

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Methylideneandrost-4-ene-3,17-dione

L. C. R. Andrade,^a M. J. M. de Almeida,^a* F. M. Fernandes Roleira,^b C. L. Varela^b and E. J. Tavares da Silva^b

^aCEMDRX, Department of Physics, Faculty of Sciences and Technology, University of Coimbra, P-3004-516 Coimbra, Portugal, and ^bCenter for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal Correspondence e-mail: ze@pollux.fis.uc.pt

Received 13 March 2012; accepted 26 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.100; data-to-parameter ratio = 9.8.

In the title compound, $C_{20}H_{26}O_2$, which is the 6-methylene derivative of androstenedione and a synthetic percursor of exemestane, the steroid A ring approximates to a sofa (or envelope) conformation, with the methylene group adjacent to the link to the B ring lying out of the plane of the other atoms. The B and C rings have slightly flattened chair conformations and the D ring is an envelope, with the CH group forming the flap. In the crystal, molecules are linked by two distinct C-H···O hydrogen bonds, involving acidic H atoms close to C=C and C=O double bonds.

Related literature

For the synthesis of the title compound, see: Annen et al. (1982). For exemestane aromatase inhibitor potency, see: Furr (2006). For elucidation of structural requirements needed to achieve antitumor activity, see: Cepa et al. (2005). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax & Norton (1975); Altona et al. (1968). For reference bond-length data, see: Allen et al. (1987).

Experimental

Crystal data $C_{20}H_{26}O_2$

 $M_r = 298.41$

noclinic, P2 ₁	Z = 2
9.2343 (4) Å	Mo Ka radiation
8.7162 (4) Å	$\mu = 0.07 \text{ mm}^{-1}$
11.0798 (5) Å	T = 293 K
108.197 (2)°	$0.24 \times 0.17 \times 0.05 \text{ mm}$
847 19 (7) $Å^3$	

Data collection

Mor

a =b =

c = $\beta =$

 $V \equiv$

Bruker APEX CCD diffractometer	18560 measured reflections
Absorption correction: multi-scan	1979 independent reflections
(SADABS; Sheldrick, 2000)	1433 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.835, T_{\max} = 0.996$	$R_{\rm int} = 0.036$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.040$	1 restraint

$R[F^{-} > 2\sigma(F^{-})] = 0.040$	1 restraint
$wR(F^2) = 0.100$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
1979 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
201 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots O17^{i}$	0.97	2.43	3.345 (3)	158
$C66-H66A\cdots O3^{ii}$	0.93	2.47	3.365 (3)	163

Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, $y + \frac{1}{2}$, -z - 1.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by funds from FEDER via the COMPETE (Programa Operacional Factores de Competitividade) programme and by the FCT (Fundação para a Ciência e a Tecnologia, project PEst-C/FIS/UI0036/2011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6686).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.
- Annen, K., Hofmeister, H., Laurent, H. & Wiechert, R. (1982). Synthesis, 2, 34 - 40
- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cepa, M., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. (2005). J. Med. Chem. 48, 6379-6385.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structure. New York: Plenum Press.
- Furr, B. J. A. (2006). In Aromatase Inhibitors (Milestones in Drug Therapy).Basel: Birkhäuser Verlag.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1263 [https://doi.org/10.1107/S1600536812013207]

