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Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization
in quark matter at high density. It is found that the two-flavor superconducting phase and the spin
polarized phase correspond to distinct local minima of a certain generalized thermodynamical
potential. It follows that a transition from one to the other phase occurs, passing through true
minima with both a spin polarization and a color superconducting gap. It is shown that the quark
spin polarized phase is realized at rather high density, while the two-flavor color superconducting
phase is realized in a lower density region.
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1. Introduction

Under extreme conditions, such as high temperature and/or high baryon density, it is interesting
to study the behavior of quark and gluonic matter and/or hadronic matter governed by quantum
chromodynamics (QCD) in the context of the physics of relativistic heavy ion collisions and of the
interior of compact stars. In low temperature and high density regions [1] such as the interior of a
neutron star, it has been widely investigated and pointed out that various phases may be realized, e.g.,
various meson condensed phases in hadronic matter [2], the two-flavor color superconducting (2SC)
and color-flavor locked (CFL) phases [3–5], the quarkyonic phase [6], the quark ferromagnetic phase
[7–9] in quark matter, and so forth. In particular, we may conjecture that the quark ferromagnetic
phase exists at high density quark matter, since the existence of the magnetar was reported [10]. In
preceding work [7–9], the pseudovector-type interaction between quarks was considered and it was
pointed out that the quark spin polarization was realized. However, it was shown that the quark spin
alignment disappears if the quark mass is zero, e.g., in the chiral symmetric phase [11]. Thus, it is
interesting to investigate whether there is a possibility of spontaneous spin polarization under another
interaction between quarks.

Recently, the present authors have indicated that the quark spin polarization may occur at high
density quark matter even in the chiral symmetric phase due to the tensor-type four-point interaction
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between quarks, which leads to the quark spin polarization [12,13]. In these papers, it was shown
that a second-order phase transition occurs from normal quark phase to quark spin polarized phase.
However, in quark matter at high baryon density, it is believed that the two-flavor color supercon-
ducting phase appears. Thus, it is interesting to investigate the stability of the quark spin polarized
phase against the 2SC phase.

In this paper, we investigate the color-symmetric superconducting phase [14] and the quark spin
polarized phase and clarify which phase is stable by using the Nambu–Jona-Lasinio (NJL) model
[15,16], including quark-pair interaction [17] and the tensor-type four-point interaction [12,13]. The
quark-pair interaction is derived by a Fierz transformation from the original NJL model Lagrangian.
As for the color superconducting phase, many possibilities, such as the gapless superconducting
phase, which is still controversial for realistic situations, have been considered. However, in this
paper, the simple 2SC phase derived by the NJL model is treated. We thus consider the quark-pairing
gap � and the quark spin polarization F such that � �= 0 and/or F �= 0 leads to the 2SC phase
and/or quark spin polarized phase, respectively. In this paper, the system is treated by the mean field
approximation and the BCS state is introduced [18].

This paper is organized as follows: In the next section, the basic Hamiltonian is introduced and
expressions of the Hamiltonian under some basis sets are given. In Appendix A, one of the expres-
sions of the Hamiltonian is given, in which good helicity states are used. In Sect. 3, the BCS state
is defined, where a detailed derivation is given in Appendix B, and the thermodynamic potential is
derived. In Sect. 4, numerical results and discussions are given, together with Appendix C, and the
last section is devoted to a summary and concluding remarks.

2. NJL model with tensor interaction

2.1. Basic Hamiltonian

Let us start with the following Lagrangian density:

L = L0 + LS + LT + Lc,

L0 = ψ̄iγ μ∂μψ,

LS = GS((ψ̄ψ)
2 + (ψ̄iγ5�τψ)2),

LT = −G

4

(
(ψ̄γ μγ ν �τψ)(ψ̄γμγν �τψ)+ (ψ̄iγ5γ

μγ νψ)(ψ̄iγ5γμγνψ)
)
,

Lc = Gc

2

∑
A=2,5,7

(
(ψ̄iγ5τ2λAψ

C )(ψ̄Ciγ5τ2λAψ)+ (ψ̄τ2λAψ
C)(ψ̄Cτ2λAψ)

)
. (1)

Here, ψC = Cψ̄T with C = iγ 2γ 0 being the charge conjugation operator. Also, τ2 is the second
component of the Pauli matrices representing the isospin su(2)-generator and λA are the antisymmet-
ric Gell–Mann matrices representing the color su(3)c-generator. As is well known, the Lagrangian
density L0 + LS corresponds to the original NJL model. We add Lc, which can be derived by the
Fierz transformation from LS , and which represents the quark-pair interaction. Also, we introduce
LT , which represents the tensor-type interaction between quarks.

In this paper, we concentrate on quark matter at high baryon density where the chiral symmetry is
restored in the density region considered here. Thus, the chiral condensate, 〈ψ̄ψ〉, is assumed to be
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equal to zero in this high density region. Under the mean field approximation, the above Lagrangian
density is recast into

LMF = L0 + LMF
T + LMF

c ,

LMF
T = −F(ψ̄	3τ3ψ)− F2

2G
,

F = −G〈ψ̄	3τ3ψ〉, 	3 = −iγ 1γ 2 =
(
σ3 0

0 σ3

)
,

LMF
c = −1

2

∑
A=2,5,7

(�ψ̄Ciγ5τ2λA + h.c.)− 3�2

2Gc
,

�A = �∗
A = −Gc〈ψ̄iγ5τ2λAψ〉, � = �2 = �5 = �7, (2)

where h.c. represents the Hermitian conjugate term of the preceding one. Here, we have used a Dirac
representation for the Dirac gamma matrices and σ3 represents the third component of the 2 × 2 Pauli
spin matrices. The symbol 〈· · · 〉 represents the expectation value with respect to a vacuum state. The
expectation value F corresponds to the order parameter of the spin alignment that leads to quark
ferromagnetization. The expectation value� corresponds to the quark-pair condensate, which means
the existence of the color superconducting phase if � �= 0. Here, in order to ensure color symmetry,
we assume that all quark-pair condensates have the same expectation values, �2 = �5 = �7.

