides. (A) The circular dichroism spectra of the peptides were acquired in 

sodium phosphate buffer, pH 7.0 (dotted lines), or in the presence of negatively charged 

membranes composed of POPG, at a lipid/peptide ratio of 4 (straight lines). Clear 

differences in the peptides spectra was observed in the presence of negatively charged 

vesicles. (B, C) Hela cells were incubated for 30 minutes, at 37 ºC, with 1.0 μM of 

rhodamine-labelled peptides. (B) Following treatment with trypsin to remove the non-

internalized, surface-bound peptides, cells were analyzed by flow cytometry. (C) Live cells 

were observed by confocal microscopy. Although all peptides have similar physic-

chemical properties, the extent of cellular uptake of the S413-PV and S413-PV reverse NLS 

peptides was significantly more efficient than that observed for the scrambled peptide.  

 

3. CPPs-Based Strategies for Delivery of Therapeutic Molecules 

Gene-targeted therapies constitute promising approaches for the treatment of numerous pathological 

conditions, such as cancer, genetic, cardiovascular, inflammatory and infectious diseases, which are 

characterized by overexpression or inappropriate expression of specific genes [70]. Recent advances in 

the elucidation of molecular pathways involved in several of these conditions, together with the 

sequencing of the human genome and the crucial need for innovative and highly specific drugs, with 

low side effects, have increased the interest on the use of nucleic acids as molecular therapeutics [71].  
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Despite the enormous potential of nucleic acids for the treatment of human diseases, the 

pharmacological potential of these molecules remains dependent on the development of delivery 

systems able to mediate their efficient cellular uptake and ensure their correct targeting [7,70,72,73]. 

Although significant achievements have been made over the years, there is still a clear demand for 

efficient nucleic acid delivery systems. Ideally, these delivery systems should: (i) protect nucleic acids 

from degradation; (ii) be effectively internalized in specific target cell types/tissues/organs; (iii) 

promote release of the carried cargos in the cytoplasm (antisense oligonucleotides, siRNA, miRNA) or 

nucleus (plasmid DNA, splice-switching oligonucleotides);  (iv) exhibit high biological activity at low 

doses; (v) display no cellular toxicity; and (vi) have a good biosafety profile for in vivo therapeutic 

applications [8].  

Although the mechanisms underlying the cellular uptake of CPPs and of their conjugates remain 

highly debated, these peptides have been successfully used to mediate the intracellular delivery of a 

wide variety of molecules of pharmacological interest in different cell types [11,19,74]. Notably, the 

relative lack of toxicity and cell specificity have enabled the use of CPP technology in various 

preclinical models [17]. 

The ability shared by a considerable number of CPPs to accumulate inside the cell nucleus, render 

them particularly suited to act as gene delivery vectors. Some CPPs, such as Tat, transportan, 

polyarginine peptides and S413-PV, have been associated with other non-viral vectors, improving 

nucleic acid delivery and offering the possibility of combining efficient packaging, delivery and 

targeting in a single nanocarrier [59,73,75-84]. The following sections cover the main applications of 

CPPs in the field of drug delivery, with particular emphasis on the application of CPPs for the delivery 

of nucleic acids. 

3.1 Protein Delivery 

The use of proteins as therapeutic agents constitutes a very promising approach for the treatment of 

various diseases. However, the intracellular delivery of these large molecules remains a challenge in 

part because of their three-dimensional structure, spatial occupation and hydrophilic/hydrophobic 

nature [85]. Moreover, protein stability relies on weak non-covalent interactions between secondary, 

tertiary and quaternary structures, which have therefore to be preserved throughout the delivery 

process [85]. As a result, these molecules appear as highly vulnerable therapeutic agents with short in 

vivo half-lives and poor bioavailability, requiring methods that enable their efficient delivery into cells 

to be successfully applied in vivo [6,85,86].  

Different types of lipid- and polymer-based vectors have been used for protein delivery, including 

liposomes, microparticles and nanoparticles, most of them with relatively poor efficiency [85,87]. 

Alternatively, CPPs have been shown to mediate the delivery of a number of proteins, such as β-

galactosidase [88,89], eGFP [90], Bcl-xL [91,92], human catalase [93], human glutamate 

dehydrogenase [94], Cu,Zn-superoxide dismutase [95], NF-κB inhibitor srIκBα [96] and HSP70 [97], 

among others. With the exception of Pep-1, a CPP that forms non-covalent complexes with proteins, 

CPPs are usually coupled to proteins through covalent bonds or through fusion constructs [17,98,99]. 

Taken together, these studies provide evidence that CPPs are able to mediate the delivery of 

proteins into a wide variety of cells, both in vitro and in vivo. Most importantly, these studies 
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demonstrate that CPPs constitute a powerful tool that could be used to facilitate the delivery of 

protein-based therapeutics in pathological conditions, such as cancer, inflammatory diseases, oxidative 

stress-related disorders, diabetes and brain injury. 

