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Abstract

Background: Pyruvate kinase (PK) deficiency, causing hemolytic anemia, has been associated to malaria protection and its
prevalence in sub-Saharan Africa is not known so far. This work shows the results of a study undertaken to determine PK
deficiency occurrence in some sub-Saharan African countries, as well as finding a prevalent PK variant underlying this
deficiency.

Materials and Methods: Blood samples of individuals from four malaria endemic countries (Mozambique, Angola, Equatorial
Guinea and Sao Tome and Principe) were analyzed in order to determine PK deficiency occurrence and detect any possible
high frequent PK variant mutation. The association between this mutation and malaria was ascertained through association
studies involving sample groups from individuals showing different malaria infection and outcome status.

Results: The percentage of individuals showing a reduced PK activity in Maputo was 4.1% and the missense mutation
G829A (Glu277Lys) in the PKLR gene (only identified in three individuals worldwide to date) was identified in a high
frequency. Heterozygous carrier frequency was between 6.7% and 2.6%. A significant association was not detected between
either PK reduced activity or allele 829A frequency and malaria infection and outcome, although the variant was more
frequent among individuals with uncomplicated malaria.

Conclusions: This was the first study on the occurrence of PK deficiency in several areas of Africa. A common PKLR mutation
G829A (Glu277Lys) was identified. A global geographical co-distribution between malaria and high frequency of PK
deficiency seems to occur suggesting that malaria may be a selective force raising the frequency of this 277Lys variant.
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Introduction

Infectious diseases have been one of the major causes of

mortality during most of human evolution. For many diseases,

mortality and hence reproductive success are influenced by certain

individual genotype. Consequently, some aspects of modern

patterns of human genetic diversity should have been determined

by diseases dating from prehistoric times [1]. The clearest example

are provided by malaria, which even now affects 500 million

people each year and kills some two million. The selective pressure

that malaria has imposed to human populations has been reflected

in dozens of molecular variants described as protective against the

infection and disease [2–4]. Of these, the most well studied and

widely accepted are probably the sickle cell allele (hemoglobin

HbS allele), a and b thalassemias and glucose-6-phosphate (G6PD)

deficiency (alleles A and A-), all showing an extensive overlap of

geographical distribution and exceptionally high frequencies in

malaria endemic regions.

Pyruvate kinase (PK) deficiency, caused by mutations in the

pyruvate kinase, liver and RBC (PKLR) gene (chromosome 1q21)

is one of the most recently described erythrocyte abnormalities

associated to malaria. Evidences of its protective effect were
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obtained both in murine models [5] and in Plasmodium falciparum in

vitro cultures using human PK-deficient blood [6,7]. Also,

population studies showed that a selective pressure is shaping the

PKLR genomic region in individuals from malaria endemic

countries (Cape Verde, Angola and Mozambique), being malaria

infection the most likely driving force [8,9].

PK catalyzes the conversion of phosphoenolpyruvate (PEP) into

pyruvate with the synthesis of ATP in the last step of glycolysis.

PEP and pyruvate are involved in a great deal of energetic and

biosynthetic pathways and the regulation of PK activity has

proven to be of great importance for the entire cellular metabolism

[10]. PK deficiency, worldwide distributed, is the most common

enzyme abnormality in the erythrocyte glycolytic pathway causing

hereditary chronic nonspherocytic hemolytic anemia. It is

transmitted as an autossomal recessive trait and clinical symptoms

usually occur in homozygotes and in compound heterozygotes for

two mutant alleles. The clinical phenotype is heterogeneous,

ranging from a mild chronic hemolytic anemia to a severe anemia

presenting at birth and requiring exchange transfusion [11].

High frequencies of PK deficiency have not yet been recorded

in malaria endemic areas but a systematic analysis has never been

performed. Considering the previous knowledge of co-distribution

between malaria endemicity and protective polymorphisms, we

questioned if a PK variant could be exceptionally prevalent in

malaria endemic areas. Therefore, the aims of the present study

were: i) to determine PK deficiency occurrence in sub-Saharan

African countries, ii) to assess frequency of PK variants underlying

this deficiency, iii) to investigate possible associations between PK

deficiency and malaria infection.