The mean field Hamiltonian density with quark chemical potential μ is easily obtained as

HMF − μN = K0 + HMF
T + HMF

c ,

K0 = ψ̄(−γ · ∇ − μγ0)ψ,

HMF
T = −LMF

T , HMF
c = −LMF

c (3)

with N = ψ†ψ . In the Dirac representation for the Dirac gamma matrices, the Hamiltonian matrix
of the spin polarization part, HSP

MF = ∫
d3x (K0 + HMF

T ), is written as

hSP
MF = p · α + Fτ3β	3

=

⎛⎜⎜⎜⎝
Fτ3 0 p3 p1 − i p2

0 −Fτ3 p1 + i p2 p3

p3 p1 − i p2 −Fτ3 0
p1 + i p2 −p3 0 Fτ3

⎞⎟⎟⎟⎠ , (4)

where αi = γ 0γ i and β = γ 0. For good helicity states, this Hamiltonian matrix is diagonalized with
F = 0. For simplicity, we rotate around the p3 axis and we set p2 = 0 without loss of generality. In
this case, we derive κ = U−1hSP

MFU as follows:

U = 1

2
√

p

⎛⎜⎜⎜⎜⎜⎝
√

p + p3
√

p − p3 −√
p + p3 −√

p − p3
p1

|p1|
√

p − p3 − p1
|p1|

√
p + p3 − p1

|p1|
√

p − p3
p1

|p1|
√

p + p3
√

p + p3 −√
p − p3

√
p + p3 −√

p − p3
p1

|p1|
√

p − p3
p1

|p1|
√

p + p3
p1

|p1|
√

p − p3
p1

|p1|
√

p + p3

⎞⎟⎟⎟⎟⎟⎠ ,
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κ = U−1hSP
MFU

=

⎛⎜⎜⎜⎝
p 0 0 0
0 p 0 0
0 0 −p 0
0 0 0 −p

⎞⎟⎟⎟⎠+ Fτ3
p

⎛⎜⎜⎜⎝
0 |p1| −p3 0

|p1| 0 0 p3

−p3 0 0 |p1|
0 p3 |p1| 0

⎞⎟⎟⎟⎠ . (5)

Finally, in the original basis rotated around the p3-axis, |p1| is replaced with
√

p2
1 + p2

2 . As for the

Hamiltonian matrix of the color superconducting part, HMF
c = ∫

d3xHMF
c , the result has already

been obtained in Ref. [17], based on Ref. [14]. As a result, on the basis of good helicity states,
the relevant combination of the mean field Hamiltonian HMF = ∫

d3xHMF and the quark number
N = ∫

d3xN is given by

HMF − μN =
∑
pητα

[
(p − μ)c†

pηταcpητα − (p + μ)c̃†
pητα c̃pητα

]

+ F
∑
pητα

φτ

[√p2
1 + p2

2

p

(
c†

pηταcp−ητα + c̃†
pητα c̃p−ητα

)
− η

p3

p

(
c†

pητα c̃pητα + c̃†
pηταcpητα

) ]
+ �

2

∑
pηαα′α′′ττ ′

(c†
pηταc†

−pητ ′α′ + c̃†
pητα c̃†

−pητ ′α′

+ c−pητ ′α′cpητα + c̃−pητ ′α′ c̃pητα)φτ εαα′α′′εττ ′

+ V · F2

2G
+ V · 3�2

2Gc
, (6)

where V represents the volume in the box normalization.1 Here, c†
pητα and c̃†

pητα represent the quark
and antiquark creation operators with momentum p, helicity η = ±, isospin index τ = ±, and color
α. Further, φτ = 1 for τ = 1 (up quark) and φτ = −1 for τ = −1 (down quark). Also, εττ ′ and
εαα′α′′ represent the complete antisymmetric tensor for the isospin and color indices. We define p =√

p2
1 + p2

2 + p2
3 , i.e., the magnitude of momentum.

For later convenience, we rewrite the above Hamiltonian as

HMF − μN = HSP
MF − μN + Vcs + V · F2

2G
+ V · 3�2

2Gc
(7)

with

HSP
MF − μN =

∑
pττ ′αα′α′′

⎛⎜⎜⎜⎜⎝
c†

p+τα
c†

p−τα
c̃†

p+τα
c̃†

p−τα

⎞⎟⎟⎟⎟⎠
T

(κ − μ · 1)δττ ′δαα′

⎛⎜⎜⎜⎜⎝
cp+τ ′α′

cp−τ ′α′

c̃p+τ ′α′

c̃p−τ ′α′

⎞⎟⎟⎟⎟⎠ ,

1 We hope that no confusion will occur, although notations Vcs and V (p) appear later, which represent the
quark-pair interaction in (7) and a matrix in (A1) diagonalizing a certain part of the Hamiltonian matrix,
respectively.
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κ =

⎛⎜⎜⎜⎝
p 0 0 0
0 p 0 0
0 0 −p 0
0 0 0 −p

⎞⎟⎟⎟⎠+ Fτ3
p

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
√

p2
1 + p2

2 −p3 0√
p2

1 + p2
2 0 0 p3

−p3 0 0
√

p2
1 + p2

2

0 p3

√
p2

1 + p2
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Vcs = �

2

∑
pηαα′α′′ττ ′

(c†
pηταc†

−pητ ′α′ + c̃†
pητα c̃†

−pητ ′α′ + c−pητ ′α′cpητα + c̃−pητ ′α′ c̃pητα)

× φτ εαα′α′′εττ ′ . (8)

As for Vcs , we can easily sum up with respect to τ and τ ′, which leads to

Vcs = �
∑

pηαα′α′′
εαα′α′′(c†

pη+αc†
−pη−α′ + c̃†

pη+α c̃†
−pη−α′ + c−pη−α′cpη+α + c̃−pη−α′ c̃pη+α). (9)

2.2. Expressions of the Hamiltonian under other basis sets

If the quark-pair condensate� is equal to zero, the operator given by Eq. (7) becomes HSP
MF − μN +

V F2/(2G). Since the quark number N is already diagonal, let us diagonalize the Hamiltonian matrix
κ . First, we set up τ3 = 1 because the contribution of τ3 = −1 is the same as the contribution of
τ3 = 1, as was seen in (9), which results in a factor 2. Then, the Hamiltonian matrix κ can be simply
expressed as

κ =

⎛⎜⎜⎜⎝
q e −g 0
e q 0 g

−g 0 −q e
0 g e −q

⎞⎟⎟⎟⎠ , (10)

where q = p, e = F
√

p2
1 + p2

2/p and g = Fp3/p. The eigenvalues of κ are easily obtained as

± ε(±)p = ±
√

g2 + (e ± q)2 = ±
√

p2
3 +

(
F ±

√
p2

1 + p2
2

)2

. (11)