3.2. Liposome and Nanoparticle Delivery 

Different types of pharmaceutical nanocarriers have been used to increase the stability of drugs, 

modulate their pharmacokinetics and biodistribution, improve their efficacy and decrease undesired 

side-effects [73,74]. Numerous attempts have been made to engineer nanosized drug carrier systems, 

the majority of which based on the use of liposomes and micelles as nanocarriers [73]. These lipid-

based vectors, along with nanoparticles, present the possibility of being functionalized with targeting 

ligands and imaging moieties [73,100-102]. CPPs have been used to functionalize liposomes, micelles 

and nanoparticles, increasing the cellular uptake of the encapsulated cargoes [73,102-106]. These 

studies emphasize the potential of CPPs in the field of pharmaceutical technology, further 

demonstrating their versatility and capacity to mediate the delivery of a wide range of molecules, 

including high molecular weight drugs and drug carriers. 

3.3. Antisense Oligonucleotide Delivery 

The capacity of the antisense technology to target any desired gene and thus modulate a variety of 

cellular functions is of paramount pharmacological interest [107,108]. This technology is based on the 

use of sequence specific oligonucleotides (ONs) that, once inside the cells, can hybridize with 

complementary mRNA strands, causing translational arrest or mRNA degradation through activation 

of the cellular enzymes of the RNaseH family and consequently blocking gene expression [107]. 

Among the different ONs with therapeutic potential are: aptamers, transcription factor-binding decoy 

ONs, ribozymes, triplex-forming ONs, immunostimulatory CpG motifs, antisense ONs, and 

antagomirs. These ONs can disrupt protein production through three main mechanisms: (i) the 

formation of an ON/RNA duplex which is a substrate for endogenous RNaseH, leading to mRNA 

cleavage; (ii) the formation of an ON/mRNA duplex that sterically hinders the assembly of the 

ribosomal complex or arrests a ribosomal complex already engaged in translation, in both cases 

affecting protein biosynthesis; (iii) the formation of an ON/mRNA duplex that alters pre-mRNA 

splicing in the nucleus through a steric-blocking mechanism [72,109].  

The main advantages of using ONs over protein- or peptide-based approaches are related to their 

higher target specificity and lower immunogenicity [108]. However, the development of nucleic acid-

based therapeutic strategies has been hampered by their poor bioavailability, and therefore the full 

potential of oligonucleotides as therapeutic agents will not be successfully accomplished if efficient 

methodologies for targeted delivery to cells and tissues are not developed [110]. Increased stability, 

enhanced RNA binding affinity and low toxicity are some of the most important aspects to take into 

account when designing an ON-based approach [107]. Intracellular delivery is also a crucial issue, 

because in order to affect gene expression by RNaseH-mediated degradation of complementary 

mRNA, by splicing correction, or by translation arrest, antisense oligonucleotides need to enter the 

cytoplasm or even the nucleus of cells [110]. These issues have been addressed by chemical 
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modification of oligonucleotides, by using different types of nanocarriers, or by some combination of 

both strategies [107,108,110,111]. 

Chemical modification of ONs can drastically improve their stability in the biological environment, 

their selectivity and biocompatibility [111,112]. Since phosphodiester oligonucleotides are quite 

unstable, a substitution of sulfur for oxygen, forming phosphorothioate (PS) oligonucleotides, has been 

commonly performed in order to stabilize both antisense and siRNA molecules [111]. However, as PS 

oligonucleotides tend to bind nonspecifically to proteins and thereby eliciting toxic effects, other 

highly improved oligonucleotide chemistries have been developed. These include modifications on the 

2’ position of the ribose (2’-O-methyl, 2’-O-methoxy-ethyl, 2’-O-allyl and 2’-O-alkyl), locked nucleic 

acids (LNAs), peptide nucleic acids (PNAs), phosphorodiamidate morpholino oligomers (PMOs), and 

hexitol nucleic acids (HNAs) [111-113]. Oligonucleotides that include these modifications have 

improved affinity for mRNA and are more resistant to nuclease degradation, but fail to activate 

RNaseH-mediated degradation.  

While chemical modifications overcome issues of stability and efficacy, modulation of the 

pharmacokinetic and biodistribution and, most importantly, improvement of intracellular delivery of 

oligonucleotides, remain a challenge. Although liposomes and cationic polymers have been 

successfully applied as a standard tool to deliver ONs into cells in vitro, these  delivery systems are 

sometimes characterized by a poor efficiency and associated toxicity when used in vivo [108].  

CPPs have been used for the delivery of ONs by using either a covalent linkage or a non-covalent 

association to the cargo [9,107,114-116]. Steric block small neutral oligonucleotides, including PNAs 

and PMOs, are potent molecules that have been used for either antisense application or mRNA splicing 

correction strategies [9]. Several CPPs have been used to mediate the delivery of PNAs and PMOs 

through covalent linkage of both entities [111,113,114,116-119]. The formation of efficient non-

covalent complexes comprising CPPs and both charged and uncharged steric block oligonucleotides, 

namely 2'-O-methyl, LNA, PNA and charged PNA derivatives, has also been described [120-124]. 

