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An oncological patient may go through several tomographic acquisitions during 
a period of time, needing an appropriate registration. We propose an automatic 
volumetric intrapatient registration method for tumor follow-up in pulmonary 
CT exams. The performance of our method is evaluated and compared with other 
registration methods based on optimization techniques. We also compared the 
metrics behavior to inspect which metric is more sensitive to changes due to the 
presence of lung tumors. 
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I. InTroduCTIon

Computed tomography (CT) is a medical imaging tool that allows for volumetric data acqui-
sition. With high-resolution computed tomography and, more recently, with multirow spiral 
CT, it is possible to obtain very thin slices of the thoracic region, having a high resolution and 
contrast between lungs and nearby structures, offering more diagnostic options and a better 
diagnostic quality. As a result, the large number of slices will also increase the time needed for 
data reading by the radiologist. Therefore, computer aid is necessary in order to increase the 
level of efficiency and quality in the diagnostic workflow.(1) 

Image registration is a method for matching two or more images of the same object taken 
at different times, and/or by different modalities. It geometrically aligns two images: the refer-
ence and sensed images. To register two images, it is necessary to find a transformation so that 
each pixel in a single image can be mapped to a pixel in the second.(2-4) The image registration 
is used in several clinical scenarios. For instance, consider two images taken of a patient us-
ing different medical modalities or comparing two CT exams from a patient (one taken some 
time ago and the other taken today), to identify the differences between the two images in a 
follow-up study of an oncological patient. Despite the fact that this identification can be done 
interactively by the radiologist, there is always the possibility that some features could be 
missed in a follow-up of oncological patients.(5-9)

In the literature we have found some work in this area. Betke et al.(10) developed an automated 
registration method for the chest CT images based on anatomical landmarks: the trachea, carina, 
vertebrae, sternum and spine. They used an iterative lung surface registration method based 
on minimizing Euclidean distances. The method automatically detects and compares the lung 
nodules obtained at different times. The registration is performed point-to-point together with 
affine transformations (scale, shear, rotation and translation), followed by an iterative process 
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of alignment. The selected similarity metric was the correlation and the sum of the squares of 
the differences between the two CT volumes. They used 10 exams from two patients and con-
cluded that the metric used shows a proper alignment of the nodule, that the best metric is the 
correlation coefficient, and that the best alignment of lung surface can be obtained performing 
another registration, using the search of the nearest point.

Blaffer et al.(11) studied the precision and computation time of a rigid body using an af-
fine and a spline-based elastic registration approach on the full data volume. They compared 
the results to an affine registration that was preceded by a segmentation of the lung, using a 
downsized CT exam. One of the methods compared was based on B-spline using six control 
points in each direction. The reducing of resolution was done from 512 × 512 × 250 to 32 × 
32 × 32 voxels, followed by the determination of the matrices of rigid or affine transformations. 
The metric used was the sum of the squared differences in grey levels. This work involves the 
observation of patients with lung nodules, their detection and quantification. They concluded 
that the registration with affine transformations is slightly better than the registration with rigid 
transformations, and both are much quicker than the elastic registration. 

Chen et al.(12) presented a 2D-3D image registration method for automatic pretreatment valida-
tion in radiotherapy. They implemented a hybrid cost function and a quick search method. Their 
work allowed for a better usage of radiation, decreasing the radiation doses in healthy tissues. 
Christensen et al.(13) described a relationship between tracking lung motion using spirometry 
data and image registration of consecutive CT image volumes over multiple breathing peri-
ods. They modeled the motion of the lung using a small deformation linear elastic model, and 
demonstrated that the lung does not expand uniformly during the breathing period, but rather 
expands and contracts locally at different rates during inhalation and exhalation. 