By introducing new fermion operators (apητα, a
†
pητα, ãpητα, ã

†
pητα) by⎛⎜⎜⎜⎜⎝

ap+τα
ap−τα
ãp+τα
ãp−τα

⎞⎟⎟⎟⎟⎠ = W †V †(p)

⎛⎜⎜⎜⎜⎝
cp+τα
cp−τα
c̃p+τα
c̃p−τα

⎞⎟⎟⎟⎟⎠ , (12)

where the operators V (p) and W are given in Appendix A, the mean field Hamiltonian in which
both quark spin polarization and the quark-pair condensate are simultaneously considered can be
expressed as

HMF − μN =
∑
pητα

[
(ε(η)p − μ)a†

pηταapητα − (ε(η)p + μ)ã†
pηταãpητα

]
+ �

2

∑
pηττ ′αα′α′′

[
a†

pητα′a
†
−pητ ′α′′ − ã†

pητα′ ã
†
−pητα′′ + h.c.

]
εαα′α′′εττ ′φτ

+ V · F2

2G
+ V · 3�2

2Gc
. (13)

5/20

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/10/103D

01/1540490 by 00500 U
niversidade de C

oim
bra user on 27 O

ctober 2023



PTEP 2013, 103D01 Y. Tsue et al.

Here, the summation with respect to isospin indices τ and τ ′ is explicitly rewritten. The above
mean field Hamiltonian is the starting point for discussing the quark spin polarized phase and color
superconducting phase.

3. BCS state and thermodynamic potential

We introduce the BCS state following Ref. [18]:

|�〉 = eS|�0〉, |�0〉 =
∏

pητα(ε(η)p <μ)

a†
pητα|0〉,

S =
∑

pη(ε(η)p >μ)

Kpη

2

∑
αα′α′′ττ ′

a†
pηταa†

−pητ ′α′εαα′α′′εττ ′φτ

+
∑

pη(ε(η)p ≤μ)

K̃pη

2

∑
αα′α′′ττ ′

apηταa−pητ ′α′εαα′α′′εττ ′φτ , (14)

where |0〉 is the vacuum state with respect to apητα , and Kpη = K−pη and K̃pη = K̃−pη are satisfied.
Here, the contribution of quark-pairing with negative energy is not considered in quark matter. Then,
the state |�〉 is a vacuum state with respect to new operators dpητα:

dpητα =
{

apητα − Kpη(a
†
−pητ ′β − a†

−pητ ′γ ) for ε
(η)
p > μ

a†
pητα + K̃pη(a−pητ ′β − a−pητ ′γ ) for ε

(η)
p ≤ μ

, (15)

where (α, β, γ ) is a cyclic permutation for color indices and τ ′ = −τ . For the above operators, the
state |�〉 satisfies the following relation:

dpητα|�〉 = 0. (16)

The state |�〉 is identical with the BCS state.
In order to calculate the expectation value of the mean field Hamiltonian (13), it is necessary to

obtain the expectation values of a†
pηταapητα , a†

pηταa†
−pητ ′α′ , and so on with respect to the BCS state

|�〉. The detailed calculations are given in Appendix B. Thus, by summing up with respect to color
and isospin indices, we obtain the expectation value of the mean field Hamiltonian for the BCS
state as

〈�|HMF − μN |�〉 = 3
∑

pητ(ε(η)p >μ)

[
(ε(η)p − μ)

2K 2
pη

1 + 3K 2
pη

+ 2�
Kpη

1 + 3K 2
pη

]

+ 3
∑

pητ(ε(η)p ≤μ)

[
(ε(η)p − μ)

(
1 − 2K̃ 2

pη

1 + 3K̃ 2
pη

)
+ 2�

K̃pη

1 + 3K̃ 2
pη

]

+ V · F2

2G
+ V · 3�2

2Gc
. (17)
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In order to determine the BCS state, namely, to determine the variational variables Kpη and K̃pη, we
introduce new variational variables θpη and θ̃pη instead of Kpη and K̃pη:

sin θpη =
√

3Kpη√
1 + 3K 2

pη

, cos θpη = 1√
1 + 3K 2

pη

,

sin θ̃pη =
√

3K̃pη√
1 + 3K̃ 2

pη

, cos θ̃pη = 1√
1 + 3K̃ 2

pη

. (18)

Thus, the Hamiltonian and color superconducting gap� can be expressed in terms of θpη and θ̃pη as

〈�|HMF − μN |�〉 = 2
∑

pη(ε(η)p >μ)

[
2(ε(η)p − μ) sin2 θpη + 2

√
3� sin θpη cos θpη

]

+ 2
∑

pη(ε(η)p ≤μ)

[
(ε(η)p − μ)(3 − 2 sin2 θ̃pη)+ 2

√
3� sin θ̃pη cos θ̃pη

]

+ V · F2

2G
+ V · 3�2

2Gc
, (19)

� = �2 = �5 = �7 = −Gc · 1

V

∑
pηβγ τ

〈�|a†
pητβa†

−pη−τγ |�〉

= −2Gc

⎛⎜⎝ 1

V

∑
pητ(ε(η)p >μ)

Kpη

1 + 3K 2
pη

+ 1

V

∑
pητ(ε(η)p ≤μ)

K̃pη

1 + 3K̃ 2
pη

⎞⎟⎠

= −4Gc√
3

⎛⎜⎝ 1

V

∑
pη(ε(η)p >μ)

sin θpη cos θpη + 1

V

∑
pη(ε(η)p ≤μ)

sin θ̃pη cos θ̃pη

⎞⎟⎠ . (20)

Here, in the first line in (19) and the third line in (20), the isospin indices are summed up and an extra
factor 2 appears with respect to the corresponding expression in Ref. [14]. Also, in the second line
in (20), the color indices β and γ are summed up and an extra factor 2 also appears.

