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Ciències del Cosmos, Universitat de Barcelona, Avda. Diagonal 647,

E-08028 Barcelona, Spain
3Centro de F́ısica Computacional, Department of Physics, University of

Coimbra, PT-3004-516 Coimbra, Portugal

Abstract

The liquid-gas phase transition in nuclear systems is a unique phe-
nomenon, at the frontier of nuclear, many-body and statistical physics.
We study this phase transition theoretically at the Hartree-Fock level
and explore the available parameter space for the critical point by us-
ing several mean-field parametrizations. We find the latent heat of the
transition and describe its temperature dependence from first princi-
ples. Using tools from many-body physics, we also describe the phase
transition beyond the mean-field approximation and find a marked
dependence on both the microscopic interaction and the many-body
approximation scheme.

1 Introduction

Phase transitions are ubiquitous in science [1]. Nuclear physics is no ex-
ception, and a number of transitions of quite a different nature have been
identified, from pion condensation [2] to quantum transitions associated to
the nuclear shape [3]. Here we will focus on the theoretical description of
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the liquid-gas phase transition, in which relatively dense (liquid) nuclear
matter undergoes a drastic transition into a dilute (gaseous) system [4]. We
will describe the phase transition within an ideal system (infinite homoge-
neous nuclear matter) in an attempt to constrain model dependences and
potential uncertainties. This allows us to identify correlations between phase
transition parameters which might be complementary to more empirical ap-
proaches [5]. Whereas there are clear limitations to this model, it has the
advantage of allowing a clear-cut connection with mean-field parametriza-
tions used in nuclear structure calculations [6] and with many-body approx-
imations used to describe nuclear matter [7].

The search for the phase transition was originally motivated by exper-
imental results in intermediate energy, heavy-ion reactions [8]. Several ob-
servables have been proposed as indicators of the phase transition [4]. In
the near future, the new generation of radioactive beam facilities will lead
to substantial advances, especially regarding the isospin dependence of the
phase transition [9, 10]. Theoretical approaches that can deal with finite
temperature nuclear matter are therefore called for. A controlled and con-
sistent approach in this direction is given by the self-consistent mean-field
approximation, which is based on the same effective interactions used in nu-
clear structure calculations [11]. This approach can be alternatively casted
as a finite temperature extension of density functional theory.

Before extensive finite nuclei calculations are implemented, however, the
model dependence of the calculations needs to be properly assessed. This
is already an issue at zero temperature and it remains so for hot nuclear
systems. Among the possible sources of uncertainty, the dependence associ-
ated with the underlying effective interaction is capital, but has been scarcely
investigated. Different effective interactions predict different thermodynam-
ical properties and, thus, different liquid-gas critical points. In principle, a
reliable determination of the critical point could lead to constrains on the
properties of the effective interaction [5].

Homogeneous nuclear matter within a mean-field picture provides the
simplest testing ground for such an analysis, since it lies within the thermo-
dynamical limit and there is no need to account for finite size effects. Within
the thermodynamical limit, however, one can go a step further and make
a connection with the strong nucleon-nucleon (NN) interaction. To do so,
however, a more sophisticated many-body description is needed, one that
goes beyond the Hartree-Fock approximation. This is a more theoretically
sound path towards linking thermodynamical and microscopic properties of
nuclear matter, but it is also a more demanding one, due to the conceptual
and numerical complexity of the many-body problem. We will outline here
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Figure 1: (Color online) Pres-
sure isotherms of symmetric nu-
clear matter for different tem-
peratures: T = 0 (solid line),
T = 10 MeV (long-dashed line),
Tf (dashed line), Tc (dash-dotted
line) and 20 MeV (dash-double-
dotted line). The dotted lines
represent the corresponding spin-
odal and coexistence regions.

our efforts to describe the liquid-gas phase transition with correlated (i.e.
beyond mean-field) approaches. We will also provide a short summary on
the status of the parameters of the phase transition as predicted by many-
body approaches.

The liquid-gas transition in an homogeneous uniform system is only a
first, crude approximation to the phenomena occurring in heavy-ion reac-
tions and giving rise to multi-fragmentation. Clustering, finite-size effects
and fluctuations dominate close to the critical point and none of these will
be taken into account explicitly here. The picture that is provided by our
calculations should thus not be taken as a meaningful description of the
liquid-gas transition in nuclear systems, but rather as a simplified approach
that provides a sound connection with more microscopic approaches. As
such, this can be taken as a methodological contribution to test what in-
formation, if any, can be obtained from looking into the dependence of the
phase transition properties on the microscopic properties of the system.

