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Abstract. It is theoretically known that a pair of phase-conjugating surfaces
can function as a perfect lens, focusing propagating waves and enhancing
evanescent waves. However, the known experimental approaches based on thin
sheets of nonlinear materials cannot fully realize the required phase conjugation
boundary condition. In this paper, we show that the ideal phase-conjugating
surface is, in principle, physically realizable and investigate the necessary
properties of nonlinear and nonreciprocal particles which can be used to build
a perfect lens system. The physical principle of the lens operation is discussed in
detail and directions of possible experimental realizations are outlined.
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1. Introduction

The perfect lens [1] is a device that focuses the field of a point source into a point; that is,
the perfect lens focuses both propagating and evanescent fields. It is known [1] that a planar
slab of the ideal Veselago medium [2] with the relative permittivity and permeability both equal
to −1 has the perfect-lens properties because of the negative refraction phenomenon and the
excitation of coupled surface plasmon–polaritons at the slab interfaces. Practical realization
of such double-negative (DNG) materials is, however, a significant challenge, especially at
optical frequencies, and clearly, any realization will suffer from some imperfections. For
example, metal–dielectric metamaterials have relatively high ohmic losses that are responsible
for nonvanishing imaginary parts in the constitutive parameters of such volumetric artificial
media.

There is, however, a possibility for a different realization of a perfect lens that does not
require any volumetric metamaterials. Indeed, the physical effects necessary for perfect lensing
happen at the lens interfaces and not within the metamaterial volume. Therefore, if one realizes
a metasurface at which the incident waves refract negatively, then a parallel pair of such planar
sheets will mimic the operation of the Veselago lens for the propagating plane waves. Moreover,
if this metasurface supports surface modes (surface plasmon–polaritons) within a wide range
of the tangential propagation factors kt > k0 (where k0 is the free space wavenumber), then
also the impinging evanescent plane waves will interact resonantly with the sheets and will
be tunneled through the lens with an enhanced amplitude, due to the electromagnetic coupling
between the surface states excited on the sheets. Such a subwavelength imaging with linear
plasmon–polariton resonant grids was theoretically predicted and confirmed experimentally in
a number of works [3–7].

In 2003, we showed [8] that two parallel sheets with phase-conjugating boundary
conditions for tangential fields on the two sides of the sheets

Et+ = E∗

t−, Ht+ = H∗

t− (1)
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have the necessary properties of the perfect lens outlined above. In these conditions that are
written for the complex amplitudes of the time-harmonic fields (the symbol ∗ denotes complex
conjugation operation) the indices ‘±’ indicate the field values on the two sides of an infinitely
thin-phase conjugating sheet.

Obviously, boundary conditions (1) cannot be realized using linear materials, and in the
same paper [8], the use of three-wave mixing in a nonlinear layer was proposed as an approach
for the realization of this effect. Phase conjugation and ‘time-reversal’ devices were studied
earlier for other applications also. It is interesting that in the same year (2003) an experimental
microwave realization of a phase-conjugating layer was published [9] independently of
our work [8]. Later, the concept of perfect lensing based on two nonlinear sheets was
studied theoretically in [10] and, very recently, numerically in [11]. Alternative experimental
realizations of the nonlinear negative refraction effect have been published in [12, 13].

However, in known devices based on antenna arrays with mixers [9] or sheets of
nonlinear dielectrics [10] or arrays of only electric or only magnetic particles with nonlinear
insertions [13], the phase-conjugated (‘time-reversed’) products create waves propagating
symmetrically to both sides of the sheet, i.e. there appears a retrodirected wave propagating
back to the source. While the perfect lens operation can be theoretically approached even in
such systems if the amplitudes of the nonlinear products tend to infinity in the assumption
of nonphysical infinitely strong external pumping [10], the ideal phase-conjugating boundary
conditions (1) cannot be realized within this scenario.

In this paper, we discuss the physical meaning of the ideal complex-conjugation boundary
conditions (1) and outline possible approaches for the realization of such surfaces, which would
potentially lead to creation of super-resolution lenses. This paper is organized as follows. In
section 2, we consider physical processes taking place at a phase-conjugating boundary and
demonstrate that such a boundary may be equivalently represented with pairs of electric and
magnetic surface currents reacting (nonlinearly) to the applied magnetic and electric fields.
In section 3, a realization of the phase-conjugating boundary with an array of bi-anisotropic
inclusions is proposed and studied, and the necessary conditions on nonlinear susceptibilities of
the inclusions are established. In section 4, a possible microwave design of such inclusions is
proposed.

2. The physical meaning of the complex-conjugating boundary conditions

2.1. Complex-conjugating boundary and perfect lens

Let us start with outlining the idea from our previous paper [8]. Consider the ideal Veselago lens
depicted in figure 1. Let the relative permittivity and permeability of the medium surrounding
the lens be equal to 1 and the relative parameters of the lens material be −1 at the working
frequency ω, respectively. At the lens interfaces the tangential components of the fields
satisfy the usual Maxwellian continuity conditions. One may note that in this system the only
difference between the time-harmonic (we use the time dependence of the form3 exp(+ jωt))
field equations in the Veselago slab (region 2)

∇ × E = jωµ0H, ∇ × H = − jωε0E (2)

3 This convention is typical of radio and microwave science; the standard optical convention can be obtained by
replacing j = −i .
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Figure 1. An ideal Veselago lens: a planar slab of a double-negative DNG
material with the medium parameters ε = −ε0 and µ = −µ0 in free space.

and the analogous equations in the free-space regions is the sign in front of the imaginary unit.
A substitution

E(old), H(old) ⇒ CE∗

(new), CH∗

(new) (3)

(C is an arbitrary constant; here and hereafter, ∗ denotes the complex conjugation) into the field
equations in region 2 reformulates the problem in terms of the new field vectors in which the
field equations become the same in all three regions:

∇ × E = − jωµ0H, ∇ × H = jωε0E, (4)

which are simply the Maxwell equations in free space. The boundary conditions on the two
interfaces, however, are no more the standard continuity conditions, but they involve complex
conjugation:

Et(1,3)
= CE∗

t(2)
, Ht(1,3)

= CH∗

t(2)
. (5)

The constant C describes the ‘transformation efficiency’ of the nonlinear surface which
transforms fields into the complex-conjugate state. In the known experimental realizations of
phase conjugation in electrically thin layers (e.g. [13]), the efficiency has been rather small.
However, by choosing a small value of C in (5), we arrive at a structure with asymmetric
properties with respect to the two sides of the surface. Indeed, complex conjugating and
dividing (5) by C∗, we see that in this case the weak fields inside the lens should be enhanced
by the surface at the same rate as they are suppressed when the surface is excited from outside.
For this reason, we will concentrate on the simplest choice of C = 1, as in [8], described by the
boundary conditions

Et(1,3)
= E∗

t(2)
, Ht(1,3)

= H∗

t(2)
. (6)

In this case, the complex-conjugating surface has symmetric properties with respect to its two
sides, and for the ideal lens operation the amplitudes of the field should not change across the
sheets.