6-Methylideneandrost-4-ene-3,17-dione

L. C. R. Andrade, M. J. M. de Almeida, F. M. Fernandes Roleira, C. L. Varela and E. J. Tavares da Silva

S1. Comment

The title compound is the 6-methylene derivative of androstenedione, the natural substrate of aromatase, and is a key synthetic precursor of exemestane, the most potent steroid aromatase inhibitor clinically used in the breast cancer treatment (Furr, 2006). Following our work on the determination of several androstane structures of potential aromatase inhibitors and intermediates of their syntheses, the X-ray analysis of compound (I) aims to contribute to the elucidation of structural requirements needed to achieve antitumor activity (Cepa et al., 2005). From the single-crystal diffraction measurements one can conclude that bond lengths are within normal values (Allen *et al.*, 1987) with an average C_{sp}^{3} - C_{sp}^{3} bond length of 1.534 (13) Å. Due to the C4=C5 double bond ring A addopts a 1α -sofa conformation, slightly distorted towards a $1\alpha.2\beta$ -halfchair one [asymmetry parameters (Duax and Norton, 1975); $\Delta C_s(1)=7.8$ (3), $\Delta C_s(1,2)=17.5$ (3) and $\Delta C_2(2,3)=51.4$ (4)°]. Rings B and C have slightly flattened chair conformations evidenced by average torsion angle values of 50 (3) and 55 (3)°, respectively. The five member D ring assumes a 14α -envelope conformation [puckering parameters (Cremer and Pople, 1975): $q_2=0.414$ (3) Å and $\varphi_2=211.3$ (4)°; pseudo-rotation (Altona *et al.*, 1968) and asymmetry parameters: $\Delta = 25.4$ (4), $\varphi_m = 42.7$ (2)°, $\Delta C_s(14) = 4.8$ (3) and $\Delta C_2(13,14) = 14.9$ (3)°]. The pseudo-torsion angle C19–C10···C13–C18 of 2.2 (2)° indicates that the molecule is only slightly twisted. The 6-methylene group is in a beta equatorial position with an angle of 63.8 (2)°. Due to the acidic character of hydrogen atoms close to C=C or C=O double bonds, cohesion of the crystal can be attributed to a net of two C-H···O pseudohydrogen bonds, namely C2-H2A···O17 and C66–H66A···O3, connecting molecules aligned almost along [101], respectively head to tail and head to head.

S2. Experimental

6-Methylenandrost-4-ene-3,17-dione was prepared according to a described procedure (Annen *et al.*, 1982) as follows. A suspension of anhydrous sodium acetate (1.0 g, 12.19 mmol) in dry chloroform (30.0 cm³) containing formaldehyde dimethyl acetal (30.0 cm³, 340.0 mmol) and phosphoryl choride (1.9 cm³, 20.0 mmol) was heated at reflux for 1 h. Androstenedione (773.5 mg, 2.70 mmol) was then added and the mixture was supplemented dropwise with phosphoryl choride (1.9 cm³, 20.0 mmol) over a period of 3 h 30 min. The reaction mixture was subsequently refluxed under nitrogen for 10 h, after which was allowed to cool to room temperature. A saturated aqueous solution of sodium carbonate was then added under vigorous stirring until the aqueous layer became alkaline. This mixture was extracted with chloroform (200 cm³) and then the organic phase was washed with water (4x100 cm³), dried over anhydrous MgSO₄, filtered and concentrated to dryness. The resulting residue was purified by a silica gel 60 column chromatography (hexane/diethyl ether) affording the pure 6-methylenandrost-4-ene-3,17-dione (134.8 mg, 17%). Suitable crystals for X-ray studies were grown from slow evaporation from acetone/n-hexane: Mp. 435–437 K [lit 440 K (Annen *et al.*, 1982)]; IR v_{max} (NaCl plates, CHCl₃) cm⁻¹: 3084 (=C–H), 1738 (C₁₇=O), 1671 (C₃=O), 1599 (C=C); ¹H NMR (600 MHz, CDCl₃): δ 0.78 (3*H*, *s*,

18–H₃), 1.00 (3*H*, *s*, 19–H₃), 4.87 (1*H*, *t*, =CH₂), 4.97 (1*H*, *t*, =CH₂), 5.79 (1*H*, *s*, 4–H); ¹³C NMR (150 MHz, CDCl₃): δ 11.5 (C18), 14.9 (C19), 18.2, 19.5, 29.0, 31.6, 32.9, 33.0, 33.6, 36.6, 36.9, 45.3, 48.9, 50.3, 112.4 (=CH₂), 119.6 (C4), 143.2 (C6), 166.3 (C5), 197.4 (C3), 217.8 (C17).

S3. Refinement

All hydrogen atoms were refined as riding on their parent atoms. Number of Friedel pairs measured: 1606 (45%). Due to the lack of any strong anomalous scatterer atom at the Mo K α wavelength, refinement of Flack parameter was inconclusive. However the absolute configuration of the molecule is known from the synthetic route.

Figure 1

A view of the title compound. Displacement ellipsoids are drawn at the 50% level.