This contribution is divided in three separate sections. After this brief
introduction, we will focus on a mean-field description of the phase tran-
sition, particularly looking at the dependence of the critical point on the
underlying effective interaction. We will then describe the properties of the
latent heat within this approach. Finally, we will summarise some of the
results obtained with realistic many-body techniques, beyond the mean-field
approximation.

2 Phase transition at the mean-field level

The density and temperature dependence of the thermodynamical properties
of nuclear matter, obtained either within the Hartree-Fock approximation or
within a more sophisticated approach, are non-trivial. These are obtained
numerically and cannot be parametrized easily in an analytical form [6]. The
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numerical solution describes simultaneously two different phases: a gas at
low densities and a liquid at densities close to saturation [12]. This behavior
is easily visualized in the pressure isotherms of nuclear matter, as show in the
two panels of Fig. 1. The left panel corresponds to results obtained with a
typical Skyrme effective interaction (BSk17), while the right panel has been
obtained with the Self-Consistent Green’s Functions (SCGF) method based
on a phase-shift equivalent NN interaction (CD-Bonn). In spite of the very
different starting points of both approaches (effective interaction and mean-
field approximation in one, microscopic NN force and many-body calculation
in the other), the picture is qualitatively similar for both approaches.

Five characteristic temperatures have been chosen for illustrative pur-
poses. At T = 0 (solid lines, left panel), the pressure is a decreasing function
of the density at low densities. This regime, for which ∂p

∂ρ < 0, corresponds
to the spinodal region, where the system is mechanically unstable. Beyond
the minimum, the pressure increases with density until it changes sign at
the saturation point (diamond). Note that there is no T = 0 line on the
right panel, as SCGF can only be performed above the pairing regime [7].
As the temperature increases, the spinodal region, shown in dotted lines in
Fig. 1, shrinks. The isotherm at which the pressure becomes a completely
positive function defines the so-called flashing temperature, Tf . The flash-
ing point (square) corresponds to the crossing of the spinodal with the zero
pressure point, p = ∂p

∂ρ = 0 . For an isolated system, without an external gas
to stabilize it, this corresponds to the maximum temperature at which the
system can still be self-bound.

For an infinite system, however, the system can exist above the flashing
temperature because the gas and the liquid phase exert the same pressure
on each other, according to the Maxwell criterion. Using this criterion, one
can find the gas and liquid coexistence phases [1]. The coexistence region is
shown as a dotted line in Fig. 1. Note that, at T = 0, there is a coexistence
between a zero-density gas and a liquid at saturation density. Increasing
the temperature results into larger gas and smaller liquid densities. Even-
tually, the two densities meet at the critical point (circle), which occurs at
the critical temperature, Tc = 15.5 MeV (Tc = 18.5 MeV) for BSk17 (CD-
Bonn). The critical isotherm is shown with a dashed-dotted line. Above the
critical temperature, the system only exists in the gas phase and the pres-
sure becomes a monotonically increasing function of density. This behavior
is observed in the dashed-double-dotted line, which has been computed at
T = 20 MeV for both panels. Modern Skyrme and Gogny forces favor a
critical temperature in the region Tc ∼ 14 − 17 MeV, and a flashing tem-
perature within Tf ∼ 11− 13 MeV [6]. Microscopic many-body calculations
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Figure 2: (Color online) Left
panel: critical density versus
flashing density for different
effective interactions. Right
panel: critical temperature
versus flashing temperature
for different effective interac-
tions.

predict even larger windows, as we shall see in the following.
By computing the liquid-gas critical properties with a large set of differ-

ent Skyrme force parametrizations, we hope to identify behaviors which are
independent of the effective interaction. An example of such correlation is
given in Fig. 2. A tight proportionality between the critical and the flash-
ing densities (right panel) and temperatures (left panel) is found for a wide
range of Skyrme and Gogny forces (blue circles). For Skyrme forces, we
have differentiated between old forces with no effective mass (triangles), old
forces with m∗ �= m (squares) and new forces (circles). The flashing-critical
correlation can be described either with a single linear parameter or with
a linear regression with an offset, as shown in the Figure. Proportionality
constants agree with those predicted by analytical models and the empirical
relation Tc/Tf = 2ρc/ρf is fulfilled.