Materials and Methods

Sampling
This study is based on the molecular analysis of six sets of blood

samples collected in four sub-Saharan African areas – Mozam-

bique, Angola, Equatorial Guinea and Sao Tome and Principe

(see Figure 1) - and in a malaria non-endemic area – Portugal

(Europe).

In this study, 296 unrelated whole blood samples from

individuals who attended to the Central Hospital of Maputo

(Mozambique) between September and December 2008 were

analyzed: 144 from children (6 months to 14 years-old) who

presented to the Emergency Services of the Pediatric Department

with some kind of complaint, and 152 from healthy blood donor

adults (16 to 65 years-old) who presented to the Blood Bank. In

order to increase the sample size of the set with a malaria outcome

characterization, an additional group of 151 DNA samples

extracted from blood samples collected from 3 months to 15

years-old children in Mozambique [9] was also genotyped.

In the Pediatric Department, blood was collected by venous

puncture after the clinician examination but before the adminis-

tration of any anti-malarial drug and/or blood transfusion. The

registration of symptoms, axillary temperature and hemoglobin

level was done for all individuals. Children who had received a

blood transfusion in the last six months were excluded from the

study. Anemic and Plasmodium infection status were considered at

collection time. In the Blood Bank, the blood samples were

randomly collected from blood donors. In the admission, a

solubility test for rapid detection of hemoglobin S (adapted from

Loh [12]) was performed in order to exclude allele S carriers. After

blood collection in a tube, a blood spot in a filter paper was

prepared from each sample for later subsequent DNA extraction

by a standard phenol-chloroform method.

In addition to these samples from Mozambique, a set of 343

DNA samples from malaria-infected and non-infected unrelated

individuals, which were already available from other studies, were

also analyzed: 164 from Angola [9], 38 from Equatorial Guinea

[13] and 67 from Sao Tome and Principe [14]. Finally, 74 samples

from non-infected Portuguese individuals from all age groups were

used as control samples [8]. Overall, 790 samples were analyzed.

Ethics statement
Regarding the survey in Mozambique, the human isolates

collection was approved by local Ethical Committee (Comité

Nacional de Bioética para a Saúde, Health Ministry of Mozam-

bique, IRB 00002657, ref. 226/CNBS/08) and IHMT (Conselho

de Ética do Instituto de Higiene e Medicina Tropical, CEIHMT,

14-2011-PN). A detailed work plan, questionnaires and informed

consent forms were submitted to the Ethical Committees of the

participant institutions in the study, which approved the survey.

Each individual and parent/tutor of the children was informed of

the nature and aims of the study and was told that participation

was voluntary; written informed consent was obtained from each

person (or parent/tutor). Blood sample collection followed strict

requirements set by the Ethical Committees: blood samples from

children who attended to the Pediatric Department were the

remaining volume of the samples previously collected for the

medical diagnosis; in the Blood Bank, during the blood donation, a

small volume was put aside in a tube. In this way, no extra blood

collection was needed and the patient, blood donor and the

routine health services were not significantly disturbed. All ethical

aspects related with the other sets of samples collected in previous

studies, are described in the respective reports [8,9,13,14].

Plasmodium infection and malaria outcome groups
In the Central Hospital of Maputo, the rapid test OptiMAL-IT

(DiaMed, Switzerland) was used for malaria diagnosis in all the

patients with suspicion of malaria infection, and a blood smear was

prepared for microscopic visualization to confirm diagnosis; later,

all samples were amplified by Polymerase Chain Reaction (PCR),

using Plasmodium species specific primers [15].

