
PAPER
EMBEDDING INSTRUMENTS & MODULES INTO AN IEEE1451-FPGA-BASED WEBLAB INFRASTRUCTURE

Embedding Instruments & Modules into an
IEEE1451-FPGA-Based Weblab Infrastructure

http://dx.doi.org/10.3991/ijoe.v8i3.2113

Ricardo J. Costa12, Gustavo R. Alves1, Mário Zenha-Rela2
1Instituto Politécnico do Porto, Porto, Portugal
2Universidade de Coimbra, Coimbra, Portugal

Abstract—Adopting standard-based weblab infrastructures
can be an added value for spreading their influence and
acceptance in education. This paper suggests a solution
based on the IEEE1451.0 Std. and FPGA technology for
creating reconfigurable weblab infrastructures using In-
struments and Modules (I&Ms) described through standard
Hardware Description Language (HDL) files. It describes a
methodology for creating and binding I&Ms into an
IEEE1451-module embedded in a FPGA-based board able
to be remotely controlled/accessed using IEEE1451-HTTP
commands. At the end, an example of a step-motor control-
ler module bond to that IEEE1451-module is described.

Index Terms—Weblabs, Remote labs, FPGA, IEEE1451.0
Std., Step-motor controller.

I. INTRODUCTION

Commonly used in educational literature, sciences and
engineering terms have different meanings and intrinsic
objectives. While sciences are closely related with re-
search activities focused on theory postulation, engineer-
ing focus on practices and practical models’ formulation
[1]. Despite their differences, both require theories and
models validations; otherwise these can turn out to be
irrelevant, becoming just unused ideas or concepts. In
Sciences & Engineering (S&E) courses this is particularly
important because the effectiveness of good teaching &
learning processes always requires the adoption of practi-
cal activities to prove and validate theories and models,
incentivizing students to get critical attitudes to construct
their own knowledge. These practical activities include
the laboratory work commonly provided by the experi-
mental work required in every S&E courses.

Due to the evolution of technology in the last decades,
currently this experimental work can be provided by
different laboratory types, divided according to the
adopted equipment (virtual or real) and their location
(local or remote) [2]. Although each type has advocators
and detractors [3], real equipment able to be remotely
controlled are becoming a widely used option [4], pro-
vided by the so-called weblabs that are used to comple-
ment or to replace traditional laboratories, where users
have a local access to real equipment. Presently, there are
several weblabs implemented in different institutions, but
developers still have difficulties for providing remote
access to their laboratorial equipment and experiments,
probably caused by the different architectures and tech-
nologies adopted for creating the infrastructures. There-
fore, to overcome this aspect, standardization is a direction

already proposed in several publications [5][6][7][8],
being the main objective of the Global Online Laboratory
Consortium (GOLC) [9], that is creating an interoperabil-
ity standard that suggests using a set of interface defini-
tions and profiles to control, access and interoperate
different weblabs.

Despite the importance of standardization, if some ef-
forts are focused on creating a common and cheap hard-
ware platform able to integrate sharable I&Ms, costs will
be reduced and collaboration between institutions will
increase. It is precisely in this aspect that this paper pro-
vides a contribution for creating standard weblabs based
on a common platform supported by FPGA-technology,
namely by FPGA-based boards, and based on the
IEEE1451.0 Std. that describes an architecture to create
and network-interface transducers, that can form the
I&Ms typically used by weblabs.

Next section provides an overview about the
IEEE1451.0 Std. focusing on transducers’ operation
modes. Section III presents the implemented infrastruc-
ture, while section IV details implementation issues to
create and bind I&Ms to an IEEE1451-module embedded
in a FPGA-based board. According to suggestions made in
this section, section V presents an example of a step-
motor controller module able to be remotely controlled
using standard IEEE1451-HTTP commands. The paper
ends with some conclusions and directions for future
work.

II. IEEE1451.0 STD.

A. Overview
Defined in 2007, the IEEE1451.0 Std. [10] aims to net-

work-interface transducers through an architecture based
on two modules: the Transducer Interface Module (TIM),
that controls Transducer Channels (TCs), and the Network
Capable Application Processor (NCAP), that provides
network access to the TIM and to those TCs. Each module
is connected through an interface defined by another
standard of the IEEE1451.x family, some already speci-
fied according to the IEEE1451.0 Std. (e.g. the
IEEEp1451.6 Std. for the CANopen interface) and others
intended to be modified in the future (e.g. IEEE1451.2
Std. which defines point-to-point interfaces). The behav-
iour and features of TIMs are described within optional or
mandatory Transducer Electronic Data Sheets (TEDSs)
monitored by a status register and controlled by standard
low-level commands. These low-level commands, pro-
vided by the TIM, may be accessed by IEEE1451-HTTP

4 http://www.i-joe.org

http://dx.doi.org/10.3991/ijoe.v8i3.2113�

PAPER
EMBEDDING INSTRUMENTS & MODULES INTO AN IEEE1451-FPGA-BASED WEBLAB INFRASTRUCTURE

commands implemented in the NCAP, enabling the re-
mote control/access of TCs, whose generic information
and operation modes are defined by TC-TEDSs.