The existence of such correlations is interesting at a purely theoretical
level, as they unveil “universal” links between phase-transition quantities.
From a more practical point of view, if experiments were able to deter-
mine with certainty a critical point, and if an extrapolation from finite to
infinite systems were possible, one could determine the flashing point imme-
diately from such correlations. Moreover, since a similar correlation exists
between the critical temperature and a combination of parameters associ-
ated to both the equation of state and the effective mass at sub-saturation
densities, one could also constrain the properties of the underlying mean-
field parametrization [5, 6]. Let us also mention that, in the context of a
mean-field description of the phase transition, the critical exponents are
those of the mean-field theory of critical phenomena, independently of the
underlying mean-field [6].
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Figure 3: (Color online) Left
panel: temperature depen-
dence of the latent heat of
symmetric nuclear matter for
the BSk17 interaction. Right
panel: reduced latent heat
vs. reduced temperature
for different Skyrme interac-
tions.

3 Latent heat of nuclear matter

The latent heat provides a useful characterisation of the liquid-gas phase
transition [13]. It is particularly appealing because it has been extracted
from a variety of experiments, which suggest values of l ∼ 4−8 MeV [5,8,14].
In the case of infinite nuclear matter, the latent heat per particle has a simple
definition: it accounts for the amount of energy needed to take a nucleon
from the liquid to the gas phase. It can therefore be computed as a heat
exchange between two phases that only involves the difference in entropies,
l = T (sg − sl), between the gas and the liquid phase at coexistence.

The latent heat, l, obtained in the mean-field approximation with the
BSk17 Skyrme parametrization is reported in the left panel of Fig. 3 (solid
line). The latent heat has a characteristic bump shape as a function of
temperature. All other Skyrme parametrizations provide a similar qualita-
tive behavior [13]. The latent heat matches the value of the binding energy
at saturation, e0, at T = 0, and then rises for small temperatures. The
initial rise is linear and the slope is actually independent of the Skyrme
parametrization. As a matter of fact, the low-temperature behavior can be
extracted from a careful analysis of the thermodynamics of the phase tran-
sition, yielding l ∼ e0 + 5/2T . The analysis is valid for any homogeneous
fermionic system undergoing a liquid-gas phase transition and provides a
“universal” slope of the latent heat with a value of 5/2 [13].

Further up in temperature, l reaches a maximum and then drops to zero
at the critical point, where the difference between the liquid and gas phases
disappears. For BSk17, the latent heat maximum lies at T = 8.7 MeV with
lmax = 29.9 MeV. Other Skyrme parametrizations also have a similarly
large maximum of l. The existence of such a maximum is a consequence
of the thermodynamics of the phase transition. The T = 0 limit suggests
that, to obtain interaction-independent results, one might normalise l to
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e0. A plot of the latent heat in reduced units, l/e0, as a function of the
reduced temperature, T/Tc, is presented in the right panel of Fig. 3 for
a selected subset of four Skyrme forces. These represent a wide range of
critical temperatures and maximum latent heats. In general, we observe
that the dependence on the mean-field is eliminated to a large extent in
the dimensionless plot. For all Skyrme forces, the latent heat tends to peak
within a limited region of temperatures, T/Tc ∼ 0.5 − 0.6, and the peak
is narrowly distributed around the value lmax/e0 ∼ 1.7 − 2. When the
temperature approaches the critical value, the properties of the system are
characterised by critical exponents. In this regime, the latent heat is given
by β, the same critical exponent that describes the order parameter which,
in the Hartree-Fock approximation, is β = 1/2 [13,15].

4 Phase transition beyond the mean-field

The mean-field approximation provides a simple picture of the thermody-
namics of nuclear matter. Unfortunately, this approximation relies on phe-
nomenological interactions (or density functionals) and the link with the un-
derlying NN force is somewhat loose. A deeper understanding of the physics
at play can be gained by looking into the thermodynamics of nuclear matter
using, as a starting point, microscopic NN interactions. This cannot be done
at the mean-field level, though, because of the strong short-range core of the
interaction. Non-perturbative (beyond mean-field) techniques are needed
to solve approximately the many-body problem. Here we will present re-
sults for two of these approximation schemes: the Brueckner–Hartree–Fock
(BHF) and the SCGF approach.