Malaria outcome was defined as follows: (i) Severe Malaria

(SM): positive PCR for any species of Plasmodium, fever (i.e. axillary

temperature $37,5uC), hemoglobin level of Hb#5 g/dL and/or

any of these symptoms: coma, prostration or convulsions; (ii)

Uncomplicated Malaria (UM): positive PCR for any Plasmodium

species, fever and hemoglobin level of Hb.5 g/dL; and (iii)

Asymptomatic Infection (AI): positive PCR for any Plasmodium

species in the absence of fever (i.e. axillary temperature ,37,5uC)

or other symptoms of clinical illness; (iv) No infection (NI):

negative PCR and absence of fever or other symptoms of clinical

illness.

Based on malaria infection and symptoms data, the 144 samples

from the Pediatric Department of Central Hospital of Maputo

collected in 2008 were organized in the following malaria outcome

groups: SM (18 samples); UM (27 samples) and NI (99 samples).

The 152 samples from the Blood Bank were organized in the

following groups: AI (4 samples) and NI (148 samples). Outcome

groups were also defined using the same criteria for the set of

isolates from Angola (43 SM, 43 UM, 37 AI and 41 NI) and for the

set of isolates previously collected in Mozambique (52 SM, 97 UM

and 2 NI), both described in Machado et al. [9]. In total, we had

611 samples with malaria infection and outcome characterization -

459 samples from children (113 SM, 167 UM, 37 AI and 142 NI)

and 152 samples from adults (4 AI and 148 NI).

PK Deficiency in Sub-Saharan Africa
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Determination of PK activity
PK activity was measured in lyzed erythrocytes from all the 296

fresh blood samples (after plasma and buffy coat strict removal)

collected in Mozambique in 2008, with an enzymatic assay

adapted from Beutler [16], according to the instructions of the kit

‘‘Determination of pyruvate kinase (EC 2.7.1.40) in erythrocytes

hemolysate or serum/heparinized plasma’’ (Instruchemie, The

Netherlands). The enzymatic reactions were running at room

temperature. A PK-deficient and a normal control were used in

each assay to validate the activity values and to classify the samples

within the following phenotypes: normal, intermediate or deficient

activity.

Identification of a PK variant underlying PK-reduced
activity

Samples with a PK activity value less than or equal to 75% of

the normal control sample activity were analyzed by the Single

Strand Conformational Polymorphism (SSCP) method (described

in Manco et al. [17]) in order to find a mutation associated with

this phenotype. The promoter region and eleven exons of the

PKLR gene were amplified with specific primers (see Table S1,

supporting information) and run in an acrylamide-bisacrylamide

gel (10%), together with a wild-type amplicon, to detect differences

in migration patterns caused by an alteration in DNA chain

composition (exon 2 was not analyzed since it is specific for the

hepatic isoenzyme). The amplification conditions were: initial

denaturation at 94uC for 5 minutes, followed by 35 cycles of 94uC
for 45 seconds, a specific annealing temperature for 45 seconds

(see Table S1), and 72uC for 1 minute, with a final extension at

72uC for 5 minutes. The samples with a different migration

pattern were further analyzed by automatic DNA sequencing

(Macrogen Inc., Korea). The exon 7, in which a mutation was

identified, was then amplified in all samples from all groups by

PCR with the specific primers and conditions indicated in Table

S1 and the amplicons were sequenced (Macrogen Inc., Korea).

Statistical analysis
The association between alleles and malaria outcome groups

was assessed by Pearson’s chi-square tests and Fisher’s exact test,

this latter considered when there were a few cases in each

comparison group (less than five), using the Simple Interactive

Statistical Analysis software (SISA) [18]. Odds ratios (OR) and

95% confidence intervals (CI) were also estimated using SISA.

Arlequin 3.1 software [19] was used to determine allele

frequencies, population pairwise FST (to test for differentiation

between populations), expected and observed values of heterozy-

gosity and to perform Hardy–Weinberg equilibrium tests.

Prediction of the possible impact of the amino acid substitution

on the structure and function of the human PK protein was

performed with the Polyphen software [20]. Finally, PyMol

software [21] was used for the 3D structure simulation of the

wild type and mutant variants.