B. Operation modes
The operation mode of a TC is defined in its TC-TEDS

according to data sampling and data transmission modes.
As represented in figure 1, a sampling mode defines the
way a TC acquires/outputs data into/from its Data-Sets
(DSs) and the data transmission mode represents the way
those same data is transmitted/received to/from the
NCAP.

A TC may operate in up to 5 sampling modes:
1- Trigger initiated - available for sensors and actuators,

after a trigger signal they start storing (sensor) or
outputting (actuator) data until all data are processed;

2- Free running without pre-trigger - available for sen-
sors and actuators. A sensors starts storing data
when, in the operating state, a trigger is received. An
actuator starts outputting data after entering in the
operating state. After receiving a trigger, a sensor re-
start storing data in the first position of the first (or
unique) DS and stops when all DS(s) become full.
Actuators stop their operation depending on a de-
fined end-of-data-set operation mode, defined in the
TC-TEDS, and on the reception of a trigger;

3- Free running with pre-trigger - only available for
sensors, they start acquiring data to internal DSs af-
ter entering in a operating state, and stops if a trigger
is received or the number of samples reached a de-
fined pre-trigger count value defined in the TC-
TEDS;

4- Continuous - similar to the Free running without pre-
trigger but, after a trigger, a sensor/actuator starts
working continuously according to the available
DS(s) and the operation attributes defined in the TC-
TEDS fields. They stop after leaving the sampling
mode or after receiving a reset;

5- Immediate - Storing (sensor) or outputting (actuator)
data is made only after the reception of a Read/Write
TC low-level command.

Data available within DSs are transmitted to the NCAP
according to 3 transmission modes:

1- Commanded - A TIM shall transmit a DS only in
response to a Read TC low-level command;

2- Buffer full - Data are transmitted as soon as a DS is
full without waiting for the NCAP to issue a Read
TC low-level command;

3- Streaming at a fixed interval - DSs are transmitted at
a fixed interval. The TIM shall stops using the cur-
rent DS regardless of how much data are in it, shall
begin storing data in another DS, and shall transmit
the DS without waiting for a Read TC low-level
command.

Based on the IEEE1451.0 architecture and, in particu-
lar, on its operation modes, the next section presents the
implemented weblab infrastructure supported by an
IEEE1451-module (described through HDL files) embed-
ded in a FPGA-based board. It also details the methodol-
ogy for creating and binding I&Ms required by every
weblab.

III. IMPLEMENTED WEBLAB INFRASTRUCTURE

Following the IEEE1451.0 Std. foundations, the im-
plemented solution adopted a hybrid-architecture [11]
specifying the NCAP and the TIM in different devices
interfaced by a serial connection, as illustrated in the
figure 2 and figure 3.

The NCAP was implemented in a micro computer. It
provides users’ remote access to the weblab infrastructure
through an IEEE1451.0 HTTP interface implemented by a
software package. The TIM was implemented in a FPGA-
based board to accommodate all the I&Ms required for
accessing the Experiment Under Test (EUT). The decision
for a solution based on a FPGA-based board was made
essentially supported by four main reasons: i) it integrates
several digital and analog I/O interfaces to access the
EUT; ii) it can use I&Ms described through HDL files,
which make them easily shared by different weblab infra-
structures; iii) it can run those I&Ms modules in parallel
like in a laboratory that uses traditional instrumentation;
and iv) it is able to be reconfigured [11], enabling to
change the entire weblab infrastructure functionality
without replacing the hardware platform required to
access an EUT.

According to the IEEE1451.0 Std., the NCAP and the
TIM should be connected through specific protocols (e.g.
Bluetooth) following another IEEE1451.x Std.. However,
most of the protocols are not yet compatible with the
IEEE1451.0 Std. and the NCAP-TIM connection requires
the use of two additional APIs (transducer services and
module communication) that, if adopted, will overload de-

Figure 1. Conceptual diagram of the TIM’s operation modes.

Figure 2. Block diagram of the implemented weblab infrastructure.