6-Methylideneandrost-4-ene-3,17-dione

Crystal data

 $C_{20}H_{26}O_2$ $M_r = 298.41$ Monoclinic, $P2_1$ a = 9.2343 (4) Å b = 8.7162 (4) Åc = 11.0798 (5) Å $\beta = 108.197 (2)^{\circ}$ V = 847.19 (7) Å³ Z = 2

Data collection

Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $R_{\rm int} = 0.036$ φ and ω scans $h = -11 \rightarrow 11$ Absorption correction: multi-scan (SADABS; Sheldrick, 2000) $k = -11 \rightarrow 11$ $l = -14 \rightarrow 14$ $T_{\rm min} = 0.835, \ T_{\rm max} = 0.996$

F(000) = 324 $D_{\rm x} = 1.170 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4974 reflections $\theta = 3.0-22.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.24\times0.17\times0.05~mm$

18560 measured reflections 1979 independent reflections 1433 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 28.2^{\circ}, \ \theta_{\rm min} = 3.4^{\circ}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
S = 1.02	H-atom parameters constrained
1979 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.0289P]$
201 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.14 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
03	0.4355 (3)	0.2091 (3)	-0.50154 (16)	0.0901 (7)
O17	0.8776 (2)	0.1624 (3)	0.50156 (17)	0.0859 (7)
C1	0.6765 (3)	0.0835 (3)	-0.1938 (2)	0.0482 (6)
H1A	0.7557	0.0070	-0.1627	0.058*
H1B	0.5887	0.0510	-0.1700	0.058*
C2	0.6322 (3)	0.0896 (3)	-0.3384 (2)	0.0587 (7)
H2A	0.7234	0.1037	-0.3628	0.070*
H2B	0.5867	-0.0076	-0.3730	0.070*
C3	0.5234 (3)	0.2148 (3)	-0.3938 (2)	0.0579 (7)
C4	0.5301 (3)	0.3509 (3)	-0.31480 (19)	0.0519 (6)
H4	0.4632	0.4312	-0.3481	0.062*
C5	0.6281 (3)	0.3660 (3)	-0.19633 (19)	0.0406 (5)
C6	0.6402 (3)	0.5144 (3)	-0.12840 (19)	0.0429 (5)
C7	0.6506 (3)	0.5032 (3)	0.00948 (19)	0.0466 (6)
H7A	0.5514	0.4757	0.0158	0.056*
H7B	0.6779	0.6028	0.0491	0.056*
C8	0.7671 (3)	0.3855 (3)	0.08090 (18)	0.0393 (5)
H8	0.8690	0.4198	0.0832	0.047*
C9	0.7337 (3)	0.2294 (3)	0.01266 (18)	0.0366 (5)
H9	0.6293	0.2027	0.0087	0.044*
C10	0.7340 (2)	0.2374 (2)	-0.12870 (18)	0.0393 (5)
C11	0.8350 (3)	0.1008 (3)	0.0884 (2)	0.0539 (6)
H11A	0.9384	0.1168	0.0871	0.065*
H11B	0.7999	0.0036	0.0468	0.065*
C12	0.8365 (3)	0.0905 (3)	0.2274 (2)	0.0568 (7)