Now it becomes evident that the problem involving an ideal Veselago slab is
mathematically equivalent to the problem dealing with a pair of conjugating surfaces in free
space, provided that the field sources are outside of region 2. Therefore, in the latter system
the field solutions are the same as in the Veselago slab, and because of this the physical
phenomena taking place at the interfaces of region 2 are also the same: the propagating plane
waves are refracted negatively at the interfaces, and the evanescent modes are enhanced due
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to the excitation of coupled surface plasmon–polariton pairs. In this regard, a pair of phase-
conjugating planes is indistinguishable from a perfect lens proposed by Pendry [1]. In what
follows, we concentrate on physical properties of such phase-conjugating sheets.

2.2. Plane-wave propagation across the phase-conjugating sheet

Let us consider a single phase-conjugating surface located at z = 0. We decompose the
tangential electric and magnetic fields into plane waves at both sides of the surface:

Et(x, y)|z=±0 =
1

(2π)2

∫∫
Et(kx , ky)|z=±0 e− j (kx x+ky y) dkx dky, (7)

Ht(x, y)|z=±0 =
1

(2π)2

∫∫
Ht(kx , ky)|z=±0 e− j (kx x+ky y) dkx dky. (8)

It is easy to see that the boundary conditions (1) require that the plane-wave components
satisfy

Et(kx , ky)|z=+0 = E∗

t (−kx , −ky)|z=−0, (9)

Ht(kx , ky)|z=+0 = H∗

t (−kx , −ky)|z=−0. (10)

From these relations, we immediately realize that the propagating modes refract negatively at
the conjugating interface due to the change in the sign of the tangential component of the wave
vector kt = kxx0 + kyy0. This is very different from the case of the same refraction at an interface
with a DNG medium where the normal component of the wave vector changes sign.

What about the evanescent modes with |kt| ≡ kt > k0? It can be shown that they are at
resonance with the phase-conjugating surface so that the strong reflection takes place at the
surface, although the field transformation in the sheets (the complex conjugate operation) does
not amplify the fields. This was studied in [8] and the strong (theoretically infinite) reflection
at such a surface for kt > k0 was explained as a result of a resonant excitation of a surface wave.
Remarkably, this resonant condition holds for all values of the tangential wave number kt > k0,
which is the condition for perfect lensing of all evanescent field components. This phenomenon
can be physically explained as follows.

Let us consider a single plane-wave component interacting with a single phase-conjugating
surface in free space. The plane wave is incident from the half-space z < 0. On both sides of
the phase-conjugating sheet, the tangential fields satisfy the usual relation between the fields in
a free-space plane wave (the following equations are valid for TM or TE waves separately):

Et(kx , ky)|z=±0 = −ZTM,TE z0 × Ht(kx , ky)|z=±0. (11)

Here the free-space wave impedances for TM- and TE-polarized waves read

ZTM = η0

√
k2

0 − k2
t

k0
, ZTE = η0

k0√
k2

0 − k2
t

, (12)

where k0 = ω/c is the free-space wavenumber, η0 =
√

µ0/ε0 and k2
t = k2

x + k2
y . But on the other

hand, the tangential fields satisfy also the boundary condition (1). Together with the impedance
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relation (11), this leads to

Et(kx , ky)|z=−0 = E∗

t (−kx , −ky)|z=+0

= − Z∗

TM,TE z0 × H∗

t (−kx , −ky)|z=+0

= − Z∗

TM,TE z0 × Ht(kx , ky)|z=−0. (13)

Thus, a wave incident on the sheet from one side ‘sees’ the surface impedance which equals the
complex conjugate of the wave impedance in free space. The reflection coefficient reads

RTM,TE =
Z∗

TM,TE − ZTM,TE

Z∗

TM,TE + ZTM,TE
. (14)

If the wave is a propagating wave, i.e. kt ≡

√
k2

x + k2
y < k0 ≡ ω/c, then its wave impedance is a

real number, and the reflection coefficient equals zero. This proves that the propagating modes
experience negative refraction without any reflection.

If the wave is evanescent, i.e. kt > k0, the wave impedances (11) are purely imaginary, the
denominator of (14) approaches zero, and the reflection coefficient is infinite. The transmission
coefficient is also infinite due to the boundary condition (1).

The physical reason for such a resonance can be understood also with an equivalent
electric circuit model. Consider, for instance, the waves of TM polarization. The characteristic
impedance of an evanescent TM wave (12) can be written as ZTM = − jη0α/k0, where α

is the decay factor: α =

√
k2

t − k2
0 . We conclude that a TM evanescent wave has capacitive

characteristic impedance. Because of the conjugating interface, the same impedance of the
matching TM wave behind the interface (at z = +0) is seen as inductive in front of the interface
(at z = −0). Such a situation can be represented by an equivalent electric network composed of
two reactances of opposite character, which resonates at the frequency where the two reactances
compensate each other. Probably, Alù and Engheta [14] were the first to identify and explain
the resonance of the same nature that happens at the border of a double-positive and a double-
negative material.

Therefore, when an incident evanescent wave excites a conjugating surface, it resonantly
excites a surface mode that matches its transverse propagation factor and this results in
very strong (theoretically infinite) reflected and transmitted waves at the surface. The strong
reflection was also found to be key to sub-wavelength imaging in a pair of parametrically
pumped nonlinear nonmagnetic sheets studied in [10]. However, the above discussion shows
that in a metasurface realizing the boundary conditions (1), the reflection and transmission
coefficients for evanescent modes tend to infinity due to a high-quality resonance (theoretically,
with an infinite quality factor), while, in [10], the surface itself parametrically amplifies the
fields.