Figure 1. Geographic location of the countries Mozambique, Angola, Sao Tome and Principe, Equatorial Guinea (Africa), Pakistan
(Asia) and Portugal (Europe).
doi:10.1371/journal.pone.0047071.g001
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Results

PK deficiency screening in Maputo, Mozambique
Ninety-eight from the 144 samples collected in the Pediatric

Department (68%) in Mozambique in 2008 were from children

with a hemoglobin concentration ,9 g/dL (considered anemic)

and 41 samples (28.5%) were infected with P. falciparum. Nineteen

of the infected individuals were also anemic. Four (2.6%) of the

152 samples from the adult blood donors in Blood Bank showed

an asymptomatic infection with P. falciparum (see Table 1)

From the 296 samples set, 12 (4.1%) presented PK activity

values between 39% and 75% of the normal control activity

(established in an average of 3.2 U/g Hb) (see Table 2): 8 from the

Blood Bank (5.3%) and 4 from the Pediatrics (2.8%). They were all

classified as intermediate activity phenotype. From the 98 samples

with a hemoglobin level ,9 g/dl (Pediatric Department), only 3

(3.1%) had a PK reduced activity.

Identification of a PK variant underlying PK-reduced
activity

A migration pattern alteration was observed in the amplicon of

exon 7 of 5 out of 12 samples with low activity (41.7%) by SSCP

(see Figure 2): 4 from blood donors and 1 from Pediatrics.

Sequencing of these 5 amplicons revealed a G.A substitution in

all of them, being in homozygosis (A/A) in one sample. This is a

non-synonymous mutation located in the nucleotide 829 of the PK

mRNA sequence originating an alteration of the amino acid 277

of the PK protein: a glutamic acid (Glu, coded by GAG) is

replaced by a lysine (Lys, coded by AAG). When this mutation was

searched in all the other 284 samples with normal activity, it was

detected in heterozygosis in 16 samples: 7 from children and 9

from blood donors. Overall, 21 samples (7.1%) had the 829A allele

that displayed a frequency of 3.7%.

No association was found between the 829A allele and anemia

(2.7–9 g/dL Hb). Conversely, a strong association was found

between the allele 829A and PK deficient activity: x2 = 14.38

(P,0.00), OR = 5.58 (95% CI: 2.07–15.03). Of the 6 samples with

the lowest PK activity values (between 39% and 47% of the normal

activity), 5 had the mutation. All the 6 other samples with an activity

between 47% and 75% of the normal activity were wild type.

As visualized in the 3D PK structure simulation (see Figure 3),

this 277 residue is exposed, showing a peripheral position. The

prediction of the substitution Glu277Lys effect on the structure

and function of the human protein PK was ‘‘Possibly Damaging’’

(score of 0.90) supporting the previous OR result and suggesting

that this mutation is likely to be non-functional.

Searching the mutation G829A in other African malaria
endemic areas

The mutation G829A was found in the other three African

countries, always in heterozygosis: in 11 samples from Angola

(6.7%), 1 sample from Equatorial Guinea (2.6%) and 2 samples

from Sao Tome and Principe (3.0%). Allele 829A frequencies were

3.4%, 1.3% and 1.5%, respectively. In the Mozambican group

from 2005, the frequency of individuals heterozygous for 829A

was 5.3%, giving an allele frequency of 2.6%. The mutation was

not found in the control group from Portugal. Considering all the

Mozambican 447 samples, a frequency of carrier individuals of

5.8% and 829A allele frequency of 3.0% were estimated.

The observed genotype frequencies (829GG, 829AG and

829AA) were according to Hardy-Weinberg expectations for all

populations (P = 0.40 in Mozambique; P = 1.00 in Angola,

Equatorial Guinea and Sao Tome and Principe). Estimates of

FST were non-significant between all pairs of African populations

(FST#0.00 for all) (P = 1.00 for Mozambique vs. Angola; P = 0.50

for Mozambique vs. Equatorial Guinea; P = 0.30 for Mozambique

vs. Sao Tome and Principe; P = 0.51 for Angola vs. Equatorial

Guinea; P = 0.35 for Angola vs. Sao Tome and Principe; and

P = 1.00 for Equatorial Guinea vs. Sao Tome and Principe).