supporting information

H12A	0.7370	0.0584	0.2302	0.068*
H12B	0.9107	0.0146	0.2722	0.068*
C13	0.8765 (3)	0.2447 (3)	0.29190 (19)	0.0473 (6)
C14	0.7637 (3)	0.3646 (3)	0.21692 (19)	0.0423 (5)
H14	0.6623	0.3240	0.2093	0.051*
C15	0.7863 (3)	0.5024 (4)	0.3071 (2)	0.0586 (7)
H15A	0.6977	0.5690	0.2840	0.070*
H15B	0.8756	0.5616	0.3079	0.070*
C16	0.8078 (4)	0.4237 (4)	0.4357 (2)	0.0741 (9)
H16A	0.8849	0.4765	0.5028	0.089*
H16B	0.7130	0.4240	0.4561	0.089*
C17	0.8573 (3)	0.2610 (4)	0.4218 (2)	0.0597 (7)
C18	1.0444 (3)	0.2877 (4)	0.3115 (2)	0.0665 (8)
H18A	1.1098	0.2100	0.3615	0.100*
H18B	1.0667	0.3845	0.3546	0.100*
H18C	1.0611	0.2953	0.2304	0.100*
C19	0.8931 (3)	0.2731 (3)	-0.1379 (2)	0.0536 (6)
H19A	0.8879	0.2794	-0.2257	0.080*
H19B	0.9625	0.1930	-0.0971	0.080*
H19C	0.9282	0.3691	-0.0968	0.080*
C66	0.6447 (3)	0.6472 (3)	-0.1846 (2)	0.0609 (7)
H66A	0.6403	0.6498	-0.2696	0.073*
H66B	0.6523	0.7382	-0.1391	0.073*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
03	0.1235 (18)	0.0890 (16)	0.0410 (9)	-0.0040 (15)	0.0016 (11)	-0.0116 (10)
O17	0.0974 (16)	0.1097 (18)	0.0578 (10)	0.0235 (14)	0.0349 (10)	0.0346 (12)
C1	0.0620 (15)	0.0377 (14)	0.0482 (12)	-0.0032 (12)	0.0218 (11)	-0.0054 (11)
C2	0.0806 (18)	0.0504 (16)	0.0498 (13)	-0.0085 (15)	0.0272 (12)	-0.0157 (12)
C3	0.0765 (18)	0.0587 (17)	0.0386 (11)	-0.0084 (15)	0.0182 (12)	-0.0052 (12)
C4	0.0636 (15)	0.0513 (15)	0.0383 (11)	0.0048 (14)	0.0121 (10)	0.0033 (12)
C5	0.0513 (14)	0.0367 (13)	0.0371 (10)	-0.0006 (11)	0.0188 (10)	0.0038 (10)
C6	0.0525 (14)	0.0361 (13)	0.0389 (11)	0.0049 (12)	0.0125 (10)	0.0032 (10)
C7	0.0623 (15)	0.0358 (13)	0.0402 (11)	0.0095 (13)	0.0138 (10)	-0.0020 (10)
C8	0.0412 (12)	0.0393 (14)	0.0362 (9)	0.0002 (10)	0.0103 (9)	0.0002 (9)
C9	0.0408 (12)	0.0322 (13)	0.0376 (10)	0.0003 (10)	0.0133 (9)	0.0017 (9)
C10	0.0488 (14)	0.0333 (13)	0.0385 (10)	-0.0033 (11)	0.0174 (9)	-0.0018 (9)
C11	0.0662 (16)	0.0441 (16)	0.0491 (12)	0.0100 (13)	0.0146 (11)	0.0050 (11)
C12	0.0657 (17)	0.0513 (17)	0.0520 (13)	0.0094 (14)	0.0161 (11)	0.0140 (12)
C13	0.0435 (13)	0.0575 (17)	0.0395 (11)	0.0015 (12)	0.0111 (10)	0.0080 (11)
C14	0.0407 (12)	0.0480 (14)	0.0367 (10)	0.0015 (12)	0.0098 (9)	-0.0005 (11)
C15	0.0689 (17)	0.0625 (17)	0.0412 (12)	0.0014 (15)	0.0124 (11)	-0.0081 (12)
C16	0.085 (2)	0.095 (2)	0.0402 (13)	0.0036 (19)	0.0172 (13)	-0.0058 (15)
C17	0.0503 (15)	0.086 (2)	0.0418 (12)	0.0018 (15)	0.0129 (10)	0.0095 (14)
C18	0.0447 (15)	0.093 (2)	0.0583 (15)	0.0041 (15)	0.0103 (11)	0.0095 (15)
C19	0.0528 (14)	0.0550 (16)	0.0605 (14)	-0.0022 (13)	0.0284 (11)	-0.0029 (12)