2.3. Equivalent surface currents on the phase-conjugating sheet

One may note that the boundary conditions (1) imply discontinuity of both tangential electric
and magnetic fields across the phase-conjugating plane. The jumps of the fields can be expressed
as follows:

Et(x, y)|z=+0 − Et(x, y)|z=−0 = −2 j Im[Et(x, y)]|z=−0, (15)

Ht(x, y)|z=+0 − Ht(x, y)|z=−0 = −2 j Im[Ht(x, y)]|z=−0. (16)
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These jumps are related to the equivalent magnetic and electric surface currents that exist on the
surface:

z0 × Jm(x, y) = Et(x, y)|z=+0 − Et(x, y)|z=−0

= − 2 j Im[Et(x, y)]|z=−0 = 2 j Im[Et(x, y)]|z=+0, (17)

−z0 × Je(x, y) = Ht(x, y)|z=+0 − Ht(x, y)|z=−0

= − 2 j Im[Ht(x, y)]|z=−0 = 2 j Im[Ht(x, y)]|z=+0. (18)

Let us stress already at this point that the relations (17)–(18) are the only physical
conditions one has to satisfy in a subwavelength imaging device based on phase-conjugating
sheets. Nothing more is required! Essentially, these relations tell us that it is enough in practice
to realize a metasurface that reacts with certain magnetic and electric surface currents to the
imaginary parts of the tangential electric and magnetic fields at a given side of the surface. This
also shows that there is no need for extra-strong pumping or super-efficient nonlinear conversion
as in [10]. Moreover, from (17)–(18) we observe that the induced electric current should be
proportional to the magnetic field on the sheet (more precisely, to its imaginary part). Likewise,
the induced magnetic current is proportional to the electric field. This is quite different from the
known approaches based on layers of nonlinear dielectrics or magnetics [10, 13].

Let us decompose each of these surface currents into a sum of two currents:
Je = J(1)

e + J(2)
e , Jm = J(1)

m + J(2)
m , where

−z0 × J(1)
e = −Ht|z=−0, z0 × J(1)

m = −Et|z=−0, (19)

−z0 × J(2)
e = Ht|z=+0, z0 × J(2)

m = Et|z=+0. (20)

One can see that the pair of the surface currents J(1)
e , J(1)

m is essentially an equivalent
Huygens source defined at the plane z = −0. In the half-space z > 0 this source produces the
field which is the negate of the field that the external sources located at z < 0 induce in the
half-space z > 0 (the negation is due to the minus signs in the right-hand side of (19)). Thus,
the physical role of the currents J(1)

e , J(1)
m when concerned with the half-space z > 0 is to cancel

the field incident from the other half-space. The same holds for the other pair of currents J(2)
e ,

J(2)
m when concerned with the half-space z < 0. These currents form a Huygens source defined at

z = +0 plane. In the half-space z < 0, they cancel (pay attention to the direction of the normal!)
the field produced by the external sources from the z > 0 half-space.

On the other hand, the pair of currents J(1)
e , J(1)

m plays another role when concerned with the
half-space z < 0. Indeed, using the boundary conditions (1) we write

−z0 × J(1)
e = −H∗

t |z=+0, z0 × J(1)
m = −E∗

t |z=+0, (21)

from which it is evident that these currents can be identified also as an equivalent source located
at the plane z = +0 that produces at z < 0 the conjugated field of the sources located in the
half-space z > 0. Respectively, J(2)

e , J(2)
m produce the conjugated field in the region z > 0.

To summarize, we have identified the following roles of the currents:

• The pair J(1)
e , J(1)

m cancels the field incident from z < 0 to the half-space z > 0 and creates
the conjugated field of the sources from the half-space z > 0 in the half-space z < 0;

• The pair J(2)
e , J(2)

m cancels the field incident from z > 0 to the half-space z < 0 and creates
the conjugated field of the sources from the half-space z < 0 in the half-space z > 0.

New Journal of Physics 14 (2012) 035007 (http://www.njp.org/)

http://www.njp.org/


8

3. Phase-conjugating surface as an array of bi-anisotropic nonlinear inclusions

From the above results, we see that the ideal phase-conjugating surface should respond to the
fields with both electric and magnetic polarizations. Dependence of the induced electric current
on the magnetic field and vice versa suggests that the structure should have some magneto-
electric coupling. In this section, we investigate where it is possible to realize the ideal phase-
conjugating boundary conditions (1) with a planar array of nonlinear bi-anisotropic particles.

3.1. General requirements on susceptibilities of inclusions

Let us first find out how the total induced electric and magnetic surface current densities depend
on the incident electric and magnetic fields in the array plane. To do that, we consider an isolated
phase-conjugating surface in the field of a single TM (or TE) polarized plane electromagnetic
wave (propagating or evanescent). Taking into account the conjugating boundary condition (1),
we may formally write the total tangential electric and magnetic fields on both sides of the
surface as

Et(x, y)|z=−0 = (1 + RTM,TE)E
inc
t (x, y)|z=0, (22)

Et(x, y)|z=+0 = (1 + R∗

TM,TE)
(
Einc

t (x, y)
)∗

|z=0, (23)

Ht(x, y)|z=−0 = (1 − RTM,TE)H
inc
t (x, y)|z=0, (24)

Ht(x, y)|z=+0 = (1 − R∗

TM,TE)
(
Hinc

t (x, y)
)∗

|z=0, (25)

where the reflection coefficients RTM,TE are given by (14), from which we note that R∗

TM,TE =

−RTM,TE. The above expressions hold for both propagating and evanescent waves incident from
the half-space z < 0.

Therefore, from (17)–(18) and (22)–(25) we obtain

−z0 × Jm(x, y) = 2 j Im(Einc
t (x, y))|z=0 + 2RTM,TE Re(Einc

t (x, y))|z=0, (26)

z0 × Je(x, y) = 2 j Im(Hinc
t (x, y))|z=0 − 2RTM,TE Re(Hinc

t (x, y))|z=0. (27)

The addends on the right-hand side of (26)–(27) that are proportional to the imaginary part of the
incident field are relevant for the propagating waves (for these waves RTM,TE = 0), while for the
evanescent waves the addends proportional to the real part of the field are of most importance,
because |RTM,TE| → ∞ for these modes. It is instructive to compare these observations with
the discussion in section 2.3. From (17)–(18), it follows that in terms of the total tangential
fields at a given side of the phase-conjugating sheet, the conditions for both propagating and
evanescent waves are the same: equations (17)–(18) do not distinguish these waves. Physically,
this is because the locations where one must measure the fields and where one must create the
surface currents are not at the same point if one wants to approach a design directly suggested
by these equations. Indeed, the mathematical form of equations (17)–(18) demands that the field
values must be taken at a point slightly displaced off the surface z = 0. In contrast, in an array
of particles (considered here as point objects) the equivalent surface currents depend only on
the fields in the array plane and, as we will see soon, the required reaction to this field happens
to be different for the two types of waves.
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A related observation is that in a realistic structure, e.g. an array of nonlinear polarizable
bi-anisotropic inclusions, it is not the incident field, but the local field Eloc

t , Hloc
t that excites each

and every inclusion in the structure. The latter has a contribution from the secondary field of the
induced currents. We may therefore write for the signals at the frequency of the incident wave:

Eloc
t (x, y) = Einc

t (x, y) + βee · Je(x, y), (28)

Hloc
t (x, y) = Hinc

t (x, y) + βmm · Jm(x, y), (29)

where βee,mm are the so-called interaction dyadics. For arbitrary distributed currents, these
dyadics are understood as operators acting on the currents. However, for the following it is
enough to consider the currents of the form Je,m(x, y) = Je,m

kt
exp(− jkt · r) + Je,m

−kt
exp( jkt · r).