To study the model dependence of the thermodynamical properties, we
have performed calculations with two different NN forces (Argonne V18
and CDBonn) and two different approximation schemes (BHF and SCGF)
in a large domain of densities and temperatures [7]. We then used the
Maxwell criterion to find the properties of the liquid-gas phase transition.
The numerics involved are much more demanding than those associated to
mean-field calculations, which precludes us from performing some of the
analysis of the previous sections (i.e. critical exponents are hard to find).

In Fig. 4, we summarise the properties of the phase transition for one
NN interaction (CDBonn). The left panel shows the coexistence (circles)
and spinodal (squares) regions of the phase transition for the BHF approx-
imation. The critical temperature is around 23 MeV. On the right panel,
the results for the SCGF approach predict a much lower critical tempera-
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ture (around 18.5 MeV). This highlights the differences in the many-body
treatment of both approximations. The equation of state for SCGF tends
to be more repulsive than that of BHF due to the inclusions of hole-hole
correlations, which in turns results into a lower Tc [7].

A more extended analysis of these results is presented in Table 1 where
we summarize the status of the phase transition parameters as obtained
by us and by different groups over the last decade. This is by no means
a complete list, as it only includes non-relativistic many-body calculations
which use phase-shift equivalent potentials as a starting point. It provides,
however, a good idea of some of the general trends.

We focus here on the critical temperature, density and the dimensionless
ratio γc = pc/Tcρc, which characterises the critical point (γc = 0.375 for a
classical van der Waals gas) . Overall, we observe a rather wide variation in
the range of allowed critical points, quite larger than the range observed for
different mean-field parametrizations [7]. Microscopic approaches predict
critical densities in the range 0.05 − 0.11 fm−3, a variation of a factor of 2.
Similarly, all microscopic approaches coincide in providing a critical ratio
which is well below the van der Waals value. Interestingly, these values are
also below the minimum mean-field prediction (γc ∼ 0.28), which suggests
that the transition is indeed somewhat different for mean-field and beyond-
mean-field approaches.

The critical temperature is perhaps the more characteristic property of
the transition and microscopic approaches predict a rather large set of al-
lowed values, from 11 to around 23 MeV. As mentioned earlier, the differ-
ences between the many-body approximations can cause this large variation.
Similarly, different underlying two-body NN forces are associated to differ-
ent critical points, even within the same approximation (see, for instance,
the SCGF results in Table 1). It is also interesting to note that three-body
forces (3BF) can substantially modify the phase transition [18]. Generally,
the inclusion of 3BFs tends to lower the critical temperature: for BHF cal-
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Table 1: Critical point parameters for different many-body approximations and NN
interactions.

Approach Potential Tc ρc
pc

Tcρc

[MeV] [MeV] [fm−3]
BHF [16] Argonne V14 21 0.07-0.09
BHF [16] Argonne V14 + 3BF 20 0.07-0.09
BHF [17] Argonne V18 16 0.08
BHF [17] Argonne V18 + 3BF 13 0.06
BHF [7] Argonne V18 18.1 0.08 0.28
BHF [7] CDBonn 23.3 0.11 0.28
SCGF [7] Argonne V18 11.6 0.05 0.14
SCGF [7] CDBonn 18.5 0.11 0.20
SCGF [18] CDBonn 18 0.11 0.22
SCGF [18] CDBonn + 3BF 12.5 0.10 0.12
SCGF [18] Nijmegen 20.5 0.10 0.26
SCGF [18] Nijmegen + 3BF 11.5 0.09 0.14

Variational [19] Argonne V18 + 3BF 21 0.05

culations the effects is small, but for SCGF the reduction can be as large
as 9 MeV. Similarly, the critical density is reduced by around 0.01 fm−3,
whereas γc decreases by about 0.1 when 3BF are taken into account in
SCGF calculations.

Overall, such a wide range of critical parameters is a reflection of the
differences in many-body approximations and underlying NN interactions.
These are manifestly shown in finite temperature nuclear physics due to the
interplay of density and temperature effects in the liquid-gas phase transi-
tion regime. Improvements upon such results need of long-range theoretical
efforts as well as the interplay with experiments and, potentially, astronom-
ical observation of hot degenerate matter in neutron stars.
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