Association among PK-reduced activity, the mutation
G829A and malaria infection/outcome

Six-hundred and eleven DNA samples belonging to individuals

characterized for their infection and malaria disease outcome

status were analyzed: 459 samples from children (113 SM, 167

UM, 37 AI and 142 NI) from Angola and Mozambique and 152

samples from adults (4 AI and 148 NI), from Mozambique. No

significant differentiation between samples from Angola and

Mozambique were observed, so all samples together were

considered for this analysis.

Allele 829A frequencies were as follows (see Table 3): in children,

3.1% in SM, 3.3% in UM, 2.7% in AI and 2.5% in NI; in adults

4.4% in NI. In terms of malaria infection in children, allele A

frequencies were 3.2% in infected and 2.5% in non-infected. In

adults, this analysis in terms of infection was not considered due to

the low number of infected individuals. Although the mutation

frequency was higher in uncomplicated (UM) than in severe malaria

(SM) group, no significant association was observed between 829A

allele and disease outcome (x2 = 0.02, P = 1.00; OR = 1.07, 95% CI:

0.41–2.80). No significant association was found either between

829A allele and infection (x2 = 0.33, P = 0.57; OR = 1.29, 95% CI:

0.54–3.08) or between PK deficient activity (low enzyme activity)

and infection (P = 0.30), though 11 from the 12 samples with PK

reduced activity were non-infected.

Table 1. PK activity, anemia and Plasmodium infection status in the sample set from Maputo, Mozambique (2008).

Pediatrics Blood Bank Total

Age Group Children (6 months–14 years old); with
some complaint

Adults (16–65 years old); healthy
blood donors

6 months–65 years old

Nr of samples 144 152 296

Low PK activity (39–75% of control) 4 (2.8%) 8 (5.3%) 12 (4.1%)

Anemia (Hb,9 g/dL) 98 (68.1%) n.d. n.d.

Plasmodium infection 41 (28.5%) 4 (2.6%) 45 (15.2%)

Anemia+Infection 19 (13.2%) n.d. n.d.

n.d.: not determined.
doi:10.1371/journal.pone.0047071.t001
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Discussion

This is the first study aimed at determining PK deficiency

occurrence as well as at studying a potential widespread PKLR

mutation in the African continent.

In the first instance, PK deficiency was studied in samples from

Maputo, Mozambique, measuring PK activity in anemic individ-

uals, as this is described as a symptom of the disease. However,

anemia was neither associated to PK reduced activity nor 829A

allele. The overall prevalence rate of PK reduced activity was

4.1% in the study population (5.3% from blood donors and 2.8%

from children). Although children samples were, most of them,

clinical cases with a considerable anemic status, a higher PK

deficiency prevalence was not found in these samples and no

association was detected between PK low activity and anemia. In

this regard, a study carried in 2002 revealed that 74% of the

children under five and 50% of the women in reproductive age

from Mozambique was anemic [22], showing that anemia is not a

proper indicator of erythrocyte deficiencies in developing coun-

tries.

The missense mutation G829A (Glu277Lys) was identified in

41.7% of Mozambican PK deficient isolates with a strong

association with reduced activity phenotype. This mutation was

then searched in additional Mozambican samples and other sub-

Saharan regions and the 829A allele was detected in all of them at

allele frequencies between 1.3% (in Equatorial Guinea) and 3.4%

(in Angola). The allele 829A was not present in the Portuguese

samples. Although two African groups could be established

according to these frequencies (Angola and Mozambique with

higher frequencies vs. Equatorial Guinea and Sao Tome and

Principe with lower frequencies), FST values were not significantly

different between them. These differences may be explained by

sample size bias (447 samples from Mozambique and 164 from

Table 2. Samples with a reduced PK activity (between 39 and 75% of the normal control) and respective infection status and
malaria outcome and 829 locus genotype.