In this case, in order for (28)–(29) to hold in a simple dyadic sense, the interaction dyadics must

satisfy βee,mm ≡ βee,mm(kt) = βee,mm(−kt), i.e. the lattice (not the particles!) must have a center
of symmetry. There are no cross-terms in (28)–(29) because the tangential magnetic (electric)
field of an array of tangential electric (magnetic) dipoles vanishes in the plane of the array.

Additionally, the induced electric and magnetic currents must be sensitive to the phase
of the external field, because the conjugating boundary reacts differently to the real and
imaginary parts of the tangential electric and magnetic fields. Therefore, the inclusions must
react differently to the corresponding components of the local fields. Based on the above
discussion, we may write

Je = α
re

ee · Re(Eloc
t ) + jα

im
ee · Im(Eloc

t ) + α
re

em · Re(Hloc
t ) + jα

im
em · Im(Hloc

t ), (30)

Jm = α
re

me · Re(Eloc
t ) + jα

im
me · Im(Eloc

t ) + α
re

mm · Re(Hloc
t ) + jα

im
mm · Im(Hloc

t ), (31)

where α
re,im
ee,mm,me,em are the dyadic polarizabilities to the real and imaginary components of the

local fields.
Substituting (31)–(30) into (28)–(29), we obtain

Einc
t = (I t − βee · α

re
ee ) · Re(Eloc

t ) + j (I t − βee · α
im

ee ) · Im(Eloc
t )

−βee · α
re

em · Re(Hloc
t ) − jβee · α

im
em · Im(Hloc

t ), (32)

Hinc
t = (I t − βmm · α

re
mm) · Re(Hloc

t ) + j (I t − βmm · α
im

mm) · Im(Hloc
t )

−βmm · α
re

me · Re(Eloc
t ) − jβmm · α

im
me · Im(Eloc

t ), (33)

where I t is the unit dyadic in the plane of the array. Respectively,

Re(Einc
t ) = Re(I t − βee · α

re
ee ) · Re(Eloc

t ) + Im(βee · α
im

ee ) · Im(Eloc
t )

− Re(βee · α
re

em) · Re(Hloc
t ) + Im(βee · α

im
em ) · Im(Hloc

t ), (34)

Im(Einc
t ) = − Im(βee · α

re
ee ) · Re(Eloc

t ) + Re(I t − βee · α
im

ee ) · Im(Eloc
t )

− Im(βee · α
re

em) · Re(Hloc
t ) − Re(βee · α

im
em ) · Im(Hloc

t ), (35)
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Re(Hinc
t ) = Re(I t − βmm · α

re
mm) · Re(Hloc

t ) + Im(βmm · α
im

mm) · Im(Hloc
t )

− Re(βmm · α
re

me) · Re(Eloc
t ) + Im(βmm · α

im
me ) · Im(Eloc

t ), (36)

Im(Hinc
t ) = − Im(βmm · α

re
mm) · Re(Hloc

t ) + Re(I t − βmm · α
im

mm) · Im(Hloc
t )

− Im(βmm · α
re

me) · Re(Eloc
t ) − Re(βmm · α

im
me ) · Im(Eloc

t ). (37)

These expressions can be substituted into (26)–(27) from which one obtains a set of dyadic
relations for the polarizabilities assuming that the four components of the local fields
Re(Eloc

t (x, y)), Re(Hloc
t (x, y)), Im(Eloc

t (x, y)) and Im(Hloc
t (x, y)) are independent. Doing so,

we obtain the following relations:

z0 × α
re

me = 2 j Im(βee · α
re

ee ) − 2R · Re(I t − βee · α
re

ee ), (38)

jz0 × α
im

me = −2 j Re(I t − βee · α
im

ee ) − 2R · Im(βee · α
im

ee ), (39)

z0 × α
re

mm = 2 j Im(βee · α
re

em) + 2R · Re(βee · α
re

em), (40)

jz0 × α
im

mm = 2 j Re(βee · α
im

em ) − 2R · Im(βee · α
im

em ), (41)

z0 × α
re

ee = −2 j Im(βmm · α
re

me) + 2R · Re(βmm · α
re

me), (42)

jz0 × α
im

ee = −2 j Re(βmm · α
im

me ) − 2R · Im(βmm · α
im

me ), (43)

z0 × α
re

em = −2 j Im(βmm · α
re

mm) − 2R · Re(I t − βmm · α
re

mm), (44)

jz0 × α
im

em = 2 j Re(I t − βmm · α
im

mm) − 2R · Im(βmm · α
im

mm), (45)

where R is the dyadic reflection coefficient defined in terms of RTM,TE as

R = RTE
z0z0

×

×
ktkt

k2
t

+ RTM
ktkt

k2
t

(46)

(for the definition of the double cross product and other dyadic algebra rules, see, e.g., [15]). One

may note that because R in the above relations is either zero or purely imaginary: (R)∗
= −R,

it follows that Re(α
re

ee,mm,em,me) = Im(α
im

ee,mm,em,me) = 0. Therefore, equations (38)–(45) can be
written also as

z0 × α
re

me = 2
[
Re(βee) + j R · Im(βee)

]
· α

re
ee − 2R, (47)

z0 × α
im

me = 2
[
Re(βee) + j R · Im(βee)

]
· α

im
ee − 2I t, (48)

z0 × α
re

mm = 2
[
Re(βee) + j R · Im(βee)

]
· α

re
em, (49)

z0 × α
im

mm = 2
[
Re(βee) + j R · Im(βee)

]
· α

im
em , (50)
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z0 × α
re

ee = −2
[
Re(βmm) − j R · Im(βmm)

]
· α

re
me, (51)

z0 × α
im

ee = −2
[
Re(βmm) − j R · Im(βmm)

]
· α

im
me , (52)

z0 × α
re

em = −2
[
Re(βmm) − j R · Im(βmm)

]
· α

re
mm − 2R, (53)

z0 × α
im

em = −2
[
Re(βmm) − j R · Im(βmm)

]
· α

im
mm + 2I t. (54)