Dougherty et al.(14) proposed a registration method for CT exams. Initially the translation is 
estimated, then the rotation and finally the values of these two transformations are used to start a 
transformation local vector for each lung, between the reference exam and the exam under study, 
to process the subregions of the image. They computed the sum of square of the differences 
to estimate the evolution of the registration method. Ten exams are used, and for two exams 
the final value of the correlation was 95%. Due to insufficient memory, the entire volume of 
the lung was not registered but only small regions of interest. El-Baz et al.(15) proposed a new 
methodology for 3DCT data registration which is nonrigid and involves two steps: a global 
target-to-prototype alignment of one scan to another using the learned prior appearance model, 
and a local alignment in order to correct for complex deformations. An affine transformation 
that globally registers a target to a prototype was estimated by the gradient ascent-based maxi-
mization of a special Gibbs energy function.

Fung et al.(16) compared two image fusion techniques during radiation release for cancer 
patients. The occurrence of unexpected translations and rotations led to the conclusion that the 
fusion through the visual alignment is more robust in some cases than the registration with 
control points; therefore, this was the elected method to study the patient position. Hong et 
al.(17) presented an automated segmentation and registration method to detect and compare 
nodules in sequential chest CT scans. The registration is performed in four steps: pulmonary 
segmentation; the generation of a 3D distance map to evaluate the hierarchical surface registra-
tion that is used to improve the initial alignment; the manual detection of nodules; followed by 
matching with the smallest Euclidean distances. This method demonstrates a good accuracy 
in the extraction of the lungs.

Matsopoulos et al.(18) proposed an automatic elastic registration method applied on thoracic 
CT exams of patients diagnosed with non-small-cell lung cancer. In a previous study, they 
didn’t use nonrigid transformations to correct the lung movements; however, in this study, a 
logarithmic function was used to perform the elastic registration, showing better results for 
deformations due to breathing. Their methodology was compared with a method based on 
surface registration using rigid transformation and the authors concluded that their method 
produces better results. 
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Pluim et al.(19) conducted a review of medical images registration with special attention 
to mutual information similarity metric. They concluded that mutual information is a metric 
frequently applied in registration methods, but other metrics produced better results, especially 
for registration methods using images from MRI of the brain. The authors also concluded that 
the mutual information is not the most suitable for fine structures (example: images of retina) 
or for combining MR with ultrasound. Rodeski et al.(20) proposed a method for 3D registration 
of lung surfaces to determine the scaling parameter, using two different approaches: the first 
method uses lung surfaces and the second uses lung volumes. The method is performed twice 
to take into account the variations in volume due to breathing. They used affine transforma-
tions and for the similarity metric, they selected the sum of the square of the differences. The 
scale parameter is determined using the center of mass from the lungs. The final results were 
good, but a local registration is needed in order to account for the expansion of the lungs due 
to respiration. 

Stewart et al.(21) presented a hybrid registration method applied to the registration of images 
from the retina and also to the 4D registration of images from the lungs. They used a variant of 
the registration method (with nearest point search) for images of the retina and another method 
for the lungs. The control points from the retina were automatically defined as the center of 
vessels along the retina while, in the lungs, the division of the images was performed in small 
subregions and by analyzing the gradient of each subregion in order to find out the ones that 
have the highest gradient, according to the predefined information. These studies do not show 
any quantitative results and the experiences were performed in a small number of CT exams.

West et al.(22) examined the problem of deformable registration of the abdomen. They cre-
ated a model for the respiratory motion of abdominal organs because the deformation of the 
lungs during the respiratory cycle can lead to the movement of other organs (liver, kidney, etc.). 
They used twenty-one control points to align the images and the transformations were based 
on B-splines. Initially the axial resolution of the images was reduced to 64 pixels and the first 
registration was performed. The process was repeated for an axial resolution of 128 pixels. 
A new metric that depends on the position of control points and its intensity was introduced. 
This metric consists of the addition of normalized sum of the square of the intensity difference 
with the sum of the squared position differences between control points. They concluded that 
the traditional method based on intensity is insufficient and that their method is not sufficient 
for all cases.