Figure 3. Picture of the implemented weblab infrastructure.

iJOE – Volume 8, Issue 3, August 2012 5

PAPER
EMBEDDING INSTRUMENTS & MODULES INTO AN IEEE1451-FPGA-BASED WEBLAB INFRASTRUCTURE

velopments and will add additional computational tasks
not bringing any added value for weblab infrastructures
that use single NCAP-TIM connections. Therefore, to
overcome these issues, current infrastructure adopted a
thin implementation, interfacing the NCAP and the TIM
through a simple RS-232 connection. It was established a
map between low-level commands provided by the TIM,
and the IEEE1451-HTTP commands implemented by the
NCAP, removing, this way, the transducer services and
module communication APIs, as already suggested in
[12].

A. NCAP
The NCAP integrates a portable software package able

to be recompiled for different Linux distributions accord-
ing to instructions defined in a makefile. The package
comprehends a CGI application developed using the C
programming language that, integrated in the Apache
HTTP web server installed in the Ubuntu operational
system [13], allows remote users to use IEEE1451-HTTP
commands to control the TIM, and therefore every I&M.
The package is organized in a set of directories each with
its specific relevance, namely the 1451 directory and the
cgi-bin directory.

The 1451 directory comprehends a set of symbolic links
to access a server.cgi file (created after every compilation)
to handle IEEE1451-HTTP commands applied according
to the standard format http://.../1451/command. The cgi-
bin directory contains all files and directories used by the
NCAP package. It comprehends a set of source (*.c) and
header (*.h) files integrating all the interfaces defined in
the IEEE1451-HTTP API (e.g. IEEE1451 Teds Manager
Api.c), whose accesses are made by the server.c file used
to manage all users’ requests. The package also integrates
a utils.c file that provides some useful functions, and a file
named serial.c used to control the NCAP serial port.
Besides all these files, the NCAP has two other important
directories: the first to keep cached-TEDSs which, accord-
ing to the IEEE1451.0 Std., may represent copies or
updates of TEDSs defined within the TIM, and another
directory with files and applications required to reconfig-
ure the TIM. This last aspect is not considered by the
IEEE1451.0 Std. but, as already suggested in [12], the
current NCAP package already implements two additional
HTTP commands that enable reconfiguring the TIM,
namely the WriteTIM and ReadTIM, both integrated in a
new IEEE1451 Reconfiguration API.

Remote users can access the TIM and the I&Ms
through a simple web browser or by a software application
able to transmit HTTP commands. For validation pur-
poses, the package also provides a set of HTML pages that
enables users to issue IEEE1451-HTTP commands. Fig-
ure 4 illustrates the use of the ReadTeds command to read
the TEDS number 128 associated with the TC number 3.
An XML format response retrieves all TEDS contents and
illustrates the correct appliance of the command, as indi-
cated by the error code number 0.

A. TIM
The TIM comprehends a generic IEEE1451-module

with different I&Ms able to be accessed and controlled
according to the IEEE1451.0 Std.. This approach is versa-
tile since it allows binding several I&Ms able to be con-
trolled using standard commands, and it is reusable be-
cause both the IEEE1451-module and the I&Ms are

described using standard HDL files, which enable them to
be embedded into different types of FPGAs.

To simplify and reduce the FPGA resources required to
implement the IEEE1451-module, without hampering its
operation, current version does not implement most of the
optional low-level commands, enables the use of a single
sampling mode, and only commanded transmission mode
is available, which requires the use of the Read/Write TC
low-level commands to transfer data between TIM -
NCAP, and therefore to the remote users. Despite these
simplifications, current IEEE1451-module is organized in
a set of hardware modules so future upgrades can be
easily made. As represented in figure 5, and already
described in [14], it comprehends 4 modules.

The core is the decoder/controller that manages the be-
haviour of the whole module decoding and generating
commands from/to the UART module that interfaces the
NCAP through the RS232 connection. To control the
behaviour of each I&M, the decoder/controller also ac-
cesses the TEDS controller and the status/states modules
to read, write or update their internal memories.

Figure 4. ReadTeds command issued by a HTML page.

Figure 5. IEEE1451-module implemented within a FPGA.

6 http://www.i-joe.org

http://.../1451/command�

PAPER
EMBEDDING INSTRUMENTS & MODULES INTO AN IEEE1451-FPGA-BASED WEBLAB INFRASTRUCTURE

One of the main challenges of the implemented infra-
structure is to define a method to create and bind I&Ms to
the decoder/controller module so they can be controlled
according to the IEEE1451.0 Std..