Let us consider first the propagating part of the spectrum. For such waves, R = 0, and the above

relations simplify. Also, we can write βee = η0β and βmm = η−1
0 β, where β is the dimensionless

interaction dyadic which, by duality, is the same for the electric and magnetic currents as they
are due to the electric and magnetic dipole moments that belong to the same particles in the

array. The solution of the system of dyadic equations (47)–(54) in the case of R = 0 is

α
re

ee,mm,em,me = 0, (55)

α
im

me = −α
im

em = 2[I t + 4(z0 × Re(β))2]−1
· (z0 × I t), (56)

η0α
im

ee = η−1
0 α

im
mm = 4z0 × Re(β) · [I t + 4(z0 × Re(β))2]−1

· (z0 × I t). (57)

It can be shown [16, 17] that the real part of the interaction dyadic β for a planar array verifies

Re(β) = −
1

2 cos θ

z0z0
×

×
ktkt

k2
t

−
cos θ

2

ktkt

k2
t

+
k2

0 A0

6π
I t, (58)

where θ is the angle of incidence: cos θ =

√
1 − k2

t /k2
0 , and A0 is the unit cell area. This result

holds for arrays with arbitrary unit cell geometries, provided that the arrays do not produce
higher-order diffraction lobes.

It is quite interesting that the imaginary part of the interaction constant that contains
the information about the microstructure of the array has completely disappeared from the
above solution. The imaginary part of the interaction constant does not contribute in this case
because the induced currents Je and Jm are always imaginary, and the respective additions to the

interaction field j Im(βee) · Je and j Im(βmm) · Jm are real valued, to which the particles do not
react. Thus, the interaction of the particles in the array is irrelevant in the considered case, and
each particle radiates effectively as in free space.

We may substitute (58) into (56)–(57), taking into account that

(z0 × Re(β))2
=

[
−

1

4
−

(
k2

0 A0

6π

)2

+
k2

0 A0

12π

(
cos θ +

1

cos θ

)]
I t, (59)

and obtain

α
im

me = −α
im

em =
6π

k2
0 A0

(
cos θ +

1

cos θ
−

k2
0 A0

3π

)−1

(z0 × I t), (60)

η0α
im

ee = η−1
0 α

im
mm = −

12π

k2
0 A0

(
cos θ +

1

cos θ
−

k2
0 A0

3π

)−1

(z0z0
×

×
Re(β)). (61)
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For practical purposes, considering the phase conjugation of paraxial beams in dense arrays, we
may approximate the above relations as

α
im

me = −α
im

em ≈
3π

k2
0 A0

(z0 × I t), (62)

η0α
im

ee = η−1
0 α

im
mm ≈

3π

k2
0 A0

I t. (63)

Because of the form of relations (22)–(25), the obtained exact solutions (56)–(57) and their
approximations (62)–(63) are valid for arbitrary plane waves incident from the half-space z < 0.
The solution for the case of incidence from the half-space z > 0 is obtained by replacing z0 with
−z0 in (56)–(57) and (62)–(63), which changes signs of α

im
em,me.

From the above results, we see that the particle must be ‘invisible’ for the real-valued
electric and magnetic fields, while the polarizabilities of the particle to the imaginary-valued
fields must be such that the electric and magnetic currents form Huygens pairs that absorb
the incident wave and produce the phase-conjugated wave (this is discussed in more detail in
section 3.2).

For the evanescent waves |RTM,TE| → ∞ therefore, it is convenient to multiply equations

(47)–(54) by R
−1

from the left. Then, in the limit R
−1

→ 0 the following solution of the
system (47)–(54) can be immediately found:

η0α
re

ee = η−1
0 α

re
mm = − j[Im(β)]−1, (64)

α
im

ee,mm = α
re,im
em,me = 0. (65)

The same solution can also be obtained with a more accurate treatment. Let us introduce

the notations Ce = Re(βee) + j R · Im(βee) and Cm = Re(βmm) − j R · Im(βmm). Then, in these
notations, we may, for example, write the solution for α

re
ee as

α
re

ee = 4[I t + 4(z0 × Cm) · (z0 × Ce)]
−1

· (z0 × Cm) · (z0 × R)

=

[
I t +

1

4
(z0 × Ce)

−1
· (z0 × Cm)−1

]−1

· (z0 × Ce)
−1

· (z0 × R)

= C
−1

e · R +O(R
−2

). (66)

Next,

C
−1

e · R = − j[Im(βee)]
−1

· [I t − j R
−1

· Re(βee) · (Im(βee))
−1]−1

= − j[Im(βee)]
−1 +O(R

−1
), (67)

which leads to (64).
From (64)–(65), we conclude that to conjugate the evanescent part of the spectrum the

inclusions must be ‘invisible’ to the imaginary part of the electric and magnetic fields. The
inclusions do not have to be bi-anisotropic in this case. The particles are purely reactive and their
reactance should compensate for the reactance due to particle interactions, creating a resonant
structure.
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From a physical point of view, condition (64) can be understood as a condition for a surface
polariton resonance at the array surface. Indeed, for particles with the polarizabilities (64)–(65)

we may write Je = α
re

ee · Re(Eloc). On the other hand, Eloc
= Einc + βee · Je. Therefore,

Je = α
re

ee · Re(Einc + βee · Je) = α
re

ee · Re(Einc) + jα
re

ee · Im(βee) · Je, (68)

because both α
re

ee and Je are purely imaginary. From here

Je =

[
I t − jα

re
ee · Im(βee)

]−1
· α

re
ee · Re(Einc), (69)

and we see that Je → ∞ when condition (64) is fulfilled. A similar resonance is responsible for
the enhancement of the evanescent waves in a pair of linear plasmon–polariton resonant grids
studied in previous works [3–6].

3.2. Electromagnetic properties of the particles forming phase-conjugating sheets

Although the principle of operation of the field-conjugating perfect lens is the nonlinear
operation of complex conjugation of electromagnetic fields, it is interesting to observe that the
particles that perform this operation are characterized by linear polarizabilities with respect to
the real or imaginary parts of the fields. The nonlinear nature of the particles is thus only in
their selective sensitivity to either real or imaginary parts of the complex amplitude of the local
fields.