Next, we impose the minimization condition for 〈�|HMF − μN |�〉 with respect to �, θpη, and
θ̃pη. First, we impose the minimization condition with respect to �:

∂

∂�
〈�|HMF − μN |�〉 = 0. (21)

This minimization condition leads to the gap equation in (20) exactly. Secondly, we minimize
〈�|HMF − μN |�〉 with respect to θpη and θ̃pη:

∂

∂θpη
〈�|HMF − μN |�〉 = 0,

∂

∂θ̃pη
〈�|HMF − μN |�〉 = 0, (22)
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which lead to the following equations:

(ε(η)p − μ) sin 2θpη +
√

3� cos 2θpη = 0,

−(ε(η)p − μ) sin 2θ̃pη +
√

3� cos 2θ̃pη = 0.
(23)

Thus, we obtain tan 2θpη = −√
3�/(ε(η)p − μ) and tan 2θ̃pη = √

3�/(ε(η)p − μ), which gives

sin θ2
pη = 1

2

⎡⎣1 − ε
(η)
p − μ√

(ε
(η)
p − μ)2 + 3�2

⎤⎦ ,
sin θ̃2

pη = 1

2

⎡⎣1 + ε
(η)
p − μ√

(ε
(η)
p − μ)2 + 3�2

⎤⎦ .
(24)

Since the variational parameters θpη and θ̃pη are determined completely, namely, Kpη and K̃pη are
determined, the BCS state is obtained.

Thus, we can derive the thermodynamic potential �(�, F, μ) at zero temperature from (19) with
(24) as

�(�, F, μ) = 1

V
〈�|HMF − μN |�〉

= 2 · 1

V

∑
pη(ε(η)p ≤μ)

[
2(ε(η)p − μ)−

√
(ε
(η)
p − μ)2 + 3�2

]

+ 2 · 1

V

�∑
pη(ε(η)p >μ)

[
(ε(η)p − μ)−

√
(ε
(η)
p − μ)2 + 3�2

]

+ F2

2G
+ 3�2

2Gc
, (25)

where ε
(±)
p =

√
p2

3 +
(

F ±
√

p2
1 + p2

2

)2

. Here, we explicitly introduce and write a three-

momentum cutoff parameter �. The above derivation is nothing but that of the usual method in
the BCS theory. Therefore, it is possible to derive the same result using the equations of motion
by eliminating so-called dangerous terms in the algebraic method [18]. It may be interesting to
observe that Eq. (25) means, physically, that only two “effective colors” participate in the pairing
process, the third “color” remaining inert. The contribution of the active “colors” to the energy is(

2(ε(η)p − μ)− 2
√
(ε
(η)
p − μ)2 + 3�2

)
/2, both for ε(η)p < μ and for ε(η)p > μ, while the contri-

bution of the inert “color"is simply ε(η)p − μ, but only for ε(η)p < μ. The gap equation in (20), i.e.
∂�(�, F, μ)/∂� = 0, is obtained as

�

⎡⎣2 · 1

V

�∑
pη=±

1√
(ε
(η)
p − μ)2 + 3�2

− 1

Gc

⎤⎦ = 0. (26)
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4. Numerical results and discussions

In this section, first, we investigate the possible phases with F = 0 and � �= 0 or with F �= 0 and
� = 0 at high density, namely, two-flavor color superconducting phase or spin polarized phase,
separately. First, as an extreme situation in the quark spin polarized phase with � = 0, the
thermodynamic potential reduces to

�(� = 0, F, μ) = 6 · 1

V

∑
p (ε(+)p ≤μ)

(ε(+)p − μ)+ 6 · 1

V

∑
p (ε(−)p ≤μ)

(ε(−)p − μ)+ F2

2G
, (27)

where it should be noted that
√
(ε
(η)
p − μ)2 = ε

(η)
p − μ for ε(η)p > μ or −(ε(η)p − μ) for ε(η)p < μ,

respectively, when (27) is derived from (25). Of course, the sum over momentum is replaced by the
momentum-integration as

1

V

∑
p

−→
∫

d3p

(2π)3
. (28)

Then, the thermodynamic potential derived here is identical with the one that has been previously
obtained by the present authors, i.e., Eq. (3.1) in Ref. [1].2 Thus, the thermodynamic potential with
� = 0 has already been given in Ref. [12] in the analytical form as

�(� = 0, F, μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F2

2G
− 1

π2

[√
μ2 − F2

4
(3F2μ+ 2μ3)+Fμ3 arctan

F√
μ2 − F2

− F4

4
ln
μ+

√
μ2 − F2

F

]
for F < μ

F2

2G
− 1

2π
μ3F for F > μ

. (29)

If the minimum of the thermodynamical potential exists in the range of F < μ, the gap equation for
F is derived from ∂�(� = 0, F, μ)/∂F = 0, which leads to

F = G

π2

[
2Fμ

√
μ2 − F2 + μ3 arctan

F√
μ2 − F2

− F3 ln
μ+

√
μ2 − F2

F

]
. (30)

In the other case, namely, the F = 0 case, the two-flavor color superconducting phase may be
realized with � �= 0. When F = 0, the quasiparticle energy ε(η)p = p is obtained for η = ±. The
thermodynamic potential (25) is then evaluated as

�(�, F = 0, μ) = 4 · 1

V

∑
p<μ

(
2(p − μ)−

√
(p − μ)2 + 3�2

)

+ 4 · 1

V

�∑
p>μ

(
(p − μ)−

√
(p − μ)2 + 3�2

)
+ 3�2

2Gc
. (31)

2 In Eq. (3.1) in Ref. [12], F-integration has to be carried out.
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Table 1. Parameter set.

� / GeV G / GeV−2 Gc / GeV−2

0.631 20.0 6.6

After replacement of the sum over momentum into momentum-integration in (28), the analytical
form of the thermodynamic potential is obtained with a three-momentum cutoff parameter �:

�(�, F = 0, μ) = 3�2

2Gc
− μ4

6π2 + �4

2π2 − 2μ�3

3π2

− 1

12π2

[
(2μ3 − 39�2μ)

(√
μ2 + 3�2 −

√
(μ−�)2 + 3�2

)
+ (6�3 + 9�2�− 2�2μ− 2�μ2)

√
(μ−�)2 + 3�2

+ 3(12�2μ2 − 9�4) ln
�− μ+

√
(μ−�)2 + 3�2

−μ+
√
μ2 + 3�2

]
. (32)

The gap equation becomes

1

π2

[
−3μ

√
μ2 + 3�2 + (3μ+�)

√
(μ−�)2 + 3�2

+ (2μ2 − 3�2) ln
�− μ+

√
(μ−�)2 + 3�2

−μ+
√
μ2 + 3�2

]
= 1

Gc
. (33)

The quark number density ρ is calculated from the thermodynamical relation as

ρ = −∂�(�, F, μ)

∂μ
. (34)