II. CREATING AND BINDING I&MS

In a traditional instrument, several commands are re-
quired to start a measurement or read/write a specific
signal from/into an external device connected to the EUT.
For example, to generate a waveform signal using a Func-
tion Generator, users should, at least, define three parame-
ters: the waveform type, the amplitude and the frequency.
These or others parameters should also be controlled in
similar I&Ms bound to the IEEE1451-module. The I&Ms’
control is managed by TCs, whose behaviour is defined
according to TEDSs, in particular by the contents of the
associated TC-TEDS that are able to be changed using
low-level commands (e.g. WriteTeds). Depending on the
defined sampling mode, different low-level commands
may be issued to a particular TC. Per example, if specific
data is required to read or write, the Write/Read TC low-
level commands should be applied to the correspondent
TC, providing an access to their internal DSs, whose
contents should have the data of the associated I&M.

Therefore, for using the proposed architecture, users
should be able to create and bind the I&Ms with the
IEEE1451-module. Current solution considers the use of
one or more TCs and suggests an interface between the
I&Ms and the IEEE1451-module. This interface is made
through a set of bus lines, each associated to a particular
TC controlled by TEDSs, according to a handshake proto-
col managed by tasks included in the decoder/controller
module.

A. Required Channels
After analyzing the requirements posed by weblabs’,

and the IEEE1451.0 Std. specifications, two solutions may
be adopted for controlling an I&M: i) using several TCs
for individually control each parameter, or ii) using a
single TC that may control more than one parameter
through a decoding process, as illustrated in figure 6.

In the first solution (figure 6a) users individually con-
trol each I&M through several TCs. This means that an
I&M requiring the control of several parameters, also
requires several TCs, several buses attached to the
IEEE1451-module and, at least, one TC-TEDS for each
TC. Despite the possibility of a well defined control over
the I&M’s parameters, this solution tends to be much
resource-consuming, which may become impracticable
when a single FPGA is used to accommodate the
IEEE1451-module and all the I&Ms.

The second solution (figure 6b) tends to be less re-
source-consuming (less TEDSs and a single bus line
attached to the I&M), but it may require an extra-module
to decode data received from the TC. Once decoded, the
IEEE1451-module can select DSs and/or define the re-
quired parameters to control the I&M using the associated
TC’s bus lines. For example, for an I&M with more than
one DS used for defining different I&M’s outputs, the use
of the Write TC low-level command should specify which
DS and I/O will be accessed. Originally, the data fields of
this command gather an offset value and data blocks that
will be written into DS(s) associated to the output, dis-
placed according to a defined offset. If the I&M has dist-

Figure 6. Possibilities for controlling I&Ms through TCs.

inct DSs, whose values gather samples for generating
different outputs, to fill-in these DSs using a single TC,
the Write TC low-level command should specify which
DS will be used, for example, by defining a specific code
data inside its data blocks. This solution should be consid-
ered for all other commands when a single TC is adopted
for controlling more than one parameter of an I&M.

Developers may adopt one or both solutions that, de-
spite the difference between them, require TEDSs to
characterize the behaviour of the I&M. This is the case of
TCs that must be associated with a single TC-TEDS,
which, for some situations, does not provide all fields
required to characterize its behaviour. When this situation
occurs, developers may define extra fields in the TC-
TEDS or they may adopt other TEDSs, named Manufac-
turer Defined TEDSs (MD-TEDS). Both options are in
accordance to the IEEE1451.0 Std., and satisfy the re-
quirements posed by every I&M since they allow users to
monitor or define the TCs’ behaviour through specific
fields. However, developers should evaluate its adoption
considering the detail level of control required for each
I&M and the coherence of the TC-TEDS and other associ-
ated TEDS fields with the characteristics of the I/O signals
(e.g. associated units, ranges, etc.). In other words, a
solution based on a single TC able to control several
parameters and I/Os of a specific I&M should only be
adopted if TEDS contents describe all relevant features of
the associated I/Os.

Whatever the adopted solution is, the following subsec-
tions describe implementation issues that should be made
both in the IEEE1451-module and in each I&M. It focuses
on defining a set of internal tasks for each adopted TC in
the decoder/controller of the IEEE1451-module to manage
a handshake protocol used to control a set of bus lines.

B. Interface tasks
Each I&M is defined by mandatory and optional tasks,

and by modules describing the I&M itself, which mainly
integrate processing units and internal buffers. According
to the association illustrated in figure 7, these tasks are
embedded into the decoder/controller module and ac-
cessed when a specific low-level command is applied.