Considering the particle response to the real or imaginary field components separately, we
may apply the theory of usual linear bi-anisotropic particles. For the particles that react to the
imaginary parts of the field (the particles excited by the propagating part of the spatial spectrum
in the paraxial approximation), we rewrite relations (30), (31) and (62), (63) in terms of the
induced electric and magnetic dipole moments of individual particles pe,m and the local fields

pe =

(
− j

3πε0

k3
0

)
j Im(Eloc

t ) + η0

(
j
3πε0

k3
0

)
z0 × j Im(Hloc

t )

= aee · j Im(Eloc
t ) + η0aem · j Im(Hloc

t ), (70)

pm =

(
− j

3πµ0

k3
0

)
j Im(Hloc

t ) −
1

η0

(
j
3πµ0

k3
0

)
z0 × j Im(Eloc

t )

= amm · j Im(Hloc
t ) +

1

η0
ame · j Im(Eloc

t ) (71)

(the surface current densities are related to the dipole moments of individual particles as
Je,m = jωpe,m/A0).

These relations show that the particles reacting to the propagating part of the spectrum are
bi-anisotropic and nonreciprocal. The magnetoelectric coupling is due to nonreciprocity only
(no magnetoelectric coupling due to reciprocal spatial dispersion effects), because the coupling
dyadics satisfy

aem = a
T

me. (72)

Furthermore, because these dyadics are antisymmetric ( aem = −a
T

em, ame = −a
T

me), materials
formed by particles of this type belong to the class of moving media [18, 19].
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The polarizabilities of lossless bi-anisotropic particles satisfy the following conditions
(e.g. [19]):

aee = a
†
ee, amm = a

†
mm, aem = a

†
me, (73)

where † denotes the Hermitian conjugation operation. Obviously, the inclusions with the
polarizabilities (70) and (71) have the opposite property of being purely passive or active
(there is no stored electromagnetic energy in their near fields), because they satisfy the opposite
conditions:

aee = −a
†
ee, amm = −a

†
mm, aem = −a

†
me. (74)

The power extracted from the local fields by one pair of the particles reads

P =
1
2Re{J∗

e · Eloc + J∗

m · Hloc
}A0. (75)

Under paraxial wave propagation, we can use the polarizability expressions (62) and (63) and
assume that the electric and magnetic local fields are related by the free-space wave impedance
η0. In this approximation we find, for the case of plane-wave incidence from the half-space
z < 0,

P =
1

2

3π

k2
0

4

η0
[Im(E loc)]2

=
6π

k2
0η0

[Im(E loc)]2
=

6πη0

k2
0

[Im(H loc)]2. (76)

As is clear from this result, each of the polarizability components in (62) and (63) brings
equal contributions to the extracted power. Noting that the induced dipole moments of ideal
absorption-free dipole scatters read (at the resonance)

pe0 =

(
− j

6πε0

k3
0

)
Eloc, pm0 =

(
− j

6πµ0

k3
0

)
Hloc, (77)

we see that a pair of such ideal dipoles would extract from the fields exactly the same amount
of power as our phase-conjugating particles (when the complex amplitude of the local field is
purely imaginary at the point of the particle). Thus, we can conclude that the particles described
by (62) and (63) actually do not absorb power. They act as ideal absorption-free scatterers,
which receive power from the incident field and re-radiate the same amount of power, creating
phase-conjugated waves of the same intensity as the incident propagating waves.

It is easy to check that the same particles with the polarizabilities (70)–(71) do not
react to the plane waves incident from the half-space z > 0. Indeed, the sign of the magnetic
field in these waves is opposite; therefore, the contributions due to Eloc and Hloc to the
electric dipole moment pe and the magnetic dipole moment pm compensate for each other
in equations (70)–(71), so that pe = pm = 0 under such excitation. As was mentioned in
section 3.1, to conjugate the waves incident from the half-space z > 0, one must change the
signs of the magnetoelectric coupling terms in (70)–(71). Physically, this requires another array
of inclusions with a slightly different topology (more details in the next section). Fortunately,
the particles in the two arrays do not interact, so that in practice it is possible to combine the
two types of particles in a single plane, for example, in a chess board-like structure.

4. Design of the phase-conjugating bi-anisotropic inclusions at microwaves

4.1. The case of propagating waves

To approach the design of nonlinear phase-conjugating inclusions at microwaves, one may
start from the ideas behind the well-known omega particle [20, 21]. An omega particle is a
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combination of a short dipole antenna and a small loop antenna. The particle is planar, so that
both the dipole and the loop may be printed on a single side of a printed circuit board. In the
most common variant of this linear and reciprocal inclusion, the dipole is directly connected to
the loop. The nonlinearity and nonreciprocity, thus, can be achieved if one inserts a nonlinear
and nonreciprocal four-pole network between the two antennas.

To identify what kind of network one may need, let us first briefly analyze how the linear
omega particle reacts to the local electric and magnetic fields. We consider the case when the
particle lies in the xz-plane with the dipole antenna oriented along the x-axis. In this geometry,
the dipole reacts to the x-component of the electric field, E loc

x , and the loop reacts to the y-
component of the magnetic field, H loc

y .
The electromotive force (EMF) induced by the local field in the dipole can be written as

Edip = hdip E loc
x , (78)

where hdip is the effective height of the dipole antenna. For a short dipole of the total length 2l,
the effective height is hdip = l. Respectively, the EMF induced in the loop by the magnetic field
reads

Eloop = − jωµ0SH loc
y , (79)

where S = πr 2 is the area of the loop. Under a normal plane-wave incidence, H loc
y = ±E loc

x /η0

(the two signs are for the two possible directions of incidence); therefore,

Eloop = ∓ j (k0S)E loc
x = ∓ jhloop E loc

x , (80)

where we have introduced the effective height of a small loop antenna hloop = k0S. One may
note that the EMF induced in the loop is in quadrature with respect to the EMF in the dipole.
Therefore, when the two antennas are directly connected, these EMFs add up, but never fully
compensate for (or fully complement) each other. In fact, in the most interesting case when
hloop = hdip = l, the total EMF induced in the antennas is

Etot = (1 ∓ j)l E loc
x . (81)

Respectively, the induced current at the point where the dipole connects to the loop is

Idip =
(1 ∓ j)l E loc

x

Zdip + Z loop
, (82)

where Zdip is the input impedance of the dipole and Z loop is the input impedance of the loop.
The induced electric and magnetic dipole moments are proportional to this current:

pe,x =
Idipl

jω
= − j

(1 ∓ j)l2 E loc
x

ω(Zdip + Z loop)
, (83)

pm,y = µ0 IdipS = η0
(1 ∓ j)l2 E loc

x

ω(Zdip + Z loop)
, (84)

where we use the fact that S = l/k0 if hloop = hdip = l. When the particle is at resonance, Zdip +
Z loop = 2Rrad + Rloss, where Rrad = η0k2

0l2/6π is the radiation resistance of a short dipole antenna
(when hloop = hdip both antennas have the same radiation resistance) and Rloss corresponds to the
ohmic loss in metal, which we may neglect. From these relations we see that the induced dipole
moments in the linear omega particle are in quadrature.
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Figure 2. (a) Equivalent circuit of an idealized BM. (b) A network composed of
two balanced modulators connected through an LPF.