Zheng et al.(23) proposed a new method that simultaneously segments and performs the 
registration of the lungs and tumors in various CT exams. This method uses B-splines to model 
the deformation of the lung, while a rigid transformation is introduced in the tumor to preserve 
its volume and shape. They used the sum of the squared differences as the similarity metric. 
Several control points are set within the tumor to form the control mesh and, therefore, it is 
assumed that the tumor follows the same rigid transformation as the control mesh.

In the following sections, we describe our methodology for the intrapatient registration of 
thoracic CT exams with the objective of pulmonary tumor discrimination in follow-up studies 
of oncological patients. 

 
II. MATErIALS And METHodS

The proposed method for the volumetric pulmonary registration (TDM) between two CT 
exams consists of three steps: starts with the noise reduction and segmentation of the lungs, 
followed by a preliminary alignment of the CT exams based on center of mass of the pulmonary 
region in each exam. Then, using a downsized version of the original image, the registration 
is performed using each transformation separately. Also in this work, we searched for the best 
metric, sensitive to changes in CT exams due to the presence of lung tumors. For comparison 
purposes, a traditional non optimized registration method (TM) and also other methods based 
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on the Nelder-Mead simplex (SM) and the pattern search (PSM) optimization techniques were 
implemented.(24-26)

A.1 Preprocessing
The images from high-resolution multirow spiral CT are sensitive to noise; it can contribute 
negatively to the lung’s segmentation. After comparing several denoising filters, we selected 
the geometric mean filter. In this filter, each pixel is the result of the product of all gray levels 
in a m×n neighborhood raised to the power of 1/(m×n). This filter tends to maintain more detail 
than the arithmetic mean filter.(27)

The pulmonary regions are identified using a previously developed(28,29) and validated algo-
rithm.(9,30)  Finally, in this pre-alignment step, a translation is performed based on the differences 
between the center-of-mass coordinates of the 3D pulmonary region from each CT exam, in 
order to align both mass centers, allowing for a fast registration of pulmonary CT exams.

A.2 Main registration
The registration of two images can be understood as the determination of spatial alignment 
between images. Its applications includes: combining images of the same subject from different 
modalities, aligning temporal sequences of images to compensate for the subject’s movement 
between scans, and image guidance during interventions.(6) The proposed method performs the  
registration between 3D images taken from the same patient at different moments (see Fig. 1). 

We consider affine transformations as the only relevant transformation for the registration 
of pulmonary CT exams and tumor follow-up.(11) Why affine transformation? The aim of our 
method is to compare two CT exams acquired on different days from the same patient with a 
lung tumor. The first logical choice would be deformable registration as B-spline registration, 
optical flow registration, thin-plates deformation, Cauchy-Navier splines transformation, among 
others.(5) As the deformable transformation may strongly change in shape, the object under 
study may be totally deformed to be coincident with the reference object, having lost the local 
differences between them. If a deformable transformation was used in the registration of CT 

Fig. 1. Images near carina level from CT exams of patient I, acquired in six different moments: at first exam (when the 
tumor was found) and other five exams acquired at 5, 7, 9, 11 and 13 months after the first exam.
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exams showing a lung tumor from a patient who is under treatment, the differences in shape 
and volume of the tumor, when the two CT exams are aligned, might be almost null due to the 
deformable transformation used. Our main objective of the transformation is to globally align 
the two pulmonary exams, but this alignment should not modify significantly the shape and 
volume of the tumor. For this reason the right choice is not a deformable transformation, but 
the affine transformation.

In traditional registration methods (TM), all translations are iteratively searched, and for 
each translation all rotations are searched, and so on; processing a 3D image becomes a very 
tedious process. In order to overcome this limitation, we propose a registration method that 
performs each transformation individually.

The first step is the search for the best translation; then, holding this best value, it searches 
for the best rotation over x-axis. Holding these two best values, it searches for the best rotation 
over y-axis, and so on – obtaining the best values for each transformation in a much faster ap-
proach than in traditional 3D registration methods. In the second step, it uses the best values 
found in the previous step as the starting point, and then repeats the same procedure described 
in the first step, searching for new best values. It searches for a new best value changing only 
translation; holding this new best value, it searches for the new best value for rotation, and so 
on, achieving a final best value for each transformation.