PK Activity U/g Hb

# Sample Assay Activity Average Control N Average/Control N Control DEF
Inf/Malaria
outcome 829G/A

1 BS_128 1 1.69 1.69 3.48 0.49 0.85 NI GG

2 BS_176 1 1.88

BS_176 2 1.93 1.91 3.48 0.55 0.85 NI GG

3 BS_197 1 1.56

BS_197 2 1.34 1.45 3.48 0.42 0.85 NI GA

4 BS_199 1 1.73

BS_199 2 0.99 1.36 3.48 0.39 0.85 NI GA

5 BS_212 1 1.85

BS_212 2 1.43 1.64 3.48 0.47 0.85 NI GA

6 BS_220 1 1.35

BS_220 2 1.52 1.44 3.48 0.41 0.85 NI GG

7 BS_230 1 1.46

BS_230 2 1.59 1.53 3.48 0.44 0.85 NI AA

8 BS_327 1 1.74

BS_327 2 1.96 1.85 3.48 0.53 0.85 NI GG

9 N_1159 1 1.93

N_1159 2 2.27 2.10 2.91 0.72 0.73 NI GG

10 N_1391 1 2.19 2.19 2.91 0.75 0.73 NI GG

11 N_1464 1 1.69 1.69 2.91 0.58 0.73 NI GG

12 O_2341 1 1.35 1.35 2.91 0.46 0.73 SM GA

BS: samples collected in the Blood Bank; O and N: samples collected in the Department of Pediatrics; Inf/Malaria outcome: infection status and malaria outcome; 829G/A:
829 genotype; NI: non-infected; SM: severe malaria.
doi:10.1371/journal.pone.0047071.t002

Figure 2. SSCP results showing a migration pattern alteration
in the exon 7 amplicons caused by the G829A substitution
(10% acrylamide-bisacrylamide gel) - samples at the extremes
(wild type isolate in the middle).
doi:10.1371/journal.pone.0047071.g002
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Angola were processed against 38 from Equatorial Guinea and 64

from Sao Tome and Principe) or design bias (isolates from

Mozambique and Angola were obtained in hospital-based studies,

whereas the others were collected in households by active search).

In addition, genetic substructure among geographic regions

cannot be excluded as a hypothesis for this disparity. Differences

in malaria selective pressure are not a probable cause, since it has

probably been similar in all these regions in the past.

Prevalence of PK deficiency seems to vary greatly among ethnic

groups and geographic regions, as well as the mutations in the

PKLR gene. Some authors have estimated a prevalence of

1:20 000 in the general white population [23]. In Europe, an

incidence of 3.3 per million has been reported in the north of

England [24], and a prevalence of 0.24% and 1.1% have been

described in Spain [25] and Turkey [26], respectively. In Asia, the

frequency of PK deficiency among the Hong Kong Chinese

population was ,0.1% [27] whilst among the south Iranian

population was 1.9% [28]. In Saudi Arabia, a prevalence of 3.12%

was registered in newborns [29]. These studies were all based in

PK activity measurements. The estimated mutant allele frequen-

cies of common variants generally vary between 0.2 and 0.8% [23]

with the highest heterozygous prevalence described so far in Saudi

Arabia (6%) [28,30] and Hong Kong (3.4%) [31]. However, these

last allele frequencies were not calculated from mutation

genotyping but only estimated from the Beutler’s screening

qualitative procedure and enzyme assay [16], which result in less

reliable estimates of heterozygosity. Moreover, consanguinity is

extremely high in Saudi Arabia, exceeding 80% in some regions

[29], which tends to bias the results.