Although the first attempt to use ONs to promote inhibition of protein translation was based on the 

recognition of the DNA:mRNA heteroduplexes by RNaseH leading to RNA cleavage, this approach 

achieved little clinical success [113]. As a consequence, ONs that are not substrates for RNaseH when 

hybridized with mRNA have been exploited for the development of alternative therapeutic strategies. 

An advantage of the use of steric block ONs is their greater specificity, since binding of an ON to an 

inappropriate mRNA sequence is unlikely to have biological consequences, and thus lower off-target 

effects are expected when comparing to conventional antisense strategies [113]. Another advantage is 

the possibility to use a much wider range of synthetic ON analogues than when using conventional 

antisense approaches, since molecular recognition by RNaseH is not required [113]. Among the great 

variety of antisense ONs that have been generated, PNA and PMO have come to dominate steric block 

applications. Despite being neutrally charged, these molecules are as difficult to be internalized by 

cells as negatively charged ONs [113]. A promising approach towards intracellular delivery of PNAs 

and PMOs has been their conjugation to CPPs.  

Concerning PNA–CPP conjugates, the first demonstration of the efficacy of this approach consisted 

in the blocking of expression of the galanin receptor mRNA in human Bowes cells by a 21-mer PNA 

coupled to penetratin or transportan [117]. In a different study, a model amphipathic peptide (MAP) 

conjugated to a PNA complementary to the nociceptin/orphanin FQ receptor mRNA was shown to 
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mediate improved cellular uptake and steric block effect in both CHO cells and neonatal rat 

cardiomyocytes [125]. In order to easily assess the efficiency of nuclear delivery of steric block ONs, a 

splicing redirection assay described by Kole and coworkers is usually employed [126]. This assay is 

easy to implement, sensitive, sequence-specific and, most importantly, provides a positive readout over 

a low background with a large dynamic range. Although a small number of studies reported biological 

activity when using PNA and PMO coupled to CPPs [117,125,127,128], a considerable number of 

publications reported that these molecules were only significantly active when in the presence of 

endosomolytic agents such as chloroquine and calcium ions [129-131]. However, most of the existing 

endosomolytic agents are too toxic to be considered for in vivo applications, prompting for the 

development of CPP-based strategies that are efficient in the absence of these adjuvants. Strategies 

such as co-treatment with endosome-disrupting peptides [29,132,133] and photochemical 

internalization [56,134-137] have been explored. Additionally, a lot of effort has been put on the 

chemical modification of CPPs, such as poly-arginine, penetratin and transportan 10 (TP10), aiming at 

rendering these peptides also able to overcome the endosomal mambrane [118,119,121,122].  

Based on the observation that not all guanidinium side chains of arginine-rich peptides are required 

for heparin-sulfate binding, arginine residues in poly-arginine peptides have been spaced with non-

natural linkers of various lengths and hydrophobicities, aiming at improving the capacity of these 

peptides to escape from endosomes [119]. For example, both (R-Ahx-R)4-PMO [118] and -PNA [138], 

two modified poly-arginine peptides, were proven to efficiently mediate splice correction in the 

absence of endosomolytic agents, even if a considerable amount of the conjugates was still trapped in 

the endocytotic vesicles [71,118,138]. Similar results were obtained when penetratin was modified 

with arginine residues on its N-terminal. Conjugates of this modified peptide with PNA ONs (R6Pen-

PNA conjugates) were more efficient than penetratin itself on promoting splicing redirection [138].  

Promising results on the in vivo use of ONs conjugated with CPPs were obtained in an animal 

model of Duchenne muscular dystrophy [139-141]. The first demonstration of oligonucleotide-

mediated exon skipping in vivo, was provided by Jearawiriyapaisarn et al. [139] using an animal 

model of Duchenne muscular dystrophy. The potency, functional biodistribution, and toxicity of CPPs 

containing arginine, 6-aminohexanoic acid, and/or β-alanine conjugated to PMOs were evaluated in 

vivo, in EGFP-654 transgenic mice that ubiquitously express the aberrantly spliced EGFP-654 pre-

mRNA [139]. This [139] and other studies, namely by Yin et al. [140,141], have shown that a CPP-

PMO conjugate restored high-level and uniform dystrophin protein expression in multiple peripheral 

muscle groups, yielding functional splice correction and improvement of the mdx dystrophic 

phenotype.  

Although conjugation offers some advantages for in vivo applications, such as rationalization, 

reproducibility of the procedure and control of the stoichiometry of the CPP-cargo conjugates [8], this 

strategy has also some drawbacks such as the possibility to compromise the biological activity of the 

cargo [8] and the need to generate and test a new construct for any given nucleic acid cargo [108]. 