Defining boundaries for the transformations are very important in reducing processing 
time. We start by computing the width of the CT exam and use 1/8 of the width as the step for 
searching the best translation, over the x-, y- and z-axes in a range from -¼ of the exam width, 
to +¼ of the exam width. After searching along these axes, the best value is found comparing 
all values computed for the similarity metric. The best translation is identified and using this 
value as the starting point, a new search is performed in a range from -1/8 of the exam width 
to +1/8 of the exam width centered at the starting point, using a step of 1/16 of the exam width, 
which is half of the previous used step. This procedure is repeated until the step reaches the 
value lower than one voxel. Similar procedures are used for rotation in a range between -15º 
and +15º with a step of 7.5º, scale using a range of 1 ± 0.14 with a step of 0.07, and for shear 
in a range of ± 0.14 with a step of 0.07. With this procedure, the best values are located in a 
faster way than the traditional registration methods.

A.3 Normalized similarity metrics
Several normalized figures of merit, also known as normalized similarity metrics, were used to 
quantify the differences between the original image and the image under analysis. 

As most figures of metric(6,31-33) are not normalized and to compare the results among them, 
we performed their normalization, redefining the metric expressions so that they produce values 
between 0 (for two different images) and 1 (for two coincident images). We used the following 
metrics: the normalized sum of square of the differences (nSSD), the normalized sum of the 
absolute differences (nSAD), the correlation (R), the normalized disparity (nD), normalized 
joint entropy (nH), and the normalized mutual information (nMI). 

    
  (1) 
 

   
  (2) 
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  (3)
 
 

 

    
  (4)
 

   
  (5)
 

  (6)
  
 

where N1 = X×Y×Z×I2
max; N2 = X×Y×Z×Imax; N3 = X×Y×Z; N4 = 175/100; N5 = 2; A and B 

are two images; i, j and k are the coordinates on the image; m, n and o are the displacement 
values to the reference image; ρAB(a,b) is the joint intensity probability computed from joint 
histogram hAB(a,b) of the images A and B; ρA(a), ρB(b) are the intensity probabilities computed 
from the images histograms of images A and B, respectively, Imax is the maximum intensity of 
the images as Imax = max(A,B); Al and Bl are binary images computed as Al = A>(Imax/2) and 
Bl = B>(Imax/2); the operation ⊕ is the XOR operation, X and Y are the image size along the 
two axial axes and Z is the image size along the longitudinal axis.

For nH and nMI it is assumed that more than 50% of the CT exams are in common region. 
This is true in most cases as the pulmonary region is in the central region of CT exam, so more 
that 50% of the voxels that belong to the pulmonary region in the exam from patient A are also 
in the pulmonary region of the CT exam from patient B. For successful application of previ-
ous normalized metrics, the images to be registered should be normalized, with grey levels 
between 0 and 1. (Fig. 2)

Fig. 2. Behavior of normalized figures of merit, for two identical images that were misaligned. In xx axis, the pixel 
 percentage in the coincident region of both images.
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With the purpose of comparing the normalized figures of merit, a preview of their behavior 
is represented in Fig. 2, and will be discussed in next section.

A.4 Other optimized registration methods implemented
The performance of the proposed method (TDM) was compared with two optimized methods 
that were also implemented, using the Nelder-Mead simplex optimization technique and the 
pattern search optimization technique.(24-26) These two methods are abbreviated as SM and 
PSM, respectively.

The SM optimization technique(24) is a direct search method for multidimensional uncon-
strained minimization. Without any derivative information, a scalar-valued nonlinear function 
of n real variables using only function values is minimized. This technique preserves at each 
stage a nondegenerate simplex, a volume different from zero in n dimensions which is the 
convex surface of n + 1 vertices. It starts with a simplex, specified by its n + 1 vertices and the 
related function values for each iteration. At least one test point is calculated, as well as the 
function values.