The PK deficiency recorded in Mozambique (4.1%) and 829GA

heterozygous prevalence (2.6–6.7%) determined from unrelated

individuals from sub-Saharan populations is, to our knowledge, the

highest estimated worldwide so far. We initially hypothesized that

this would be the result of a strong malaria pressure, but a significant

association between both PK low activity and 829A and malaria

infection and outcome was not found. However, only 12 samples

were available for testing a possible effect of low enzyme activity on

severity of malaria and 20 samples for testing a possible effect of

829A allele meaning that larger numbers are required to formally

conclude. Moreover, since this was a cross-sectional study, infection

and malaria outcome groups were established according to a

malaria phenotype in a specific time point (the collection day), that

may not accurately reflect the true individual phenotype. Never-

theless, there was higher mutation prevalence in the uncomplicated

malaria group supporting that further analysis is essential to

complete the present study.

The Glu277Lys mutation here identified has been previously

reported in the PKLR mutation database [32] and has recently

been described [30] in only two individuals: one from the

Mandenka ethnic group (one of the largest ethnic groups in West

Africa) and other from the Brahui ethnic group from Pakistan,

showing that is also present in Middle East. Since the haplotypes

that include this mutation in these two individuals are different, it

was suggested that it has arisen separately. In Pakistan, as in sub-

Saharan countries, malaria continues to be a major public health

problem. Both P. falciparum and Plasmodium vivax are widely

distributed and the estimated number of annual malaria episodes

in this country is 1.5 million [33].

The simulation of this Glu277Lys substitution on the human

PK protein suggested that this mutation is likely to be non-

functional. This residue is extremely well conserved and the result

complies with the prediction from SIFT from a previous work

[30]. Probably, the charge change (Glu is negatively whereas Lys is

positively charged) at an exposed site alters the enzyme action.

Considering this result together with the knowledge about PK

deficiency that clinical symptoms usually occur in homozygotes for

a mutant PKLR allele, it was surprising to find that the 829AA

genotype belonged to a healthy blood donor without anemia

Figure 3. Location of the amino acid 277 in the PK protein and
simulation of the 3D wild type 277Glu and mutant 277Lys PK
variants structure with the software PyMol. a) Peripheral position
of the amino acid 277 (domain A); b) Wild type variant 277Glu; c)
Mutant variant 277Lys.
doi:10.1371/journal.pone.0047071.g003
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symptoms, with a PK activity of 0.44 with regard to the normal

control. In this case we were expecting an activity similar to the

deficient control sample (0.8 U/g Hb). However, the results

obtained regarding PK activity must carefully be considered since

the range of values obtained in Mozambique was narrow, far

below the values expected with the use of the kit and generally

obtained in other labs (about 3.7–8.2 U/g Hb at 25uC and about

7.4–16.4 U/g Hb at 37uC), with a thin gap between normal and

reduced activity. This can be explained by the lower room

temperature in the lab (about 20uC), when compared to those

generally maintained in this procedure (25uC or 37uC). Yet, the

procedure was efficient since it was possible to identify samples

with reduced activity. Actually, there was no direct relation

between the genotype and phenotype: although a significant

association between 829A and a reduction in the enzyme activity

was found out (and the samples with the lowest activity were those

ones with the 829A allele), the phenotype of allele A carriers was

highly variable with a large number of individuals within normal

PK activity range. A previous study emphasizes the difficulty in

predicting the consequences of mutations simply from the location

and the nature of the target residues [10]: the clinical manifes-

tations of a genetic disease reflect the interactions of a variety of

physiological and environmental factors, including genetic back-

ground, concomitant functional polymorphisms of other enzymes,

posttranslational or epigenetic modifications, ineffective erythro-

poiesis and differences in splenic function, and do not solely

depend on the molecular properties of the altered molecule.

To conclude, a geographical co-distribution between malaria

and PK-deficiency seems to occur: the Middle East and sub-

Saharan Africa are the regions with the highest PK deficiency

prevalence described so far, as determined in the present study.

These are regions with a strong malaria pressure, suggesting that

malaria may be an agent of contribute to the selection of PK

deficiency variants in these regions. Conversely, the prevalence of

PK deficiency is extremely low in the general white populations.