Non-covalent strategies appear to be, therefore, more promising, especially in the case of negatively-

charged ONs, which can readily interact with positively charged CPPs. As an example, Morris et al. 

[123], described in 2004 a novel technology that non-covalently combined a new generation of PNAs 

(HypNApPNAs) with Pep-2, which resulted in efficient delivery of PNAs into several cell lines. A 

similar strategy was described for Pep-3, which was found to form stable complexes with both 
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uncharged and charged PNAs, and to promote their cellular uptake in different cell lines [124]. Of 

notice, it was demonstrated that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA inhibits 

tumor growth in vivo upon intratumoral or intravenous injection [124]. In addition, it was shown that 

PEGylation of Pep-3 significantly improved complex stability in vivo and consequently the efficiency 

of cyclin B1 anisense ONs, when administered intravenously. 

More recently, stearylated analogs of (RxR)4 and TP10 were shown to interact with negatively 

charged ONs and to promote their efficient delivery into cells [121,122]. Importantly, the stearic acid 

modification of these peptides was associated with increased endosomal escape. MPGα has also been 

used to mediate the uptake of different chemically modified (2'-O-methyl, LNA and PNA) steric block 

oligonucleotides [120].  

Our attempts to use the S413-PV peptide for the delivery of splice correcting ONs have shown that 

S413-PV/ONs complexes were internalized by cells but localized primarily inside the endosomes [142]. 

These complexes presented no biological activity even in the presence of different endosomolytic 

agents, indicating that endosomal entrapment is not the only factor hampering the efficient delivery of 

the ONs to their target sites. Interestingly, the combination of the S413-PV and reverse NLS peptides 

with a previously developed lipoplex-based formulation (DLS) resulted in an efficient, specific and 

non-cytotoxic system for mediating splice correction, superior to that obtained either by the DLS-

based system or the covalent conjugate R(Ahx)R4-PMO [142].  

Altogether, these results emphasize the need for improved solutions regarding endosomal escape, 

while strongly suggesting that the use of CPPs constitute a very promising approach for the delivery  

of ONs.  

3.4. siRNA Delivery 

RNA interference (RNAi) has become an indispensable tool for studying gene functions and 

constitutes an attractive approach for the development of novel therapeutic strategies for pathological 

disorders [143-147]. However, siRNAs share the same delivery problems as DNA ONs, which has so 

far limited their therapeutic application [146,147]. Although a considerable number of viral and non-

viral strategies have been designed to overcome such limitations, clinically viable siRNA delivery 

approaches have not been developed to date [147,148].  

CPPs have been used for delivery of siRNAs either by covalent or non-covalent approaches, 

similarly to what was previously described for ONs [7,9,149]. The preparation of non-covalent 

complexes between siRNAs and the CPPs is technically simpler, originating aggregates or 

nanoparticles with a net positive charge [7]. On the other hand, the covalent linkage of CPPs to 

siRNAs allows the formation of small, monomeric CPP/siRNA conjugates of known stoichiometry 

with high reproducibility [7,8]. 

Efficient delivery of siRNAs has been reported by their covalent association with transportan [150], 

Tat [151] and penetratin [152]. However, in these studies, the CPP/siRNA conjugate was added to 

cells without a purification step following the cross-linking procedure [7,149], raising a doubt as to 

whether the successful delivery described in these conditions results from the CPP/siRNA covalent 

conjugates, or rather from non-covalent complexes formed between excess free peptide and siRNAs 

[7,127,148,153,154]. Meade et al. [153] observed that after extensive purification of CPP/siRNA 
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conjugates from the excess cationic peptide in the conjugation reaction, no enhanced cellular 

internalization of siRNA could be detected. Additionally, it has been shown that silencing of an 

endogenous gene by certain CPP/siRNA conjugates requires very high levels of the conjugate - a 

thousand-fold or more than that typically used in lipofection [127]. Of note, the concentration of 

CPP/siRNA conjugates required in this study to achieve significant protein knockdown was 

considerably higher than those used in previously published studies, which employed non-purified 

CPP/siRNA [150-152]. For these reasons, non-covalent strategies are usually preferred for siRNA 

delivery [7,84,155-159].  

One of the first reports of non-covalent approach for the delivery of siRNAs involved their stable 

complexation with the MPG peptide, a peptide derived from the combination of the hydrophobic 

fusion peptide of HIV-1 gp41 and the hydrophilic nuclear localization sequence of SV40 large T 

antigen [155]. Although a significant downregulation of the target protein was achieved using this 

peptide (ca. 80% reduction in protein activity), a mutation in the NLS sequence of the carrier peptide 

(MPGΔNLS), that was intended to favor rapid release of the siRNA into the cytoplasm, further 

increased the RNAi effect [155]. This peptide was applied in vivo for delivery of siRNAs targeting 

OCT-4 into mouse blastocytes [160], as well as for silencing cyclin B1 [161]. In the latter study, 

MPG/siRNA complexes were shown to prevent tumor growth in mice after systemic administration 

[161]. A variant of MPG (MPGα), which comprises five mutations in its hydrophobic domain that 

favor an alpha-helical conformation of the peptide, has also been shown to efficiently mediate siRNA 

delivery [55]. 