However, from (70)–(71) it follows, firstly, that in the nonlinear particle that we want to
design the contributions due to Eloc and Hloc in the expressions for both dipole moments must
be in phase (for the wave incident from z < 0) and, secondly, the induced electric and magnetic
moments themselves must also be in phase. In symbolic language, we may say that the four-pole
network that we insert between the two antennas must act in such a way that ∓ j in (83)–(84)
is replaced with ±1 and η0 in (84) with − jη0. As will be seen in a few moments, this can be
achieved with microwave nonlinear circuits known as balanced modulators (BMs).

A BM is a three-port device such that there are two ports that may both serve as input and
output (the ports are exchangeable due to the symmetry of the circuit; this is one of the reasons
why the circuit is called balanced modulator) and the third port to which a voltage from a local
oscillator is applied. The function that the BM performs is a multiplication of the signal applied
to one of its input ports and the signal of the local oscillator. One may represent an idealized BM
with an equivalent circuit shown in figure 2(a). The controllable current sources in the circuit
depend on the instantaneous voltages at the ports as follows:

i1(t) = K12u2(t)ulo(t), (85)

i2(t) = K21u1(t)ulo(t), (86)

where ulo(t) is the voltage at the local oscillator port and u1,2(t) and i1,2(t) are the voltages and
the currents at the other two ports, respectively. We need power-conserving BMs that do not
absorb or store power that is delivered to ports 1 and 2; hence, u1(t)i1(t) + u2(t)i2(t) = 0. From
here, K12 = −K21. The input and output resistances of the BM shown in the figure with dashed
lines are assumed to be very large and are not taken into account.

Consider now the network depicted in figure 2(b). In this network, we have connected two
BMs through a low-pass filter (LPF). One may imagine this LPF as a 5-type C LC-filter with
an inductor in a series branch and two capacitors in the parallel branches. For us, however, the
only thing that is important here is that this LPF freely passes through the direct current (dc)
component and blocks all high-frequency components (the dc path through the filter is shown
with dashed lines).

The whole network is designed to operate with signals at the frequency ω = 2π f0 = 2π/T0;
therefore, we may represent the voltages u1,2(t) as

u1,2(t) = U re
1,2 cos ωt − U im

1,2 sin ωt. (87)

We apply the local oscillator signal at the frequency ω and the phase ϕ = π/2 to the first
BM: ulo,1 = −sin ωt , and another signal at the same frequency and ϕ = 0 to the second BM:
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ulo,2 = cos ωt . Therefore, we may write for the dc currents i ′

1,2=
(here 〈· · · 〉T0 denotes averaging

over a period):

i ′

1=
= K21

〈
(U re

1 cos ωt − U im
1 sin ωt)(− sin ωt)

〉
T0

=
1
2 K21U im

1 , (88)

i ′

2=
= K12

〈
(U re

2 cos ωt − U im
2 sin ωt) cos ωt

〉
T0

=
1
2 K12U re

2 . (89)

But as is dictated by the topology of the network, i ′

1=
= −i ′

2=
; therefore

U im
1 = U re

2 . (90)

Next, we express the high-frequency currents at ports 1 and 2:

i1(t) = (K12u′

1=
)(− sin ωt) = −I im

1 sin ωt, (91)

i2(t) = (K21u′

2=
) cos ωt = I re

2 cos ωt, (92)

where I im
1 = K12u′

1=
and I re

2 = K21u′

1=
. But again, from the topology of the network, the dc

voltages satisfy u′

1=
= u′

2=
; therefore

I im
1 = −I re

2 . (93)

Note that always I re
1 = I im

2 = 0.
Thus, from (90) and (93), it is evident that the considered network operates essentially as a

‘connector’ between the imaginary current and voltage at the first port and the real current and
voltage at the second port. The network also enforces zero real current in the first port and zero
imaginary current in the second port. This is exactly what we need in the design of the phase-
conjugating particles, and the corresponding topologies including the antennas are shown in
figure 3.

In these designs, we connect the dipole and loop antennas to the BM-based network
discussed above. The electrical size of the circuit is negligible, and both antennas are excited
by the same local field. Let us analyze the operation of the variant shown at the top of figure 3.
First of all, it is evident that when placed in an arbitrary local field, the EMFs in both antennas
are still given by (78) and (79). However, contrary to what happens in a linear omega particle,
the real part of Edip and the imaginary part of Eloop will not be able to excite any current in the
antennas, because these components are blocked by the BMs. Therefore, the relevant parts of
the EMFs in the two antennas are (as above, we let hdip = hloop = l)

E im
dip = l Im(E loc

x ), (94)

E re
loop = η0l Im(H loc

y ). (95)

Analogously, the voltage drops on the reactive parts Xdip = Im(Zdip) and X loop = Im(Z loop) of
the input impedances of the dipole and the loop have no effect as well, as they are in quadrature
with respect to the current flowing through them. Thus, the only relevant part of the input
impedance is the radiation resistance.

From the topology of the network, I im
dip = −I im

1 and I re
loop = I re

2 ; therefore, I im
dip = I re

loop. Next,
because of (90), the EMFs (94) and (95) and the rest of the equivalent circuits of the two
antennas (only two Rrad remain) appear to be essentially connected in series; hence,

I im
dip = I re

loop =
l[Im(E loc

x ) + η0 Im(H loc
y )]

2Rrad
. (96)
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Figure 3. The topology of the two types of phase-conjugating bi-anisotropic
inclusions for the phase-conjugating surface operating at the frequency f0. Each
particle consists of a short dipole antenna with the impedance Zdip and a small
loop antenna with the impedance Z loop. The two antennas are interconnected
through a nonlinear and nonreciprocal network composed of two BMs and
an LPF. The mixers are fed by a local oscillator with two signal outputs in
quadrature ϕ = 0◦ and ϕ = 90◦. See the main text for further explanation.

The complex amplitudes of the electric and magnetic dipole moments, therefore, read

pe,x =
l( j I im

dip )

jω
=

l2

2ωRrad
[Im(E loc

x ) + η0 Im(H loc
y )], (97)

pm,y = µ0 I re
loopS = η0

l2

2ωRrad
[Im(E loc

x ) + η0 Im(H loc
y )], (98)

which is a particular case of (70)–(71) for the considered polarization.
As can be readily verified, the second design variant shown at the bottom of figure 3 has

the opposite sign of the magnetoelectric interaction terms and thus must be used to conjugate
the plane waves incident from the half-space z > 0.