The decoder/controller module automatically decodes
the commands and the target TC, and accesses the corre-
spondent task to control the parameters of the I&M ac-
cording to internal TEDSs’ definitions that include the

iJOE – Volume 8, Issue 3, August 2012 7

PAPER
EMBEDDING INSTRUMENTS & MODULES INTO AN IEEE1451-FPGA-BASED WEBLAB INFRASTRUCTURE

Figure 7. Association between low-level commands and tasks required

to control each TC bond to the I&M.

adopted sampling mode. Tasks’ internal description
comprehends directives to access the TEDS controller and
the status/state modules to read, write or update internal
information according to the operation of a specific I&M,
and the UART module to enable the transmission of
information to/from the NCAP.

Six tasks (some optional), may be specified for each TC
according to the adopted sampling mode defined in the
TC-TEDS:
 TCx_stop() and TCx_start() - [optional] - used for

I&Ms that adopt sampling modes with triggers. It
start/stops the operation of a specific I&M indicating
it can start acquiring or sampling data to/from their
internal buffer. Accessed by low-level commands
4.4, 3.4 and 3.3.;

 TCx_rd - [optional] - performs a read operation.
Buffers are copied into internal DSs. Accessed by
the low-level command 3.1;

 TCx_wr - [optional] - only applied to I&Ms acting as
actuators, performs a write operation. If the sampling
is trigger-dependent, i.e. the TCx_start was previ-
ously used, this instruction will send data available
within buffers directly to the output. If it is in a sam-
pling mode not trigger-dependent, data sent by
NCAP will be directly copied into the buffers and
outputted. Accessed by the low-level command 3.2;

 TCx_init - [required] - initializes the TC by access-
ing its TEDS contents and defining its current opera-
tion (e.g. sampling times). Accessed by the low-level
command 7.1;

 TCx_update() - [required] - updates the TC operation
based on TEDS contents. Accessed by low-level
commands 3.1, 3.2 and 3.3.

The access to the TEDS controller and status/state
modules, and to all the I&Ms are made by controlling a
set of bus lines using a handshake protocol.

C. Bus lines and handshake protocol
Since the use of an I&M in the suggested infrastructure

requires defining: i) its HDL modules and ii) the tasks
described in the previous subsection, it is possible to use
any kind of handshake protocol to interface the HDL
modules and the IEEE1451-module. A possible one is the
Wishbone bus [15] that is an open source hardware com-
puter bus typically used to interface different modules
within an FPGA. However, to simplify the current imple-
mentation and to reduce the required FPGA’s resources,
we have decided to use the same solution adopted for
interfacing the TEDS controller and the status/state mod-

ules with the IEEE1451-module. In current solution, the
I&Ms are controlled/accessed through TCs using set of
bus signals (some optional others required) described in
table I. Table II describes 3 other signals that should be
used to interface the I&Ms with the FPGA-based board. A
complementary illustration of all these signals is presented
in figure 8.

The IEEE1451-module acts as a master, whose slaves
are all I&Ms bond through one or more TCs that imple-
ment a handshake protocol controlled by the defined tasks.
The data handshake can start by a reception of a low-level

TABLE I. SIGNALS USED TO INTERFACE TCS AND I&MS.

Name Description
Signals for interfacing a particular TC

clk
[required-out] clk signal used for synchronizing data
transmission between a particular TC and the I&M.

out [7:0]
[optional-out] data send from the TC to the I&M
(depending on the I&M data within TC’s DS(s) may go to the I&M’s
buffers).

in [7:0] [optional-in] data received in a TC from the I&M.
(depending on the I&M’s data buffers may go to the TC’s DS(s)).

run [required-out] starts the handshake.
end_ [required-in] indicates the end of the handshake.

event_ [optional-in] indicates an I&M’s event.
(only for I&Ms working as event-sensors).

During handshaking an extra synchronization may be required. This way, the following
exec and done signals can control that synchronization through operation-steps. For their
appliance, the run signal should stay at high.

exe [optional-out] executes a step-operation.

done
[optional-in] indicates that a step-operation has
finished.

access
[n:0]

[optional-input] controls a specific I&M’s operation
changing the data meaning of in and out bus signals:

access out [7:0] in [7:0]

= 0
represents data to write
into the I&M.

represents data
read from the I&M

≠ 0
represents the instruction code
for the I&M (depends on the
I&M implementation)

represents the reply code
instruction issued to the I&M
(depends on the I&M implementa-
tion)

Signal shared by all TCs
en [required-out] enables the I&M.
rst [required-out] initializes the I&M.

error
[n:0]

[optional-in] errors codes defined according to the
I&M. Tasks should map these codes to the
IEEE1451.0 codes.

TABLE II. SIGNALS USED TO INTERFACE I&MS AND THE FPGA-
BASED BOARD.