Polyarginine peptides have also been exploited for the delivery of siRNA. In 2006, Kim and 

coworkers synthesized a cholesteryl oligo-arginine (nine residues) conjugate – Chol-R9 – as a siRNA 

delivery vehicle, which was used to mediate the silencing of vascular endothelial growth factor 

(VEGF) [159]. More recently, a chimaeric peptide was synthesized by adding nine arginine residues at 

the carboxy terminus of the RVG peptide [84]. In vitro studies demonstrated that the RVG-9R peptide 

was able to bind to siRNAs and transduce neuronal cells resulting in efficient gene silencing [84]. 

Moreover, intravenous administration of these complexes into mice led to a specific gene silencing in 

the central nervous system [84].  

A non-covalent strategy using an endosomolytic CPP based on penetratin was described by 

Lundberg et al. [156]. In this study, the peptide EB1 was found to be far more effective both in 

forming complexes and transporting biologically active siRNA than its parental peptide penetratin 

[156]. It is important to mention that, in this study, other CPPs besides penetratin and EB1 were 

evaluated in terms of complex formation, cellular uptake and gene silencing (MPG-ΔNLS, TP-10, 

Bovine PrP 1-30 and HA2-penetratin). It was demonstrated that even though all of the CPPs evaluated 

could form complexes with siRNAs, no direct association between the complex formation ability and 

delivery efficacy could be established [156]. Moreover, although all CPPs significantly promoted 

cellular uptake of the siRNAs, gene silencing effect was critically dependent on endosomal escape of 

the internalized complexes [156]. 

An alternative non-covalent approach, which is not based on the formation of electrostatic 

interaction between the cationic CPPs and the negatively charged siRNAs, has been recently proposed 

by Eguchi et al. [158]. The strategy involves the generation of a chimearic peptide composed of a 

dsRNA binding domain (DRBD) fused to a Tat-based PTD. The DRBD portion of the peptide is 
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responsible for binding to siRNA with high affinity, masking its negative charges, while the Tat 

moiety promotes the intracellular delivery of the PTD–DRBD siRNA complex [158]. The PTD-

DRBD-siRNA complexes induced a rapid and efficient silencing of the target gene in a large 

percentage of primary and transformed cells, including T cells, human umbilical vein endothelial cells 

and human embryonic stem cells, with no apparent cytotoxicity, minimal off-target transcriptional 

changes and no induction of innate immune responses [158].  

Our own observations using the S413-PV peptide are in line with the results described by  

Lundberg et al. for other CPPs [156]. Although the S413-PV peptide is able to form non-covalent 

complexes through electrostatic association with siRNAs, the resulting complexes do not mediate 

significant protein knockdown in a cell line stably expressing GFP (Trabulo, S, Cardoso, AM, 

Cardoso, AL, and Pedroso de Lima, MC, unpublished observations). However, under the same 

experimental conditions, complexes prepared with fluorescently labeled siRNAs were efficiently 

internalized, strongly suggesting that endosomal entrapment is the major hurdle limiting siRNA-

mediated gene silencing by these complexes (Trabulo, S, Cardoso, AM, Cardoso, AL, and Pedroso de 

Lima, MC, unpublished observations). Further supporting this hypothesis, we observed that 

combination of the S413-PV/siRNA complexes with cationic liposomes containing DOPE, a fusogenic 

lipid that has been shown to facilitate endosomal release of lipoplexes [162,163], mediated GFP 

knockdown as efficiently as complexes prepared with Lipofectamine-2000 (Trabulo, S, Cardoso, AM, 

Cardoso, AL, and Pedroso de Lima, MC, unpublished observations). 

A study by Zhang et al. [83] also described a combination of CPPs and liposomes in which an 

arginine octamer (R8) was attached to the surface of the liposomes encapsulating siRNAs. This system 

demonstrated to be stable and able to efficiently mediate gene silencing in all the tested lung tumor cell 

lines, while presenting low non-specific toxicity [83]. 

Despite many hurdles, development of siRNA-based therapeutics has advanced rapidly over the last 

few years. However, the major challenge limiting the widespread application of this technology is still 

delivery efficiency [147]. Although at least five clinical trials are already ongoing, these trials involve 

the administration of saline-formulated siRNA rather than the described conjugates or non-covalent 

complexes [164]. This indicates that despite the great progresses that have been made in the field of 

nucleic acid delivery, much remains to be done. Issues concerning safety, scale-up, reproducibility, 

analytical characterization and pharmaceutical acceptability should not be overlooked when a clinical 

application is sought [111,164]. 

Nevertheless, the studies described show encouraging results by using easy and versatile strategies 

to deliver siRNAs. CPPs are certainly among the most promising candidates to be used in the 

development of siRNA-based therapeutics.  