4.2. The case of evanescent waves

To phase-conjugate the evanescent waves, the particles must react to the real parts of electric
and magnetic fields, as follows from (64)–(65). In this case, the inclusions are simple electric
and magnetic dipoles without magneto-electric interaction. Therefore, as the base for our design
we may choose the loaded dipole and loop antennas. In what follows, we consider in detail the
case of a linear electric dipole oriented along the x-axis (the magnetic dipole along the y-axis
may be considered in a dual manner).
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Figure 4. A nonlinear single-port network used as a load for a short electric
dipole. The network is composed of the same elements as in figure 2, with
an additional operational amplifier working in the current-to-voltage conversion
mode.

When a short loaded dipole is placed in an electric field, an EMF is induced in the dipole,
with the value given by (78). Respectively, the current induced in the dipole is

Idip =
l E loc

x

Zdip + Z load
, (99)

where Z load is the impedance of a bulk load connected to the dipole. The induced electric dipole
moment of the loaded dipole reads

pe,x =
Idipl

jω
= − j

l2 E loc
x

ω(Zdip + Z load)
. (100)

It is easy to verify that if we choose the load so that

Z load = −Zdip +
jη0l2

A0
Im(β), (101)

then the condition for the surface electric current polarizability (64) in an array of such particles
will be satisfied, with the exception that the linear particles will react to both the real and
imaginary parts of the electric field.

With the use of BMs we may get rid of the reaction to the imaginary part of the field and
also find a simple way of realizing the necessary loading (101). Consider the network shown in
figure 4. This network is similar to those we considered in section 4.1. It is composed of a pair
of BMs and an LPF, with an additional element in the middle that is an operational amplifier
working in the current-to-voltage conversion mode. We pump the first BM at frequency f0 with
the phase ϕ = 0, and the second one with the phase ϕ = ±π/2 (it will be seen soon why we
consider two signs of the phase). The output of the network is directly connected to its input, so
that the circuit is essentially a single port device that may be used as an active load. To analyze
the operation of the circuit we first note that because the voltage at the input of the operational
amplifier is negligibly small, u′

1=
= 0 and therefore i1 = 0. Next, assuming that the voltage at

the input of the circuit is u1 = U re
1 cosωt − U im

1 sin ωt , ω = 2π f0 = 2π/T0, we obtain

i ′

1=
= K21

〈
(U re

1 cos ωt − U im
1 sin ωt) cos ωt

〉
T0

=
1
2 K21U re

1 . (102)

Hence, the dc voltage at the output of the operational amplifier is

u′

2=
= i ′

1=
R =

1
2 K21 RU re

1 , (103)

New Journal of Physics 14 (2012) 035007 (http://www.njp.org/)

http://www.njp.org/


20

Figure 5. The topology of the two particles loaded with nonlinear circuits
designed to operate with the evanescent part of the spatial spectrum. Top: a
short electric dipole loaded with a nonlinear load. Bottom: a small magnetic
loop loaded with a nonlinear load.

where R is the resistor in the feedback loop of the operational amplifier. Therefore,

i2(t) = ∓K21u′

2=
sin ωt = ∓

1
2 K 2

21 RU re
1 sin ωt = −I im

2 sin ωt, (104)

where I im
2 = ±K 2

21 RU re
1 /2. This current is the input current of the whole network, because the

input current of the first BM equals zero. Thus, we have designed a circuit in which a real
input voltage induces an imaginary current, i.e. the circuit behaves almost as a usual reactance
(the plus sign in the expression for the current corresponds to the capacitance and the minus
corresponds sign to the inductance), with the difference that the loading circuit is not sensitive at
all to the imaginary input voltage. This is exactly what we need in order to realize the nonlinear
particles reacting only to the real part of the electric field. Indeed, to realize the required loading,
one has to choose the parameters of the circuit so that

±2K −2
21 R−1

= −Xdip +
η0 l2

A0
Im(β). (105)

It is interesting to note that there is no need to compensate for the real part of the dipole
impedance Zdip (the radiation resistance), because the circuit reacts only to the real part of
the input voltage, and the additional voltage drop on the radiation resistance UR = j I im

2 Rrad is
purely imaginary.

An example topology of an electric dipole particle with the nonlinear active load is shown
in figure 5 (top) and the same for the magnetic dipole particle in figure 5 (bottom) (note the
difference in phases of the local oscillator signals in both schematics). We would like to stress
that the operational amplifier seen in this schematic works with a dc signal. Thus, its role is not
to amplify the evanescent fields of an incoming wave, but just to provide the necessary reactance
of the loading circuit in order to tune the structure to a resonance. In turn, the evanescent modes
in this structure are enhanced because of this resonance.
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5. Conclusions

In this paper, the concept of perfect lensing with a pair of phase-conjugating surfaces introduced
by us earlier [8], i.e. a possibility of achieving optical resolution well below the wavelength
limit without using DNG materials, has been further developed. Working as a planar lens, a
pair of phase-conjugating sheets is able to focus propagating modes of a source due to the
negative refraction at the interfaces and, at the same time, enhance the evanescent modes due
to surface plasmon–polariton resonances, i.e. it provides sub-wavelength resolution imaging
indistinguishable from the perfect lens proposed by Pendry, while not suffering from its known
drawbacks.

We have investigated in detail the physics of operation of nonlinear sheets with the
boundary conditions of the form Et(ω)|1 = Et(ω)∗

|2, Ht(ω)|1 = Ht(ω)∗
|2 and have demonstrated

that they are, in principle, physically realizable with devices imposing the necessary relations
between the fields and the equivalent electric and magnetic surface currents at the phase-
conjugating boundary. Namely, we have shown that the mentioned surface currents must form
Huygens sources that radiate toward a given side of the boundary, negating the fields incident
from the other side and creating complex-conjugated fields in the corresponding half-space.

As a possible realization of such sheets, we have proposed and considered in this
paper arrays of nonlinear and nonreciprocal bi-anisotropic inclusions reacting differently to
the propagating and evanescent plane waves. In microwaves, the considered design makes
use of balanced modulators (a type of mixer) to provide for the required nonlinearity and
nonreciprocity of the circuit. In optics, a design utilizing similar principles may become feasible
in future as the field of optical nanocircuits develops further.

As a final note we would like to mention that in such arrays the enhancement of the
evanescent waves is due to a high-quality surface mode resonance, as in the grids of passive
resonant inclusions considered in [3]. This is in contrast to [10] where the phase-conjugating
surface must itself parametrically amplify the fields, which requires an unphysically high
conversion efficiency.
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