The PSM optimization technique(25,26) is also a direct search technique and uses the func-
tion from a prearranged pattern of points fixed around the current best point, using shifts that 
guarantee determined minimal conditions in order to ensure the strong performance of the 
method. This process is repeated with the pattern centered on the new best point whenever 
certain minimal conditions are ensured. The reduction of the size of the pattern occurs and the 
function is sampled once again.

 
III. rESuLTS & dISCuSSIon

We begin this section by describing the dataset and the working conditions. Then we present the 
results from the comparison of our method (TDM) with three other registration methods: the 
traditional method (TM) and two other methods (SM and PSD) based on the simplex and the 
pattern search optimization techniques. The results include the correlation values, processing 
time and number of iterations executed, for each method.

To further study the registration method behavior, using CT exams with lung tumors and in 
some CT exams that did not have tumors, we created an artificial tumor.

All these results allow us not only to choose the best registration method but also to explore 
the behavior of normalized similarity metrics when used in registration of pulmonary CT exams 
to follow-up lung tumors.

The results were computed on a desktop computer Intel Core I7 Quad 950 (Intel Corpora-
tion, Santa Clara, CA) using Windows 7 with MATLAB 2009a (The MathWorks, Natick, MA). 
During the developing stage, the methods were implemented using parallel processing (parallel 
for loops) on multiple cores, to optimize the performance of the tasks sent to the four cores of 
the I7-950 processor.

A.1 Dataset
Our dataset has a total of 96 CT exams from 20 patients (most of them have lung cancer and are 
undergoing therapy), with axial size of 512 × 512 pixels and most of the exams are volumetric 
CT exams (slices are adjacent to its neighboring slices). All CT exams were acquired at total 
lung capacity (maximum inspiration). Detail information, including voxel dimensions, average 
number of slices and relative acquisition date, are included(3,4,34) in Table 1.

To reduce the processing time, for each exam and using projection of maximum intensity, 
we located the smallest rectangular cuboid (parallelepiped, where all angles are right angles) 
that contains the lungs, identified the pulmonary region and the volume of the exam is reduced, 
discarding voxels outside the rectangular cuboid. Also, to decrease computational time, each 
slice was downsized from 512 × 512 to 256 × 256 or 128 × 128. The longitudinal dimension 
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of CT exam is kept constant. After this procedure, a new 3D binary volume corresponding to 
the pulmonary region is built (see Fig. 3)

The 3D images produced by our method, after processing a CT exam, show a clear view of 
the lung tumor, as represented in Fig. 3.

The registration method, proposed in this work, was applied with success, in intrapatient 
registration of thoracic CT exams, tested in exams of 20 patients with oncologic diseases. In 
Fig. 1, we show the output of our method, in a 2D view. These images are from a follow-up 
study of an oncologic patient and were acquired through a period of 13 months. Our method 
correctly aligns the 3D exam, allowing the radiologist to observe in 3D or 2D images the evo-
lution of a small white mass in the lung.

During the development stage, we used two exams from one patient and another two exams 
from a second patient (these patients are not included in the Table 1). An expert radiologist 
supervised the output of the TDM, giving feedback to the developers, to achieve an optimal 
registration not only to obtain the best value for the similarity metric, but also to ensure that 
the registration is correct in a visual inspection of the pulmonary CT exams.

Table 1. Detail information of pulmonary CT exams under analysis.

 Average Voxel Dimensions (mm3)
   Number    First CT
 Patient Scanner of Slices X Y Z Acquisition Additional CT Acquisitions

 A (a) 86 1.36 1.36 5 1st exam after 1, 3, 4 and 6 months
 B  (a) 87 1.28 1.28 5 1st exam after 2 and 3 months