Name Description
clk_
external

[required-in] clk signal used for defining the operation
frequency of an I&M.

data_in
[n:0]

[Optional-input] I&M input.

data_out
[n:0]

[Optional-output] I&M output.

Figure 8. Interface between the IEEE1451-module and the I&Ms.

8 http://www.i-joe.org

PAPER
EMBEDDING INSTRUMENTS & MODULES INTO AN IEEE1451-FPGA-BASED WEBLAB INFRASTRUCTURE

command or by an I&M’s event signal, when the associ-
ated TC is defined as an event sensor.

During the handshake protocol, the synchronization
between the I&Ms and the tasks is made according to a
rate defined by the clk signal, a set of signals to run an
operation (run/end), eventually executing step-operations
(exec/done), and the optional access bus that may specify
instruction codes to define a particular operation on the
I&M, which is particularly important for solutions that
adopt a single TC to control several I&M’s parameters.
Figure 9 illustrates these signals, exemplifying the case of
a single TC controlling an I&M. In the example, a specific
task starts the operation raising the run signal that may be
caused by a reception of a low-level command or the rise
of the event signal, when adopted. The operation is then
synchronized using the exec and done signals that allow
the IEEE1451-module to read or write data using the in,
out or access buses. The operation ends when the end
signal goes up.

The behaviour of an I&M is defined according to
TEDSs’ contents available within the TEDS controller
module. Depending on the operation mode defined for a
particular TC and the applied low-level command, a
specific procedure should be used to read TEDS, config-
ure the I&Ms parameters, and to transfer data between
DSs and buffers available within each I&M. Figures 10
and 11 illustrate, for each task, the operation sequences
when a specific command or event signal is received,
illustrating the accessed tasks and the adopted signals used
to interface the I&Ms and the IEEE1451-module.

III. STEP-MOTOR CONTROLLER EXAMPLE

A controller for a bipolar step-motor described accord-
ing to the previous architecture was bond to the
IEEE1451-module1. Since the control of this step-motor
requires six output digital lines, whose sequence defines a
specific step, it was adopted a solution based on a single
TC, which allowed simplifying the design and reducing
the required FPGA resources. As illustrated in figure 12,
the step-motor controller comprehends a set of modules
(mpp1, mpp2 and clk generator) controlled according to
TEDSs and tasks used to establish the interface between
those modules and the decoder/controller integrated
within IEEE1451-module.

The behaviour and the features of the step-motor con-
troller were defined by a Meta-TEDS and two other
TEDSs, namely a TC-TEDS and a MD-TEDS. Within the
TC-TEDS, the TC was defined as an actuator using the
continuous operation mode associating 6 digital outputs
for the step-motor sequences, among other parameters.
Additional parameters namely: the direction, number and
step modes, and a time divider to control the speed, were
defined by a MD-TEDS identified by the number 80
(hex.) represented in table III and described through
different fields:
 TEDS identification - field 3 uses 4 octets - identifies

the TEDS using 4 octets: i) IEEE1451 standard fam-
ily number (0 for this standard); ii) TEDS class (80
hex.); iii) Version number (01); and iv) tuple length
(01).

1 The binding was made through a reconfiguration tool
not described in this paper.

Figure 9. Example of the handshake protocol.

Figure 10. Abort trigger or Write trigger low-level commands during

the handshake protocol.

Figure 11. Adoption of the Update, Write and Read tasks during the

handshake protocol.

 Direction - field 4 uses 1 octet - indicates the direc-
tion of the step-motor (0-left, 1-write);

 Number of steps - field 5 uses 2 octets - indicates the
number of steps the motor will do after receiving a
trigger signal. If the value is set to its maximum
(FF.FF hex) this field becomes irrelevant and the
step sequences starts being generated continuously;

iJOE – Volume 8, Issue 3, August 2012 9

PAPER
EMBEDDING INSTRUMENTS & MODULES INTO AN IEEE1451-FPGA-BASED WEBLAB INFRASTRUCTURE

 Step mode - field 6 uses 1 octet - defines the type of
sequences generated by the controller (0-half step
mode; 1-normal drive mode; or 2-wave drive mode);

 Time divider (speed) - field 7 uses 3 octets - defines
the internal clk rate of the module, and therefore the
speed of the generated sequences used to control a
step-motor.