supporting information

C66	0.086 (2)	0.0426 (15)	0.0537 (14)	0.0026 (15)	0.0218 (13)	0.0052 (12)
Geometr	ric parameters (A	Å, [•])				
03—C3	3	1.217 (3)		C11—C12		1.539 (3)
017—0	217	1.205 (3)		C11—H11A		0.9700
C1—C2	2	1.526 (3)		C11—H11B		0.9700
C1—C1	0	1.537 (3)		C12—C13		1.512 (4)
C1—H1	A	0.9700		C12—H12A		0.9700
C1—H1	В	0.9700		C12—H12B		0.9700
C2—C3	3	1.481 (4)		C13—C17		1.511 (3)
С2—Н2	2A	0.9700		C13—C14		1.525 (3)
С2—Н2	2B	0.9700		C13—C18		1.543 (4)
C3—C4	Ļ	1.464 (4)		C14—C15		1.534 (4)
C4—C5	5	1.348 (3)		C14—H14		0.9800
C4—H4	ļ	0.9300		C15—C16		1.538 (4)
C5—C6)	1.483 (3)		C15—H15A		0.9700
C5—C1	0	1.521 (3)		C15—H15B		0.9700
C6—C6	66	1.322 (4)		C16—C17		1.512 (5)
C6—C7	1	1.504 (3)		C16—H16A		0.9700
С7—С8	3	1.518 (3)		C16—H16B		0.9700
С7—Н7	7A	0.9700		C18—H18A		0.9600
С7—Н7	7B	0.9700		C18—H18B		0.9600
C8-C1	4	1.528 (3)		C18—H18C		0.9600
C8—C9)	1.540 (3)		C19—H19A		0.9600
С8—Н8	3	0.9800		C19—H19B		0.9600
C9-C1	.1	1.531 (3)		C19—H19C		0.9600
C9-C1	0	1.568 (3)		C66—H66A		0.9300
С9—Н9)	0.9800		C66—H66B		0.9300
C10—C	219	1.536 (3)				
C2—C1	—C10	113.72 (1	9)	C9—C11—H11B		108.8
C2—C1	—H1A	108.8		C12—C11—H11B		108.8
C10—C	C1—H1A	108.8		H11A—C11—H11B	3	107.7
C2—C1	—H1B	108.8		C13—C12—C11		110.2 (2)
С10—С	C1—H1B	108.8		C13—C12—H12A		109.6
H1A—C	C1—H1B	107.7		C11—C12—H12A		109.6
C3—C2	2—C1	112.7 (2)		C13—C12—H12B		109.6
C3—C2	2—H2A	109.0		C11—C12—H12B		109.6
C1—C2	2—H2A	109.0		H12A—C12—H12H	3	108.1
C3—C2	2—H2B	109.0		C17—C13—C12		116.7 (2)
C1—C2	E—H2B	109.0		C17—C13—C14		101.05 (19)
H2A—C	С2—Н2В	107.8		C12—C13—C14		109.11 (18)
O3—C3	3—C4	120.7 (3)		C17—C13—C18		104.76 (19)
O3—C3	3—C2	122.3 (2)		C12—C13—C18		111.6 (2)
C4—C3	6—C2	116.9 (2)		C14—C13—C18		113.3 (2)
C5—C4	—C3	123.5 (2)		C13—C14—C8		113.47 (18)
C5—C4	—Н4	118.3		C13—C14—C15		104.54 (17)

C_{2} C_{4} U_{4}	110.2	C9 C14 C15	120(-(2))
$C_3 - C_4 - H_4$	118.3	$C_{8} - C_{14} - C_{15}$	120.6 (2)
C4 - C5 - C10	120.0(2)	$C_{13} - C_{14} - H_{14}$	105.7
C4 - C3 - C10	122.7(2)	C8-C14-H14	105.7
$C_6 - C_5 - C_{10}$	117.22(17)	C15—C14—H14	105.7
	122.25 (18)	C14 - C15 - C16	101.9 (2)
$C_{66} - C_{6} - C_{7}$	122.3 (2)	CI4—CI5—HI5A	111.4
C5-C6-C7	115.46 (19)	С16—С15—Н15А	111.4
C6—C7—C8	112.53 (18)	С14—С15—Н15В	111.4
С6—С7—Н7А	109.1	C16—C15—H15B	111.4
С8—С7—Н7А	109.1	H15A—C15—H15B	109.3
С6—С7—Н7В	109.1	C17—C16—C15	106.3 (2)
С8—С7—Н7В	109.1	C17—C16—H16A	110.5
H7A—C7—H7B	107.8	C15—C16—H16A	110.5
C7—C8—C14	111.40 (17)	C17—C16—H16B	110.5
C7—C8—C9	109.92 (16)	C15—C16—H16B	110.5
C14—C8—C9	108.45 (18)	H16A—C16—H16B	108.7
С7—С8—Н8	109.0	O17—C17—C13	126.4 (3)
С14—С8—Н8	109.0	O17—C17—C16	125.3 (2)
С9—С8—Н8	109.0	C13—C17—C16	108.3 (2)
C11—C9—C8	112.54 (16)	C13—C18—H18A	109.5
C11—C9—C10	112.90 (17)	C13—C18—H18B	109.5
C8—C9—C10	112.83 (16)	H18A—C18—H18B	109.5
С11—С9—Н9	105.9	C13—C18—H18C	109.5
С8—С9—Н9	105.9	H18A—C18—H18C	109.5
С10—С9—Н9	105.9	H18B—C18—H18C	109.5
C5-C10-C19	107.41 (18)	C10—C19—H19A	109.5
C5-C10-C1	109.70 (17)	C10—C19—H19B	109.5
C19 - C10 - C1	110.02(19)	H19A—C19—H19B	109.5
C_{5} C_{10} C_{9}	108 90 (16)	C10-C19-H19C	109.5
C19 - C10 - C9	112 03 (17)	H19A - C19 - H19C	109.5
C1 - C10 - C9	108 75 (16)	H10B - C10 - H10C	109.5
$C_{1}^{0} = C_{11}^{1} = C_{12}^{12}$	113.8(2)		109.5
$C_{0} = C_{11} = C_{12}$	108.8	C6 C66 H66B	120.0
$C_{12} = C_{11} = H_{11A}$	108.8		120.0
C12—C11—HITA	108.8	Н00А—С00—Н00В	120.0
C_{10} C_{1} C_{2} C_{3}	-52 5 (3)	C8 C9 C10 C19	66 5 (2)
$C_{10} = C_{1} = C_{2} = C_{3}$	-1530(3)	C_{3} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1}	50.3(2)
$C_1 = C_2 = C_3 = C_4$	155.9(5)	$C_{11} = C_{2} = C_{10} = C_{11}$	-171.65(17)
C1 = C2 = C3 = C4	26.0(3)	$C_{8} = C_{9} = C_{10} = C_{11}$	-1/1.03(17)
03-03-04-05	-1/7.9(3)	$C_{0} = C_{0} = C_{11} = C_{12}$	30.9(3)
$C_2 = C_3 = C_4 = C_5$	-0.4(4)	C10 - C9 - C11 - C12	-180.0(2)
$C_3 - C_4 - C_5 - C_6$	1/2.8 (2)	C9 - C11 - C12 - C13	-53.2(3)
C3—C4—C5—C10	-4.8 (4)	C11—C12—C13—C17	170.15 (19)
C4—C5—C6—C66	-43.6 (3)	C11—C12—C13—C14	56.5 (3)
C10—C5—C6—C66	134.1 (2)	C11—C12—C13—C18	-69.4 (2)
C4—C5—C6—C7	137.7 (2)	C17—C13—C14—C8	174.9 (2)
C10—C5—C6—C7	-44.6 (3)	C12—C13—C14—C8	-61.5 (2)
C66—C6—C7—C8	-130.9 (3)	C18—C13—C14—C8	63.4 (3)
C5—C6—C7—C8	47.7 (3)	C17—C13—C14—C15	41.7 (2)