In our model Hamiltonian, the model parameters are G, Gc, and�. In the original NJL model, the
coupling strength GS appears where GS = 5.5 GeV−2 is adopted [19], although this parameter does
not appear explicitly in the model considered here. Then, following Ref. [17], the strength of the
quark-pair interaction, Gc, is taken3 as (Gc/2)/GS = 0.6. Thus, we adopt Gc = 6.6 GeV−2. As for
the three-momentum cutoff�, a standard value [19] is adopted here, namely,� = 0.631 GeV. If the
tail stretching beyond the Fermi momentum of occupation number should be fully taken into account
in the BCS theory, a larger value of three-momentum cutoff should be adopted, such as � = 0.8
GeV [18]. However, it will be later seen that the tail of the occupation number is already sufficiently
taken into account in the case� = 0.631 GeV. As for G in the strength of the tensor-type interaction
between quarks, we put G = 20 GeV−2, which was used in our previous paper [12]. As was discussed
in Ref. [12], if the effect of the vacuum polarization is taken into account, the coupling constant
G should be replaced with the renormalized coupling Gr , in which 1/Gr = 1/G −�2/π2. Then,
Gr = 20 GeV−2 corresponds to the bare coupling G = 11.1 GeV−2 for� = 0.631 GeV or G = 8.7
GeV−2 for � = 0.8 GeV. Thus, the strengths of the quark-pairing and tensor-type interactions are
comparable. The parameter set used here is summarized in Table 1.

3 In Ref. [17], GC/GS = 0.6 is adopted, where GC in Ref. [17] corresponds to Gc/2 here.
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Fig. 1. (a) The pressures for normal (thin curve), two-flavor color superconducting (2SC) (dash-dotted curve),
and quark spin polarized (SP) (solid curve) phases are shown as functions with respect to quark chemical
potential μ in the case of � = 0.631 GeV. (b) The details are depicted around μ ≈ 0.442 GeV.

Fig. 2. The occupation number is depicted as a function of |p| in the cases μ = 0.442 GeV and μ = 0.30 GeV.

First, let us estimate the thermodynamic potential numerically in two phases, namely, color super-
conducting phase with F = 0 and � �= 0 and quark spin polarized phase with F �= 0 and � = 0,
separately. The state with (F = 0,� = �0) gives a local minimum of the thermodynamic potential,
where �0 is the solution of the gap equation (26) with F = 0 or Eq. (33). However, the state with
(F = F0,� = 0) gives a local minimum or a saddle point of the thermodynamic potential corre-
sponding to the value of μ, where F0 is the solution of the gap equation ∂�(� = 0, F, μ)/∂F = 0
or Eq. (30). This is shown in Appendix C. We compare the pressure in the color superconducting
phase (F = 0,� = �0) with that in the quark spin polarized phase (F = F0,� = 0). The pressure
p is given by

p = −�(�, F, μ). (35)

In Fig. 1(a), the pressures for normal (thin curve), two-flavor color superconducting (dash-dotted
curve), and quark spin polarized (solid curve) phases are shown in the case of � = 0.631 GeV as
functions with respect to quark chemical potential μ. Up to μ = μc = 0.442 GeV, where �(� =
�0, F = 0, μc) = �(� = 0, F = F0, μc), the two-flavor color superconducting (2SC) phase is
realized. However, above μ = μc, the quark spin polarized phase is favored. In Fig. 1(b), details are
depicted aroundμ ≈ 0.442(= μc)GeV. As for the baryon number density, up to ρB = 4.73ρ0, where
ρ0 = 0.17 fm−3 is the normal nuclear matter density, the color superconducting phase is realized.
Thus, it is enough to include the effects of the tail of the occupation number with the three-momentum
cutoff � = 0.631 GeV. In Fig. 2, the occupation number is depicted as a function of the magnitude
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Fig. 3. The contour map of the thermodynamic potential �(�, F, μ) is depicted in the cases (a) μ = 0.40
GeV, (b) μ = 0.42 GeV, (c) μ = 0.442 GeV, (d) μ = 0.45 GeV, (e) μ = 0.46 GeV, and (f) μ = 0.48 GeV. The
horizontal and vertical axes represent F and �, respectively.
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of momentum p(= |p|). It seems from Fig. 2 that the effects of the tail of the occupation number are
fully taken into account.

Secondly, let us consider the gap � and F simultaneously. Figure 3 shows contour maps of the
thermodynamic potential �(�, F, μ), where the horizontal and vertical axis represent F and �,
respectively, in the cases (a) μ = 0.40 GeV, (b) μ = 0.42 GeV, (c) μ = μc = 0.442 GeV, (d) μ =
0.45 GeV, (e) μ = 0.46 GeV, and (f) μ = 0.48 GeV. In case (a), the gap equations give F = 0 and
� = �0. The point (F = 0,� = �0) is a true minimum of the thermodynamic potential. Then, up to
μ ≈ 0.40 GeV, the color superconducting phase is realized. In the region with μ>∼0.407 GeV, which
corresponds to the baryon number density ρ divided by the normal nuclear matter density ρ0, being
ρ/ρ0 = 3.71, the gap equation ∂�(� = 0, F, μ)/∂F has a nontrivial solution with a nonzero F
value. Then, the true minimum of the thermodynamic potential moves to the point (F �= 0,� ≈ �0)

from the point (F = 0,� = �0), as is seen in Fig. 3(b). In Fig. 3(c) with μ = μc = 0.442 GeV, in
which�(� = �0, F = 0, μ = μc) = �(� = 0, F = F0, μ = μc), the true minimum is located at
(F ≈ 0.8F0, � ≈ 0.8�0). This state may be interpreted as a state in a mixed phase, in the sense that
this phase is intermediate between a pure spin polarized phase and a pure 2SC one. Further, in case
(d), μ = 0.45 GeV, the true minimum is located at (F ≈ 0.8F0, � ≈ 0.7�0). In cases (e) and (f),
namely μ>∼0.46 GeV, the point (F = F0,� = 0) becomes a true minimum and the spin polarized
phase is realized. However, in case (e), two minima appear. As seen in case (e), it is most likely that
a jump occurs from (F = F0,� = �0) to (F = F0,� = 0). Thus, starting from the 2SC phase, the
second-order phase transition starts at the onset of the spin polarization F = F0, and finally it seems
that the transition occurs from intermediate phase to spin polarized phase.