Moreover, some of the genes that confer resistance to malaria are

among the most variable genes in the human genome [4] and this

is the case for PKLR gene, which presents more than 180

mutations and 8 polymorphic sites [11].

Additional studies with a larger sampling effort including

longitudinal malaria clinical history characterization and a search

of the variant 277Lys in other malaria endemic regions will be

conducted to clarify the results in this survey.

Supporting Information

Table S1 List of primers and annealing temperatures
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Sábado from the Pediatric Lab and all the technicians from the Blood Bank

(Central Hospital of Maputo, Mozambique) for collecting blood samples

and to all volunteers that agreed in participate in the present study. Very

special thanks to Natacha, Antónia, Dida and Juliana, Filipa and Pedro for

their unconditional support during the stay at Mozambique.

Author Contributions

Conceived and designed the experiments: APA. Performed the experi-

ments: PM CG CM LM. Analyzed the data: PM APA. Contributed

reagents/materials/analysis tools: APA LM AA. Wrote the paper: PM

APA. Did the field work at Mozambique (2008): PM GS JL LS NF SC.

Processed the biological material and data collection in Mozambique,

Angola, Sao Tome and Principe, Equatorial Guinea and Portugal,

respectively: NF JM JP JC AA. Contributed with a critical review of the

paper: AA CM JC JP LM LR SC VdR.

References

1. Jobling MA, Hurles ME, Tyler-Smith C (2004) Human evolutionary genetics:

origins, peoples and disease. Garland Science, New York.

2. Verra F, Mangano VD, Modiano D (2009) Genetics of susceptibility to

Plasmodium falciparum: from classical malaria resistance genes towards genome-

wide association studies. Parasite Immunol 31: 234–253.

3. Allison AC (2009) Genetic control of resistance to human malaria. Curr Opin

Immunol 21: 499–505.

4. Hedrick PW (2011) Population genetics of malaria resistance in humans.

Heredity 107: 283–304.

5. Min-Oo G, Fortin A, Tam MF, Nantel A, Stevenson MM, et al. (2003) Pyruvate

kinase deficiency in mice protects against malaria. Nat Genet 35: 357–362.

Table 3. Allele 829A frequencies in infection and malaria outcome groups.

CHILDREN1 ADULTS2

Infection/Clinical group Samples 829A carriers 829A frequency Samples 829A carriers 829A frequency

SM 113 7 (6.2%) 3.1% 0 0 (0%) 0 (0%)

UM 167 11 (6.6%) 3.3% 0 0 (0%) 0 (0%)

AI 37 2 (5.4%) 2.7% 4 0 (0%) 0 (0%)

NI 142 7 (4.9%) 2.5% 148 133 (8.8%) 4.7%

INF (SM+UM+AI) 317 20 (6.3%) 3.2% 4 0 (0%) 0 (0%)

TOTAL 459 27 (5.9%) 2.9% 152 13 (8.6%) 4.6%

1Samples from children well characterized for infection and malaria outcome status from Maputo, Mozambique (collected within this study and in a previous one [9])
and from Angola (collected previously [9]) who attended to the Pediatrics Department.
2Samples from adult blood donors from Maputo, Mozambique (collected within this study).
3Including one 829AA homozygote (the only one identified in the study).
SM: severe malaria; UM: uncomplicated malaria; AI: asymptomatic infection; NI: non-infected; INF: infected.
doi:10.1371/journal.pone.0047071.t003

PK Deficiency in Sub-Saharan Africa

PLOS ONE | www.plosone.org 7 October 2012 | Volume 7 | Issue 10 | e47071



6. Ayi K, Min-Oo G, Serghides L, Crockett M, Kirby-Allen M, et al. (2008)

Pyruvate kinase deficiency and malaria. N Engl J Med 358: 1805–1810.
7. Durand PM, Coetzer TL (2008) Pyruvate kinase deficiency protects against

malaria in humans. Haematologica 93: 939–940.
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