3.5. Gene Delivery 

The main goal of gene therapy consists in delivering therapeutic genes into the nucleus of target 

cells to achieve expression of a deficient or incorrectly expressed gene product [165]. As for the other 

types of biomolecules described so far, difficulties in developing safe and efficient gene delivery 

vectors able to sustain gene expression for long periods has limited a broader clinical application of 

gene delivery [165].  
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Viral vectors present certain advantages in the context of gene delivery, including high and 

sustained levels of transduction and in some cases efficient and stable integration of exogenous DNA 

into a wide range of host genomes [166,167]. However, this type of vectors also present several 

problems, such as immunogenicity, toxicity, difficulty of large-scale production, size limit of the 

exogenous DNA, insertional mutagenesis caused by random integration into the host genome, and the 

risks of inducing oncogenic mutations or generating active viral particles through recombination 

mechanisms [165,166,168]. These limitations of viral vectors justify the interest on the development of 

improved non-viral gene delivery vectors. 

The most commonly used non-viral vectors for plasmid DNA delivery are cationic liposomes, 

nanoparticles, cationic polymers, and CPPs [167-169]. The use of cationic peptides for gene delivery is 

particularly interesting because they are able to efficiently condense DNA due to electrostatic 

interaction, can be attached to liposomes or polymers allowing for efficient targeting, are able to 

improve cellular internalization and promote endosomal escape and can provide nuclear localization of 

condensates when short NLS peptides are used [8,73,168].  

There are many examples of CPP-mediated delivery of plasmid DNA into cultured cells and also in 

vivo involving the use of a non-covalent approach [72]. While some approaches involve single-

component peptide vectors, the major focus has been on the association of CPPs with other non-viral 

gene delivery methods, such as liposomes, polyethyleneimine (PEI) or nanoparticles. 

In 1999, Morris et al. [170] demonstrated that MPG could be used as a powerful tool for the 

delivery of nucleic acids. It was shown that MPG is not cytotoxic, insensitive to serum and able to 

efficiently deliver plasmid DNA into several different cell lines [170]. Further studies demonstrated 

that cell entry of the MPG/DNA particles is independent of the endosomal pathway and that the NLS 

of MPG is involved in both electrostatic interactions with DNA and nuclear targeting [155]. 

Furthermore, it was shown that a mutation affecting the NLS of MPG prevents nuclear delivery of 

DNA [155]. 

In an alternative study, Rittner et al. [171] described the novel basic amphiphilic peptides, ppTG1 

and ppTG20 (20 amino acids), and evaluated their efficiencies in vitro and in vivo as single-component 

gene transfer vectors. It was demonstrated that both the ppTG1 and ppTG20 peptides are able to bind 

nucleic acids and destabilize membranes, in a liposome leakage assay [171]. Complexes of plasmid 

DNA with ppTG1 originated high levels of gene expression in cell culture experiments and, most 

importantly, complexes of plasmid DNA with ppTG1 or ppTG20 led to significant gene expression  

in vivo [171]. 

Peptide modification has also been explored as a means to enhance gene delivery. In particular, 

stearic acid modification of different membrane-permeable arginine-rich peptides, such as HIV-1 Tat 

(48-60), HIV-1 Rev (34-50), flock house virus (FHV) coat (35-49), (RxR)4 and oligoarginines of 4-16 

residues was shown to substantially increase their transfection efficiency [121,172,173]. The 

mechanisms by which stearic acid modification improves plasmid DNA delivery by CPPS have been 

shown to involve increased efficiency of endosomal escape [121] or enhanced cellular association, as 

well as higher nuclear delivery [173]. 

The extensively studied Tat peptide has also been exploited for plasmid DNA delivery by different 

research groups, with contradictory results. A study by Ignatovich et al. [77], demonstrated that Tat 

peptide is able to form complexes with plasmid DNA, which could be used for gene delivery into 
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mammalian cells. Despite reasonably high transfection efficiency in vitro, low gene expression levels 

were detected in the liver of mice injected intravenously with DNA-Tat complexes, a fact that was 

attributed to inactivation of the complexes in the bloodstream due to interactions with serum albumin 

[77]. Interestingly, an endocytosis-dependent mechanism was proposed for the uptake of the DNA-Tat 

complexes, similar to what was proposed for internalization of complexes of plasmid DNA with other 

polycationic carriers [77]. A different study, by Tung et al. [81], compared the efficiency of a series of 

ramified Tat peptides, containing 1–8 Tat moieties. Although all compounds complexed with plasmid 

DNA, it was demonstrated that at least eight Tat peptide moieties are required in order to achieve 

efficient gene delivery [81]. Sandgren et al. [174] also studied the cellular uptake of complexes of 

plasmid DNA and the HIV-Tat derived peptide. According to this study, the Tat peptide stimulated 

cellular uptake of DNA in a time-, concentration-, and temperature-dependent manner, while 

accumulating in large, acidic, cytoplasmic vesicles, followed by transfer of the cargo into the nuclear 

compartment and subsequent disappearance from the endolysosomal vesicles [174]. Aiming at 

increasing the efficiency of the Tat peptide to deliver plasmid DNA, Lo et al. [175] made several 

modifications to the Tat peptide, through the use of histidine and cysteine residues to enhance 

endosomal escape and complex stability. Up to 7,000-fold improvement in gene transfection efficiency 

was observed for the Tat peptide covalently fused with 10 histidine residues (Tat-10H) over the 

original Tat peptide, and incorporation of two cysteine residues into this peptide resulted in an even 

higher efficacy (C-5H-Tat-5H-C) [175]. 