 C  (a) 90 1.28 1.28 5 1st exam after 2 and 3 months

 D  (a) 81 1.30 1.30 5 1st exam after 2, 3, 4, 5 and 6 months

 E  (a) 93 1.28 1.28 5 1st exam after 2 months

 F  (a) 86 1.28 1.28 5 1st exam after 2 months

 G  (a) 111 1.28 1.28 5 1st exam after 2 and 4 months

 H  (a) 90 1.38 1.38 5 1st exam after 1 and 5 months

 I  (b) 65 0.64 0.64 5 1st exam after 5, 7, 9, 11 and 13  months

 J   (b) 70 0.76 0.76 5 1st exam after 2, 3, 5 and 6 months

 K  (b) 55 0.75 0.75 5 or 7.5 1st exam after 2, 3, 5, 7, 8,10, 12, 14, 16, 18,
        20 and 22 months

 L  (b) 81 0.76 0.76 5 or 7.5 1st exam after 1, 3, 6, 9, 12, 13, 14, 16, 18,
        19, 23, 25 and 27 months

 M  (b) 57 0.75 0.75 5 or 7.5 1st exam after 3, 7, 11, 12, 13, 14, 16 and  
        18 months

 N  (b) 64 0.65 0.65 5 or 7.5 1st exam after 1, 3 and 5 months

 O  (b) 81 0.66 0.66 5 or 7.0 1st exam after 6, 13, 17, 20 and 27 months

 P  (c) 72 0.70 0.70 7 1st exam after 6, 10 and 16 months

 Q  (c) 124 1.42 1.42 2.5 1st exam after 7 months

 R  (c) 119 1.33 1.33 2.5 1st exam after 3 months

 S  (c) 66 1.35 1.35 1.25 1st exam after 7 months

 T  (c) 123 1.54 1.54 2.5 1st exam after 6 months

(a) Toshiba Asteion; (b) GE Light Speed 16; exams downloaded from National Cancer Imaging Archive  
(www.nci.nih.gov); (c) GE Light Speed VCT.
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A.2 Comparison of registration methods
In this section, we compare the results of four 3D pulmonary registration methods, performing 
the intrapatient registration of two exams. The results from exams downsized to 256 × 256 × n 
and downsized to 128 × 128 × n (where n is the original number of sections) were not so dif-
ferent; therefore, for the remaining comparisons, we used exams downsized to 128 ×128 × n. 

Using the exams shown in Table 1, we performed the registration of each patient’s first exam 
with their second exam, for each patient, in a total of 20 patients. The registration methods used 
were TM, PSM, TDM and SM, implemented with affine transformations. The similarity metric 
used was the correlation as this metric is one of the most used metrics in intrapatient registra-
tion. The output for each method was the correlation value, the number of iterations and the 
processing time. With these results, we performed an exploratory data analysis (EDA),(35) the 
results of which provided an overview of the data structure showing the amplitudes, asymmetries, 
location, possible outliers, etc. Then we produced a box-plot graphic to observe the dispersion 
of correlation values (Fig. 4), noting the outliers (“*”). We also drew a bar-line graphic with 
average processing time and number of iterations for each method (Fig. 5).

From Fig. 4, discarding the outlier points and comparing the median correlation values, we 
observe that the best correlation values are obtained with the TM, and the worst values with 
the SM. 

In Fig. 5, we see that the average processing time of TDM and SM are much lower than the 
other two methods. The TM, due to the long processing time, is excluded from the selection of 
the best registration method. As the SM has the worst correlation values (see Fig. 4), it is also 
excluded from the selection of the best method.

The global results of the final correlation values, the average processing time and the number 
of iterations suggests that the TDM is a fast 3D registration method, even when compared with 
a method that uses an optimization technique (the pattern search technique). 

Fig. 3. 3D image of thoracic region from CT exam of patient B, near carina level, where white mass corresponds to 
pulmonary tumor.
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A.3 Normalized metrics in the presence of pulmonary tumor
To study the behavior of normalized similarity metrics when performing the registration of 
thoracic CT exams in the presence of lung tumors (some exams available to us did not have a 
tumor), we created an artificial spherical tumor with a diameter between 10 mm and 60 mm, 
and placed it inside the pulmonary region. Then, we applied random transformations and per-
formed the registration of this exam with the original exam (without artificial tumor or random 
transformations). The random transformation (selected by the computer) was: translated by 1 or 
2 voxels in each axis, rotated by -1° or -2°, scaled by a factor of 1.01 and sheared by a factor of 
-0.01. These procedures were applied to one exam from each patient, in a total of 20 patients; 
all metrics described in Section II.A.3 were computed. To reduce computational time, each 
exam was downsized from 512 × 512 × n voxels to 128 × 128 × n voxels. 