C6—C7—C8—C14	-174.15 (19)	C12—C13—C14—C15	165.22 (19)
C6—C7—C8—C9	-53.9 (3)	C18—C13—C14—C15	-69.8 (2)
C7—C8—C9—C11	-172.96 (18)	C7—C8—C14—C13	178.7 (2)
C14—C8—C9—C11	-51.0 (2)	C9—C8—C14—C13	57.6 (2)
C7—C8—C9—C10	57.8 (2)	C7—C8—C14—C15	-56.3 (3)
C14—C8—C9—C10	179.86 (17)	C9—C8—C14—C15	-177.35 (19)
C4—C5—C10—C19	101.4 (2)	C13—C14—C15—C16	-39.5 (2)
C6—C5—C10—C19	-76.3 (2)	C8—C14—C15—C16	-168.6 (2)
C4—C5—C10—C1	-18.2 (3)	C14—C15—C16—C17	21.5 (3)
C6—C5—C10—C1	164.16 (18)	C12—C13—C17—O17	34.0 (4)
C4—C5—C10—C9	-137.1 (2)	C14—C13—C17—O17	152.1 (3)
C6—C5—C10—C9	45.3 (2)	C18—C13—C17—O17	-90.0 (3)
C2-C1-C10-C5	46.0 (3)	C12—C13—C17—C16	-146.0 (2)
C2-C1-C10-C19	-72.0 (2)	C14—C13—C17—C16	-27.8 (3)
C2-C1-C10-C9	164.96 (19)	C18—C13—C17—C16	90.0 (3)
C11—C9—C10—C5	178.85 (19)	C15—C16—C17—O17	-176.0 (3)
C8—C9—C10—C5	-52.1 (2)	C15—C16—C17—C13	3.9 (3)
C11—C9—C10—C19	-62.5 (2)	C19—C10—C13—C18	2.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C2—H2A····O17 ⁱ	0.97	2.43	3.345 (3)	158
C66—H66A…O3 ⁱⁱ	0.93	2.47	3.365 (3)	163

Symmetry codes: (i) x, y, z-1; (ii) -x+1, y+1/2, -z-1.