The association of CPPs with other non-viral delivery vectors has also been extensively 

investigated, aiming at exploring the possibility to combine efficient delivery, packaging and targeting 

moieties within the same system [176,177]. 

A combination of a PNA with the SV40 core NLS, performed by Branden et al. [178], originated a 

bifunctional peptide that improved the efficacy of plasmid transfection up to 8-fold when associated 

with the transfection agent polyethyleneimine (PEI). Several other studies also combined PEI with 

CPPs [75,76,179].  Kleemann et al. [179] covalently coupled the Tat peptide to 25 kDa PEI through a 

heterobifunctional polyethylenglycol (PEG) spacer resulting in a Tat-PEG-PEI conjugate. Improved 

DNA reporter gene complexation and protection were observed for small (approximately 90 nm) 

polyplexes as well as low toxicity and significantly enhanced transfection efficiency in vivo [179]. 

Rudolph et al. [76] demonstrated that oligomers of the Tat peptide were able to condense plasmid 

DNA to nanosized particles and protect DNA from nuclease degradation. Most importantly, when 

DNA was pre-condensed with Tat peptides and PEI, Superfect or LipofectAMINE were added to the 

mixture, transfection efficiency was enhanced up to 390-fold compared with the standard vectors [76]. 

Similar studies by Kilk et al. [75], demonstrated that the poor transfection abilities exhibited by TP10 

was significantly enhanced in the presence of PEI, increasing several fold compared to PEI alone, 

particularly at low PEI concentrations, therefore allowing the use of reduced PEI concentration [75]. 

The association of lipid-based vectors with CPPs has been the subject of a number of studies, 

including those from our group [59,78,80,82,105,180-183]. Using fluorescently labeled liposomes and 

cargos, Torchilin et al. demonstrated that large drug carriers, such as 200-nm liposomes, could be 

delivered into cells by attaching Tat peptide to the liposome surface [180]. Later, the same group 

described the formation of non-covalent complexes of Tat, liposomes and DNA that were able to 

efficiently transfect cells both in vitro and in vivo, while being less toxic than other commonly used 
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transfection reagents [105]. The internalization of this system was claimed to rely on a direct 

cytoplasmic delivery imparted by the Tat peptide [105]. 

A study by Hyndman et al. [182] showed that mixing the CPP Tat with liposomes containing 

DOTAP or Lipofectin and DNA, resulted in complexes that significantly enhance transfection in vitro 

with a marked reduction in the amount of liposomes required, despite the lack of any covalent linkage 

of the peptide to liposomes. In this study, the use of endosomolytic agents and results from 

experiments performed at low temperature suggested that the endocytotic pathway was involved in the 

internalization of the complexes [182]. Another report demonstrated that the increase in gene transfer 

of Tat-modified lipoplexes is dependent on the amount of cationic lipid in the lipoplexes and on the 

way Tat was coupled to the lipoplexes [82]. Moreover, it was shown that the cellular uptake of both 

Tat-modified and unmodified lipoplexes was very fast and, in contrast to previous publications, 

temperature-dependent [82]. 

A concept called “Programmed Packaging” was proposed by Kogure et al. [78], who developed a 

Multifunctional Envelope-type Nano Device (MEND), consisting of a condensed DNA core and a 

surrounding lipid envelope. This packaging method involves three steps: (i) DNA condensation with a 

polycation, (ii) lipid film hydration for the electrostatic binding of the condensed DNA, and (iii) 

sonication to package the condensed DNA with lipids [78]. MEND, having octa-arginine on the 

envelope as a mean to enhance cellular uptake, showed a 1,000-fold higher transfection activity than a 

DNA/poly-L-lysine/lipid complex prepared in similar conditions [78]. Another study, by Khalil et al. 

[80], also described the high-efficiency delivery of nucleic acids to eukaryotic cells using MEND 

particles containing polycation-condensed nucleic acids encapsulated in an R8-DOPE lipid envelope. 