5. Summary and concluding remarks

In this paper, it was shown within the mean field approximation that the quark spin polarized phase
may be realized after the two-flavor color superconducting phase and the mixed phase as the baryon
density increases. We first calculated the pressure of the two phases separately, namely, in the 2SC
(� �= 0 and F = 0) and the quark spin polarized (� = 0 and F �= 0) phases. As a result, in a certain
lower density region, the 2SC phase is realized. However, in rather high density regions, the quark
spin polarized phase is realized. If the large F expansion is carried out in Eq. (26), then the gap
equation for � is expressed approximately as

�

⎡⎣∫ d3p

(2π)3

⎛⎝1 +
2μ
√

p2
1 + p2

2 − 3�2

2F2

⎞⎠− F

4Gc

⎤⎦ ≈ 0. (36)

For large F , the above equation has only the trivial solution � = 0. Thus, it is expected that in
fact the quark spin polarized phase with � = 0 and F �= 0 is realized in the high baryon density
region with large F . The situation is the same even if another parameter is reasonably adopted. For
example, when we adopt G = 10 GeV−2, which is one-half of the value used in this paper, the
behavior of the phase transition is similar in the case of G = 20 GeV−2 except for the value of
chemical potential μ = μc = 0.605 GeV, where�(� = �0, F = 0, μc) = �(� = 0, F = F0, μc)

is satisfied. But sinceμc = 0.605 GeV is close to the three-momentum cutoff�, it may be impossible
to draw definite conclusions about the phase transition.

It might be thought that, as a result, the spin polarized (SP) phase may be more favorable than
the two-flavor color superconducting (2SC) phase at high density. It should be noted that the
thermodynamic potential can be re-expressed as � = − ∫ μ0 dμ N , which is proportional to −μ×
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(volume surrounded by the Fermi surface). In the quark matter with F = 0 at low baryon density
or small quark chemical potential, the thermodynamic potential depends on μ4 (= μ× μ3), namely
� ∝ −μ4, in whichμ3 is nothing but the volume surrounded by the Fermi surface because the shape
of the Fermi surface is a sphere. However, at very high baryon density or large quark chemical poten-
tial, in which the relation F > μ is satisfied, the shape of the Fermi surface becomes a torus, namely,

(

√
p2

1 + p2
2 − F)2 + p2

3 = μ2. Here, the volume of the torus is 2π2μ2 × F , where μ is the smaller
radius and F is the other larger radius of the torus. In the case F > μ, namely the full polarization
case, from Eq. (29), F = (G/(2π))× μ3 gives the minimum of the thermodynamic potential. As a
result, the thermodynamic potential is proportional to −μ× (volume surrounded by the Fermi sur-
face) ∝ −μ× μ2 × F ∝ −μ6, as shown in our previous paper [12]. Thus, at high baryon density
or large quark chemical potential, the spin polarized phase is favored. It might be concluded that the
mechanism that causes the SP phase to be more favored than the 2SC phase at high densities is the
distortion effect of the Fermi surface.

For the three-momentum cutoff � = 0.631 GeV, it is sufficient to take into account the tail of the
occupation number since the values of the chemical potential on the phase transition point from
the 2SC phase to the mixed phase and from the mixed phase to the spin polarized phase are about
0.407 GeV and 0.46 GeV, respectively. In general, in the system with finite chemical potential, a
chemical-potential dependent cutoff may be used [20–22]. However, for the sake of comparison, if
a rather large fixed value of the three-momentum cutoff, � = 0.8 GeV, is adopted where the tail of
the occupation number is more fully taken into account, the critical chemical potential from the 2SC
phase to the mixed phase is unchanged. Aboveμ = μc = 0.491 GeV, the state with (F = F0,� = 0)
is favored against the state with (F = 0,� = �0). With this larger fixed three-momentum cutoff, it
is concluded that, up to ρB = 7.42ρ0, the color superconducting phase is realized. The use of a large
three-momentum cutoff leads to the shift of the phase transition density, i.e., the phase transition
density is higher with a larger three-momentum cutoff. However, if a larger� is used, it is necessary
to re-adjust the coupling constants.

Secondly, the quark-pairing gap � and the spin polarization F were considered simultaneously.
Under the present treatment, the phase transition behavior from the 2SC phase with� �= 0 and F = 0
to the quark spin polarized phase with � = 0 and F �= 0 may be clear and the transition occurs
passing through the state with (F �= 0,� �= 0), which can be interpreted as the mixed phase.

In future work, it would be interesting and important to investigate the phase equilibrium at finite
temperature and in the presence of an external magnetic field. Also, matter in beta equilibrium
could be analyzed, while symmetric matter is considered in the present paper. Additionally, it is
important to investigate the interplay between the color-flavor locked (CFL) phase and the spin
polarized phase in higher density regions in quark matter. Further, it may be interesting to inves-
tigate the interplay between two quark spin polarized phases, namely, the quark spin polarized phase
originating from the tensor-type four-point interaction and that originating from the pseudovector-
type four-point interaction between quarks. In this paper, the mean field approximation for the
established BCS theory is adopted, under which the thermodynamic potential is considered in the
standard manner. Of course, there are other approaches to investigating the phase transition, such as
with the use of the CJT potential [23], the Landau potential [24], and so on. It would be interest-
ing to clarify the difference between the standard BCS mean field approach and the CJT potential
approach, including the effects of two-loop order as a general problem of the phase transition phe-
nomena. However, that is beyond the scope of the present paper. These topics are left for future
investigations.
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Appendix A. Mean field Hamiltonian in the basis of good helicity states

The following matrix is introduced in order to diagonalize the Hamiltonian matrix in Eq. (8) with
Eq. (10):

V (p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
ε
(+)
p +e+q

2
√
ε
(+)
p

−
√
ε
(−)
p −e+q

2
√
ε
(−)
p

−
√
ε
(+)
p −e−q

2
√
ε
(+)
p

√
ε
(−)
p +e−q

2
√
ε
(−)
p√

ε
(+)
p +e+q

2
√
ε
(+)
p

√
ε
(−)
p −e+q

2
√
ε
(−)
p

−
√
ε
(+)
p −e−q

2
√
ε
(+)
p

−
√
ε
(−)
p +e−q

2
√
ε
(−)
p

− g

2
√
ε
(+)
p (ε

(+)
p +e+q)

g

2
√
ε
(−)
p (ε

(−)
p −e+q)