For each metric, the starting value, the value after mass center alignment and the final value were  
computed, for a tumor of 60 mm of diameter, and also for a tumor of 30 mm of diameter (Fig. 6).

From Fig. 6, we see that the similarity metrics nSSD, nSAD and nD, have coincident values for 
all exams processed, suggesting that these metrics have equivalent behavior; this  conclusion cor-
responds with the analysis of the curve shape and values of these metrics, represented in Fig. 2.

Fig. 4. Box-plot graphic of correlation values computed using four registration methods in exams from 20 patients. The 
star (*) indicates the outliers.

Fig. 5. Average processing time and number of iterations computed using four registration methods in exams from 
20 patients.
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For a different analysis, we proceeded as previously described (creating an artificial spheri-
cal tumor, applying random transformations and performing the registration of this modified 
exam with original exam), computing for all metrics, the starting value (before applying any 
procedure), the value after preliminary alignment based on mass center of CT exam, and the 
final optimal value, for all 20 patients. Then, for each metric, we computed the average value 
for each group: starting values, the values after preliminary alignment, and the final optimal 
values. These computations were made with different tumor sizes. In Fig. 7, we include charts 
with results of registration with a tumor size of 30 mm and 60 mm.

We are searching for the normalized similarity metric with large dispersion values. In Fig. 7, 
we see that nMI is the metric with a large range of values. Even if we discard the interior 
polygonal line (that corresponds to the starting values) and compare only the range between 
values after preliminary alignment and the final optimal values, we observe that the nMI has 
the large interval with size of 0.156 (from 0.751 to 0.907 in the registration with a tumor of 
30 mm diameter; from 0.720 to 0.876 in the registration with a tumor of 60 mm diameter). As 
all metrics are normalized, these results suggest that the nMI is the normalized similarity metric 
that is more sensitive to tumor changes.

A.4 Normalized metrics in the registration of intrapatient CT exams
For the following analysis, we performed the registration of each exam with the remaining 
exams from the same patient, using the TDM, obtaining 300 combinations of intrapatient reg-
istration exams. The metric value after the preliminary alignment and the metric final optimal 
value were computed and a statistical analysis was made (Fig. 8).

Fig. 6. Values for all similarity metrics, for the registration of a CT exam with the same exam after inserting an artificial 
tumor with 60 mm diameter and applying random transformations.

Fig. 7. Average metric values for the registration of a CT exam with the same exam after inserting an artificial tumor with 
30 mm (a) or 60 mm (b) of diameter and applying random transformations. 
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In Fig. 8, a box-plot graphic was drawn using 300 intrapatient registration combinations. In 
detail, we used all exams from Table 1 and performed the registration of each exam with all of 
the remaining exams from the same patient. For example, patient B (from Table 1) had three 
exams (B1, B2 and B3). We performed the registration of B1 with B2, B1 with B3 and B2 with 
B3. Patient K had 13 exams, which corresponds to (13!/[2!×(13-2)!]) 78 combinations for the 
intrapatient registration. Computing for all patients, we reached a total of 300 combinations 
for the intrapatient registration.

As some patients had a large number of CT exams (see patients K, L and M in Table 1), the 
registration of exams from these patients are predominant in the present statistical analysis. 
But, as the results extracted from this section will be compared with the previous section, we 
believe that final conclusions will not be strongly influenced by a very small number of patients, 
even when these patients had more than 10 CT exams.

For each registration, we computed the metric value after the preliminary alignment (repre-
sented in Fig. 8 with suffix “_i”, for initial) and the final optimal metric value (represented in Fig. 8  
with suffix “_f”, for final). For comparison purposes, we discarded the outliers and compared 
the dispersion range of the second and third quartiles (the rectangular region for each metric), 
and also the four quartiles (the rectangular region plus the upper and lower branches).