Since this module adopted the continuous operation
mode, when a trigger signal is received it starts generating
the step-motor sequences through its output lines. It stops
after receiving another trigger command signal, namely
the optional low-level command named AbortTrigger that
was implemented in current solution. These commands
use the init, update, start and stop triggers tasks included
into the decoder/controller module. While the init and
update tasks have the main objective of reading the asso-
ciated TEDS and update the parameters of the step-motor
controller, the start and stop tasks are accessed every time
the TIM receives a Trigger or the AbortTrigger low-level
commands. Therefore, to control the step-motor using the
IEEE1451-HTTP commands, users should start defining
the MD-TEDS contents before applying a trigger com-
mand. On each trigger command, the decoder/controller
module calls the update task to read the TC-TEDS, and in
particular the MD-TEDS contents, in order to define the
parameters of the step-motor controller. This way, current
operation of the step-motor controller is always available
in the MD-TEDS, so remote users may update or query its
state using the Write or Read TEDS IEEE1451-HTTP
commands.

IV. CONCLUSIONS

Technology evolution and educational requirements in
S&E courses led, in the last decades, to a widespread of
weblabs. These are supported by infrastructures developed
according to different architectures with independent
I&Ms that bring network interfaces to enable their remote
control/access. Traditionally, some of these I&Ms are
expensive, may bring features not required for running
specific experiments, and they are implemented by inde-
pendent and predefined hardware components. This last
aspect difficults sharing them by different infrastructures,
and does not allow the redefinition of their features ac-
cording to the requirements of a specific experiment.
Although current infrastructures allow sharing remote
experiments, contributing for joining efforts in the promo-
tion of better experimental work activities, the collabora-
tion among the involved institutions can be extended to
the development phases by adopting: i) a standard solution
supported by a common hardware platform and, ii) a
methodology for creating and binding I&Ms to the weblab
infrastructure. The advantages a solution with these fea-
tures can bring, led us to create the weblab infrastructure
described in this paper.

The weblab infrastructure was developed according to
the foundations of the IEEE1451.0 Std. using hardware
platforms based on FPGA-based boards. The infrastruc-
ture adopts FPGAs to embed I&Ms described through
HDL files, taking the advantage to their reconfigurable
nature and the ability they have on running different
modules in parallel. Additionally, the different layers
handled by the IEEE1451.0 Std., that go from hardware to
software levels integrating APIs, guaranties a standard

Figure 12. Step-motor controller bond to the IEEE1451-module.

TABLE III. MD-TEDS FOR THE STEP-MOTOR MODULE.

Field
num.

Description
Data
Type

octet
s

Value
(hex)

- TEDS length UInt32 4
00.00.00.1

7
0-2 Reserved - - -

3

TEDS identification:
Family (=0)
Class (=80hex)
Version (=1)
Tuple Length (=1)

UInt8 4
00.80.01.0

1

4 Direction
0-left or 1-write

UInt8 1 01

5 Number of steps UInt8 2 FF.FF

6

Step mode
defined according to three
modes:
0-half step mode;
1-normal drive mode;
2-wave drive mode.

UInt8 1 00

7

Time divider (Speed)
Defines the higher level of the
clk signal generated in the step-
motor controller module.
Value=0.5(Freq.clk/TimeDiv.)

UInt8 3 01.86.A0

- Checksum UInt16 2 FC.1D

solution for controlling/accessing the I&Ms, which can
extend the collaboration among institutions during the
development phases. It was suggested a simplified archi-
tecture supported on the foundations of the IEEE1451.0
Std. using an FPGA-based board to create a flexible
solution able to be reconfigured with different I&Ms. A
special emphasis was given to the modules embedded into
the FPGA, suggesting a methodology for binding a
IEEE1451-module with I&Ms, so they can be con-
trolled/accessed using IEEE1451-HTTP commands. To
validate the infrastructure and the suggested methodology,
we have an example of a step-motor controller module
bond with the IEEE1451-module able to be remotely
controlled using IEEE1451-HTTP commands.

Current version of the IEEE1451-module still requires
specific knowledge on how-to interface the de-
coder/controller module with the TEDS controller and the
state/status modules, which may create some difficulties
for developing the suggested tasks to interface the I&Ms.
Improvements to this issue will be made in the future, by
the definition of a simplified API. Once concluded, it is
our intention to invite scientific community to develop
others I&Ms compatible with the IEEE1451-module and,
therefore, able to be controlled/accessed using IEEE1451-
HTTP commands. These I&Ms can then be provided by a

10 http://www.i-joe.org

PAPER
EMBEDDING INSTRUMENTS & MODULES INTO AN IEEE1451-FPGA-BASED WEBLAB INFRASTRUCTURE

web portal so different institutions may adopt them in
their weblab infrastructures created according to the
suggestion described in this paper. This way, a worldwide
workbench will be available, enabling users to select the
required I&M to use in their experiments, without costs.