− g

2
√
ε
(+)
p (ε

(+)
p −e−q)

g

2
√
ε
(−)
p (ε

(−)
p +e−q)

g

2
√
ε
(+)
p (ε

(+)
p +e+q)

g

2
√
ε
(−)
p (ε

(−)
p −e+q)

g

2
√
ε
(+)
p (ε

(+)
p −e−q)

g

2
√
ε
(−)
p (ε

(−)
p +e−q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A1)

Then, we can diagonalize the Hamiltonian matrix κ as V †κV . Namely,

HSP
MF =

∑
pτα

⎛⎜⎜⎜⎜⎜⎝
b†

p+τα
b†

p−τα
b̃†

p+τα
b̃†

p−τα

⎞⎟⎟⎟⎟⎟⎠
T

diag κ

⎛⎜⎜⎜⎜⎝
bp+τα
bp−τα
b̃p+τα
b̃p−τα

⎞⎟⎟⎟⎟⎠ , (A2)

where we define

diag κ =

⎛⎜⎜⎜⎝
ε
(+)
p 0 0 0

0 ε
(−)
p 0 0

0 0 −ε(+)p 0

0 0 0 −ε(−)p

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝

bp+τα
bp−τα
b̃p+τα
b̃p−τα

⎞⎟⎟⎟⎠ = V †(p)

⎛⎜⎜⎜⎝
cp+τα
cp−τα
c̃p+τα
c̃p−τα

⎞⎟⎟⎟⎠ . (A3)

Secondly, let us consider the total Hamiltonian matrix with the quark-pair interaction term in the
basis derived above. In this basis, Vcs in (9) is written as

Vcs = �
∑

pαα′α′′

⎛⎜⎜⎜⎜⎜⎝
b†

p++α
b†

p−+α
b̃†

p++α
b̃†

p−+α

⎞⎟⎟⎟⎟⎟⎠
T

V †(p)V (−p)

⎛⎜⎜⎜⎜⎜⎝
b†
−p+−α′

b†
−p−−α′

b̃†
−p+−α′

b̃†
−p−−α′

⎞⎟⎟⎟⎟⎟⎠ εαα′α′′ . (A4)
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Here, if we replace p with −p, then q, e, g, and ε(±)p in (10) are changed or unchanged to q, e, −g,
and ε(±)p . Thus, we obtain

V †(p)V (−p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

q+e

ε
(+)
p

0 − |g|
ε
(+)
p

0

0 q−e

ε
(−)
p

0 − |g|
ε
(−)
p

− |g|
ε
(+)
p

0 −q+e

ε
(+)
p

0

0 − |g|
ε
(−)
p

0 −q−e

ε
(−)
p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A5)

Finally, let us diagonalize the above matrix V †(p)V (−p). We introduce the following matrix:

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√
ε
(+)
p +e+q

2ε(+)p
0

√
ε
(+)
p −e−q

2ε(+)p
0

0 −
√
ε
(−)
p −e+q

2ε(−)p
0

√
ε
(−)
p +e−q

2ε(−)p|g|√
2ε(+)p (ε

(+)
p +e+q)

0 |g|√
2ε(+)p (ε

(+)
p −e−q)

0

0 |g|√
2ε(−)p (ε

(−)
p −e+q)

0 |g|√
2ε(−)p (ε

(−)
p +e−q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A6)

Then, by using the matrix W , the matrix V †(p)V (−p) that appears in the quark-pair interaction part
can be diagonalized as

W †V †(p)V (−p)W =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ . (A7)

By introducing new fermion operators (apητα, a
†
pητα, ãpητα, ã

†
pητα) by⎛⎜⎜⎜⎜⎝

ap+τα
ap−τα
ãp+τα
ãp−τα

⎞⎟⎟⎟⎟⎠ = W †

⎛⎜⎜⎜⎜⎝
bp+τα
bp−τα
b̃p+τα
b̃p−τα

⎞⎟⎟⎟⎟⎠ , (A8)

the mean field Hamiltonian in which both quark spin polarization and the quark-pair condensate are
simultaneously considered can be expressed in Eq. (13).

Appendix B. Expectation values of bilinear operators with respect to the BCS state

The expectation values for the BCS state are summarized as follows:

Xpη = 〈�|a†
pηταapητα′ |�〉 , (for α �= α′)

Npη = 〈�|a†
pηταapητα|�〉 ,

Dpη = 〈�|a−pη−τα′apητα|�〉 , (for α �= α′)

Ppη = 〈�|a−pη−ταapητα|�〉, (B1)
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where we take α = 1 and α′ = 2 for the following calculations because color symmetry is retained.
We can easily calculate the above expectation values by using the relation (16) with (15).

For ε(η)p > μ, the following relations are obtained:

Xpη = −K 2
pη + K 2

pη(Npη − Xpη),

Npη = 2K 2
pη − 2K 2

pη(Npη − Xpη),

Dpη = Kpη − 3K 2
pηDpη + K 2

pηPpη,

Ppη = −2K 2
pηPpη. (B2)

In the same way, for ε(η)p ≤ μ, the following relations are also obtained:

Xpη = −K̃ 2
pη(Xpη − Npη),

Npη = 1 + 2K̃ 2
pη(Xpη − Npη),

Dpη = K̃pη − 3K̃ 2
pηDpη − K̃ 2

pηPpη,

Ppη = 2K̃ 2
pηPpη. (B3)

As a result, the expectation values are calculated as

For ε(η)p > μ

Xpη = − K 2
pη

1 + 3K 2
pη
, Npη = 2K 2

pη

1 + 3K 2
pη
, Dpη = Kpη

1 + 3K 2
pη
, Ppη = 0, (B4)

For ε(η)p ≤ μ

Xpη = K̃ 2
pη

1 + 3K̃ 2
pη

, Npη = 1 + K̃ 2
pη

1 + 3K 2
pη

= 1 − 2K̃ 2
pη

1 + 3K̃ 2
pη

,

Dpη = K̃pη

1 + 3K̃ 2
pη

, Ppη = 0. (B5)

Appendix C. The states with (� �= 0, F = 0) and (� = 0, F �= 0)

It may be shown that (�0, F = 0) is a local minimum of the thermodynamic potential �(�, F, μ),
where�0 is the solution of the gap equation ∂�(�, F = 0)/∂� = 0. Here, the states with (�0, F =
0) and (� = 0, F0) give extrema of the thermodynamic potential, where F0 is the solution of the gap
equation ∂�(� = 0, F)/∂F = 0:

∂�(�, F, μ)

∂�
= 3�

⎡⎣−2 · 1

V

�∑
p,η

1√
(ε
(η)
p − μ)2 + 3�2

+ 1

Gc

⎤⎦ , (C1)
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⎧⎪⎨⎪⎩
∂�(�0, F = 0, μ)

∂�
= 0, (gap equation)

∂�(� = 0, F, μ)

∂�
= 0,

∂�(�, F, μ)

∂F
= 2 · 1

V

∑
p,η,εp≤μ

⎡⎣2 − ε
(η)
p − μ√

(ε
(η)
p − μ)2 + 3�2

⎤⎦ ∂ε(η)p

∂F

+ 2 · 1

V

∑
p,η,εp≥μ

⎡⎣1 − ε
(η)
p − μ√

(ε
(η)
p − μ)2 + 3�2

⎤⎦ ∂ε(η)p

∂F
+ F

G
, (C2)

⎧⎪⎨⎪⎩
∂�(� = 0, F, μ)

∂F
= 0, (gap equation)

∂�(�, F = 0, μ)

∂F
= 0,

where the last equality is satisfied due to ∂ε(η)p /∂F |F=0 = η

√
p2

1 + p2
2/p, ε(η)p = |p|, and η = ±1.

The condition that the states corresponding to (�0, F = 0) or (� = 0, F0) are a local minima is
that the eigenvalues are positive for the following stability matrix M(�, F), which consists of the
second derivatives:

M(�, F) =

⎛⎜⎜⎝
∂2�(�, F, μ)

∂�2

∂2�(�, F, μ)

∂F∂�

∂2�(�, F, μ)

∂�∂F

∂2�(�, F, μ)

∂F2

⎞⎟⎟⎠ , (C3)

where

∂2�(�, F, μ)

∂�2 = 3

⎡⎣−2 · 1

V

�∑
p,η

(ε
(η)
p − μ)2

[(ε(η)p − μ)2 + 3�2]3/2
+ 1

Gc

⎤⎦ , (C4a)

∂2�(�, F, μ)

∂F2 = 2 · 1

V

∑
p,η,εp≤μ

[
− 3�2

[(ε(η)p − μ)2 + 3�2]3/2

] (F + η

√
p2

1 + p2
2

)2

ε
(η)2
p

+ 2 · 1

V

∑
p,η,εp≤μ

⎡⎣2 − ε
(η)
p − μ√

(ε
(η)
p − μ)2 + 3�2

⎤⎦ p2
3

ε
(η)3
p

+ 2 · 1

V

∑
p,η,εp≥μ

[
− 3�2

[(ε(η)p − μ)2 + 3�2]3/2

]
(F + η

√
p2

1 + p2
2)

2

ε
(η)2
p

+ 2 · 1

V

∑
p,η,εp≥μ

⎡⎣1 − ε
(η)
p − μ√

(ε
(η)
p − μ)2 + 3�2

⎤⎦ p2
3

ε
(η)3
p

+ 1

G
, (C4b)

∂2�(�, F, μ)

∂F∂�
= 6� · 1

V

�∑
p,η

ε
(η)
p − μ

[(ε(η)p − μ)2 + 3�2]3/2
·

F + η

√
p2

1 + p2
2

ε
(η)
p

. (C4c)

Then, if (� = �0, F = 0) is a local minimum, the eigenvalues of the stability matrixM(�0, F = 0)
have to be positive. Here, it should be noted that M(�0, 0) is a diagonal matrix because
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Table 2. Numerical estimations.

μ / GeV �0 / GeV
∂2�(�0, F = 0, μ)

∂F2
/ GeV2

0.44 0.037 5255 0.007 743 56
0.441 90 0.037 7933 0.007 492 14
μc

0.441 95 0.037 8003 0.007 485 53
0.45 0.038 8851 0.006 447 47

∂2�(�0, F = 0, μ)/∂F∂� = 0 due to ε(η)p = |p| and η = ±1. Further, by using the gap equation
for �(�= 0), we obtain

∂2�(�0, F = 0, μ)

∂�2 = 6 · 1

V

�∑
p,η

3�2
0

[(p − μ)2 + 3�2
0]3/2

> 0 . (C5)

As for the other diagonal matrix element, ∂2�(�0, F = 0, μ)/∂F2, the positiveness is not shown
analytically. Instead of analytical calculation, numerical estimation is useful just before and after
the chemical potential μ = μc with model parameters G = 20 GeV−2, Gc = 6.6 GeV−2, and � =
0.631 GeV used in our paper, whereμc gives�(�0, F = 0, μc) = �(� = 0, F0, μc). From Table 2,
it is seen that the eigenvalues of the stability matrix M(�0, F = 0) are positive together with (C5).
Thus, the state with (� = �0, F = 0) is identified with a local minimum state of the thermodynamic
potential.

Next, let us consider the state with (� = 0, F0). The stability matrix M(� = 0, F0) is also a
diagonal matrix. We easily obtain the inequality

∂2�(� = 0, F0, μ)

∂F2 = 6 · 1

V

∑
p,η,ε(η)p ≤μ

p2
3

ε
(η)3
p

+ 1

G
> 0. (C6)

As for the other matrix element, ∂2�(� = 0, F0, μ)/∂�
2 , numerical estimation, just before and

after the point μ = μc, may also be useful. However, the integral diverges at ε(η)p = μ. This is not
surprising, in view of a well known “anomaly” of the BCS theory, according to which a perturbation
expansion in powers of the coupling constant G is not valid, even if this parameter is infinitesimally
small. As a result, the thermodynamical potential cannot be expanded in powers of �, even if this
parameter is infinitesimally small. We find that ∂�(� = 0, F0, μ)/∂� = 0, but the second derivative
diverges. We wish to see if, in the � direction, the extremum point (� = 0, F0) is a maximum or
a minimum. Figure 3 shows that the point with (� = 0, F0) is a minimum point in the F direction,
but is a maximum point in the � direction in the region μ < 0.46 GeV. Thus, in this region, a point
(� = 0, F0) is a saddle point. However, the caseμ>∼0.46 GeV, the extremum point with (� = 0, F0)

is a minimum point in the � direction. Thus, it is concluded that the point (� = 0, F0) gives a true
minimum of the thermodynamic potential �, which results in the quark spin polarized phase.
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