In Fig. 8, we can observe that nSSD_f, nSAD_f and nD_f have the lower dispersion inter-
vals (values from 0.888 to 0.979). When comparing only the second and third quartiles, we see 
that nMI_f has the large dispersion interval (values from 0.553 to 0.727). Comparing the four 
quartiles, we see that nMI_f has one of the largest dispersion intervals (values from 0.372 to 
0.804), as well as nH_f (values from 0.611 to 0.999). However, the values of the second and 
third quartiles from nH_f (values from 0.753 to 0.862) are considerably smaller than nMI_f 
(values from 0.553 to 0.727). Comparing with the remaining similarity metrics in Fig. 8 and 
recalling the information extracted from Fig. 7, we conclude that nMI is the similarity metric 
that is more sensitive to the variation of tumor dimensions in the 300 intrapatient registrations 
performed from 20 patients.

In Table 2, we include the final optimal values of nMI, for some patients, after the registration 
of the last CT exam acquired with each remaining CT exams (for the same patient).

Fig. 8. Box-plot graphic for the comparison of six similarity metrics, before and after main registration procedure.
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From Table 2, we observe that the nMI values for patient A are increasing with time, sug-
gesting that tumor size is decreasing and the medical treatment applied to patient produces 
positive results. In the remaining patients, some have oscillating nMI values, suggesting that the 
medical treatment may not be reducing the tumors size or that patient is not receiving medical 
treatment. Other patients have results similar to the first patient of Table 2, corresponding to a 
reduction in their pulmonary tumors.

Table 2. nMI values from intra-patient registration of last CT exam acquired with the remaining CT exams, for 
 selected patients.

 Patients Versus Exams T1 T2 T3 T4 T5 T6 T7 T8

 A 0.718 0.742 0.767 0.786    
 D 0.670 0.754 0.751 0.716 0.756   
 I 0.502 0.554 0.552 0.587 0.671   
 J 0.676 0.713 0.751 0.742    
 M 0.494 0.623 0.630 0.554 0.681 0.695 0.567 0.554

 
IV. ConCLuSIonS

Present day computed tomography allows for volumetric data acquisition with very thin slices 
of the thoracic region, having a high resolution and contrast between lungs and nearby structures 
allowing for a detailed morphological analysis of pulmonary structures and tissues, with great 
importance to the diagnostic and follow-up. An oncological patient may go through several 
tomographic acquisitions during a period of time resulting in several CT exams needing an 
appropriate registration before any follow-up information can be extracted.

In this work, we analyze the behavior of several similarity metrics in the registration of 
intrapatient CT exams with pulmonary tumors. We propose an automatic 3D intrapatient reg-
istration method (TDM) and compare its performance with the traditional registration method 
(TM) and also with optimized methods based on the pattern search optimization technique 
(PSM) and the simplex optimization technique (SM). The proposed method performs the 
segmentation of the lungs and builds a 3D image of the pulmonary region. Next, the center of 
mass is computed and the exams are coarsely aligned. Then, the 3D registration is performed 
using a downsized volume of the original CT exam. In spite of the fact that in some cases the 
PSM achieves very good results, our method is the best compromise between processing time 
and similarity metric values.

Six normalized similarity metrics are used in the intrapatient registration of pulmonary CT 
exams with lung tumors, and also in the intrapatient registration of the CT exams where artificial 
lung tumors were inserted. The results of these metrics are compared and allow us to conclude 
that the normalized mutual information is the best choice because it is more sensitive to the 
changes of tumor dimensions in CT exams.

The presented results with several cases of intrapatient intramodality registration show that 
the proposed registration method with the normalized mutual information metric is the best 
compromise between final metric values and processing time, which is needed for the quantita-
tive tracking of lesions and the development of image fusion techniques that may effectively 
assist the follow-up process of oncologic patients.
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