MEND particles were shown to be non-cytotoxic and achieved transfection efficiencies as high as 

adenovirus [80]. In this case, the high efficiency of MEND particles was attributed, at least in part, to 

R8 which was claimed to promote cellular uptake by macropinocytosis, improving intracellular 

trafficking towards more efficient gene expression [80]. Along the same lines, work of the same 

research group [184] demonstrated that gene expression of condensed plasmid DNA encapsulated in 

R8-modified nanoparticles was more than one order of magnitude higher than that of K8-modified 

nanoparticles, and two orders of magnitude higher than gene expression using unmodified 

nanoparticles. Differences in gene expression achieved with R8- and K8-modified liposomes could not 

be attributed to differences in cellular uptake, since both kinds of complexes were taken up primarily 

via macropinocytosis at comparable efficiencies [184]. Moreover, it was described that modification of 

nanoparticles with a high density of R8 allows their escape from endocytotic vesicles via membrane 

fusion at both acidic and neutral pH, and that the guanidinium groups of arginine residues, and not 

only their positive charge, are important for efficient endosomal escape [184]. 

Recently, MacKay et al. [181] described gene transfer using PEGylated bioresponsive nanolipid 

particles (NLPs) containing plasmid DNA. In this study, the Tat peptide was attached either directly to 

a phospholipid (Tatp-lipid) or via a 2-kDa polyethylene glycol (PEG) (Tatp-PEG-lipid); incorporation 

of 0.3 mol% Tatp-PEG into pH-sensitive NLPs improved transfection 100,000-fold compared to NLPs 

[181]. Although Tatp-PEG-lipid could dramatically increase gene expression in vitro, when tested in 

brain and in implanted tumors, a restriction of NLP distribution to the vicinity of the infusion catheter 

reduced the absolute level of gene transfer [181].  
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In our studies [59], complexes obtained through electrostatic association of the S413-PV cell-

penetrating peptide with plasmid DNA are able to very efficiently mediate transfection, particularly at 

high peptide/DNA charge ratios (5/1 and higher). Importantly, complexes prepared with the S413-PV 

or reverse NLS peptides mediate transfection at significantly higher efficiencies than those containing 

the scrambled version of the peptide, demonstrating the importance of the cell-penetrating sequence 

derived from the Dermaseptin S4 peptide (amino acids 1–13) to the transfection process [59]. 

Additionally, we demonstrated that ternary complexes, resulting from association of cationic 

liposomes to peptide/DNA complexes, are significantly more efficient in mediating transfection than 

the corresponding peptide/DNA or cationic liposome/DNA complexes (Figure 4) [59].  

In agreement with what has been described for oligonucleotides, CPPs seem to be very efficient to 

mediate the uptake of plasmid DNA, as well as lipoplexes and polyplexes containing DNA, surpassing 

the cell membrane barrier. However, the challenge of overcoming the entrapment of complexes inside 

endosomes has not been solved as easily as initially anticipated, even taking advantage of the capacity 

of direct translocation to the cytoplasm of some CPPs. Nevertheless, several of the studies described 

above present promising strategies to overcome this limitation, such as chemical modification of the 

peptide backbone or coupling of CPPs to other classes of delivery vectors. Overall, accumulated 

evidence suggests that CPPs used in combination with other delivery systems are more likely to be 

effective for gene therapy purposes than CPPs alone. 

Figure 3. Efficiency of transfection mediated by different complexes containing the S413-

PV peptide. HeLa cells were incubated with free plasmid DNA, cationic liposome/DNA 

complexes, Lipofectamine 2000-based complexes and the ternary complexes for 4 h at  

37 ºC. Transfection efficiency was evaluated, 48 h later, by flow cytometry analysis of 

GFP expression and the percentage of GFP-positive cells is presented. Ternary complexes 

were obtained by the addition of cationic liposomes composed of DOTAP:DOPE to 

complexes of S413-PV, prepared at different peptide/DNA charge ratios. Ternary 

complexes were able to transfect cells more efficiently than cationic liposome/DNA 

complexes and at similar levels than those obtained with Lipofectamine 2000.  
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4. Conclusions 

Research on CPPs as drug delivery systems has clarified their capacity to promote the efficient 

internalization of therapeutic biomolecules. Despite differences in size, charge and/or structure 

between different bioactive molecules, it seems clear that CPP-based systems appear to be very 

versatile and efficient delivery is achievable following proper adjustment of the carrier to the 

transported biomolecule. 

Because the development of drug, oligonucleotide or gene delivery systems is aimed at a clinical 

application, the design of these innovative delivery vectors should consider other important issues, 

beyond in vitro and vivo demonstration of efficacy, which include safety, biodistribution, ease of 

manufacturing, scale-up, reproducibility and analytical and physical characterization. Once such issues 

are properly addressed, these new-generation systems will undoubtedly find their place in successful 

gene therapies.  

In our opinion, the advance of CPP technology depends on the development of strategies that 

facilitate endosomal escape and that confer cell specificity to these systems. From what has been 

discussed in this review, these studies are already ongoing and promising results have already been 

reported. A careful investigation of the mechanisms of internalization of CPP-cargo complexes or 

conjugates, along with a better understanding of the complex network of endocytotic pathways will 

greatly help the improvement of this powerful technology.  
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