REFERENCES
[1] [1] Norrie S. Edward, ‘The role of laboratory work in engineer-

ing education: student and staff perceptions’, International Jour-
nal of Electrical Engineering Education, vol. 39, no. 1, pp. 11–19,
Jan. 2002.

[2] [2] Gomes, L. and Bogosyan, S., ‘Current Trends in Remote
Laboratories’, IEEE Transactions on Industrial Electronics, vol.
56, no. 12, pp. 4744–4756, Dec. 2009. http://dx.doi.org/10.1109/
TIE.2009.2033293

[3] [3] J. Ma and J.V. Nickerson, ‘Hands-on, simulated, and remote
laboratories: A comparative literature review’, ACM Computing
Surveys, vol. 38, no. 3, p. 7, 2006. http://dx.doi.org/10.1145/11329
60.1132961

[4] [4] Javier García Zubía and Gustavo R. Alves, Using Remote
Labs in Education - Two Little Ducks in Remote Experimentation,
1 vols. University of Deusto Publications, 2011.

[5] [5] A. Agrawal and S. Srivastava, ‘WebLab: A Generic Archi-
tecture for Remote Laboratories’, pp. 301–306, 2007.

[6] [6] Franco Davoli et al., ‘Remote Instrumentation and Virtual
Laboratories - Service Architecture and Networking’, Springer,
2010.

[7] [7] V. J. Harward et al., ‘The iLab Shared Architecture AWeb
Services Infrastructure to Build Communities of Internet Accessi-
ble Laboratories’, Proceedings of the IEEE, vol. 96, no. 6, p. 20,
Jun. 2008. http://dx.doi.org/10.1109/JPROC.2008.921607

[8] [8] I. Gustavsson et al., ‘The VISIR project – an Open Sources
Software Initiative for Distributed Online Laboratories’, Confer-
ence on Remote Engineering and Virtual Instrumentation
(REV’07), p. 6, Porto - Portugal 2007.

[9] [9] GOLC - Global Online Laboratory Consortium, [Online].
Available: http://online-lab.org/. [Accessed: 26-Jan-2012].

[10] [10] IEEE 1451.0 Std., ‘Standard for a Smart Transducer
Interface for Sensors and Actuators - Common Functions, Com-
munication Protocols, and Transducer Electronic Data Sheet
(TEDS) Formats’, The Institute of Electrical and Electronics En-
gineers, Inc., p. 335, 2007.

[11] [11] R. J. Costa et al., ‘FPGA-based Weblab Infrastructures -
Guidelines and a prototype implementation example’, 3rd IEEE
International Conference on e-Learning in Industrial Electronics
(ICELIE’2009), Porto - Portugal, p. 7, Nov. 2009.

[12] [12] Ricardo J. Costa, Gustavo R. Alves and Mário Zenha-Rela,
‘Extending the IEEE1451.0 Std. to serve distributed weblab archi-
tectures’, in 1st Experiment@ International Conference
(exp.at’11), Calouste Gulbenkian Foundation, Lisboa-Portugal,
http://ave.dee.isep.ipp.pt/~rjc/, 2011.

[13] [13] Ubuntu operating system, [Online]. Available:
http://www.ubuntu.com/. [Accessed: 24-Jan-2012].

[14] [14] Ricardo Costa, Gustavo Alves and Mário Zenha-Rela,
‘Work-in-progress on a thin IEEE1451.0-architecture to imple-
ment reconfigurable weblab infrastructures’, International Journal
of Online Engineering (iJOE), vol. 7, no. 3, 2011.

[15] [15] ‘WISHBONE System - on - Chip (SoC) Interconnection
Architecture for Portable IP Cores’,
http://opencores.org/opencores,wishbone, p. 128, 2010.

AUTHORS

Ricardo Costa is an Assistant Professor at the Poly-
technic of Porto, School of Engineering (IPP/ISEP), and
he is a PhD. Student at the Faculty of Sciences and Tech-
nology of the University of Coimbra (FCTUC) (e-mail:
rjc@isep.ipp.pt / rjc@dei.uc.pt).

Gustavo Alves is a full Professor at the Polytechnic of
Porto, School of Engineering (IPP/ISEP), (e-mail:
gca@isep.ipp.pt).

Mário-Zenha Rela is an Auxiliary Professor at the
Faculty of Sciences and Technology of the University of
Coimbra (FCTUC) (e-mail: mzrela@dei.uc.pt).

iJOE – Volume 8, Issue 3, August 2012 11

http://dx.doi.org/10.1109/JPROC.2008.921607�

