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Abstract

This work describes an approach inspired by the primary visual cortex using the stimulus response of the receptive field
profiles of binocular cells for disparity computation. Using the energy model based on the mechanism of log-Gabor filters
for disparity encodings, we propose a suitable model to consistently represent the complex cells by computing the wide
bandwidths of the cortical cells. This way, the model ensures the general neurophysiological findings in the visual cortex
(V1), emphasizing the physical disparities and providing a simple selection method for the complex cell response. The
results suggest that our proposed approach can achieve better results than a hybrid model with phase-shift and position-
shift using position disparity alone.
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Introduction

Physiologically inspired models of binocular disparity estimation

tend to consider the information represented by neurons in

primary visual cortex (V1) as an elaborated form of an energy

model. Previous studies to extract stereoscopic depth from retinal

disparity established Gabor functions as the standard computa-

tional model of V1 cells. They represent the finely tuned depth

perception cells, i.e., complex cells, by two pairs of 2D Gabor

filters with a quarter-cycle shift between phases, calculated by sine

and cosine Gabor functions.

Understanding how the complex cells are described by Gabor

filters and considering issues such as DC component for larger

bandwidths, the phase imbalance for quadrature relationship by

sine and cosine waveforms, and the asymmetric frequency

response on a log axis, we propose a mathematical representation

of complex cells to improve the errors introduced by these three

features mentioned, using logarithmic Gabor functions with

Hilbert transform. Our analysis and computer simulations show

clear evidence of contributions of log-Gabor and Hilbert transform

as an appropriate direction for V1 cells representation.

Using hybrid models with phase-shift and position-shift has

become a common standard computational model to estimate

disparity maps. We explore binocular images in natural viewing

conditions of position-shift and our method predicts better

disparity maps than hybrid models, without combinations of

inter-ocular phase-shift (unnatural disparities). In our case,

considering the response cell with the highest local extremum

allowed us to identify the correct disparity.

Our work is structured as follows: first, in the Visual Biological

Model section, a neurophysiological description of stereoscopic

vision theory consistent with V1 cells information is given. Second,

in the section dealing with Modeling Stereo Disparity Estimation,

a mathematical analysis of complex cells, represented by log-

Gabor functions and a comparison with Gabor functions features,

is performed. We focused on the computation of position-shift for

stereoscopic depth perception. Third, in the Results section, we

compute the disparity map for examples of synthetic stereograms

with small and large disparities and real world stereograms.

Finally, we discuss the advantages and precision of our proposed

method and we conclude by presenting the results obtained.

Visual Biological Model

Depth perception in the brain occurs as a result of the

horizontal separation between the eyes. The different locations on

the two retinas are crucial to detect variations in depth within the

scene. Binocular disparities are the positional displacements

between corresponding features in the pair of stereo images. The

brain uses the two-dimensional retinal images to understand

stereoscopic depth. The three-dimensional properties of the world

are coded in the primary visual cortex (V1), based on the known

properties of their cells [1–3].

Computational theories of vision involving relevant neural

mechanisms can simulate implementations from the V1 to find

binocular fusion and stereopsis [3–5]. An important issue for

understanding the physiological approaches is to consider binoc-

ular cells to encode disparity, different from nonphysiological

algorithms based on matching properties from each monocular

left- and right-eye images. Those numerous techniques estimate

the correct set of corresponding points under mathematical

formulations that cannot be performed by the brain [6].

To interpret visual information, bio-inspired models use the

response of the 2D receptive field (RF) profiles of binocular cells to

estimate the disparities. Some neurons found in V1 are linear and

many nonlinear, with tuning properties for several attributes.
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There are two types of cortical cells involved in the estimation of

the disparities: simple cells and complex cells. Simple and complex

cells are made up of orientation selective RFs. Simple cells have

antagonistic and spatially separated regions. These regions have

distinct responses to a stimulus (excitatory or inhibitory). On the

contrary, complex cells do not have spatially separate regions and

they respond to a stimulus anywhere within the RF. These

characteristics make complex cells finely tuned to binocular

disparity [3,7–10].

The mechanisms to encode useful information about disparities

aim to examine simple cells RF with shifted phase and position.

RFs are shifted in position when the left and right RFs of a simple

cell have the same shape, but centered at different spatial

locations. RFs are shifted in phase when the left and right RFs

of a simple cell have different shapes but are in the same spatial

location [1,3,11]. Figure 1 (adapted from [1,4]) shows both

position and phase disparity mechanisms. In the initial stages of

the brain these two types of stimuli studied (i.e., position-shift and

phase-shift) are physical disparities and nonphysical disparities.

One occurs in the real world naturally and it is characterized by

pure position disparities. The other is simulated in laboratory

artificially and it is characterized by pure phase disparities [12].

Phase disparities of the tuning curves were classified according

to their responses on the two retinas. Binocular interaction with

zero phase disparity in both eyes is classified as tuned excitatory

(TE) neurons and the disparity tuning function shows an even

symmetrical response profile. Cells with RF phase disparity of 1800

are classified as tuned inhibitory (TI), and like TE-type, the

response profile is even symmetric, but inverted. The odd

symmetric tuning curves (i.e., asymmetric) have the RF phase

disparity of +900, and the depth-sensitive cells are classified as

near or far [1,11,13].

The structure described for complex cells is consistent with an

energy model proposed by [14] for motion, and its variant for a

stereo matching problem is now being used extensively [3,15–18].

The components of a complex cell are four and they are

functionally equivalent to simple cells. The standard model of

the simple cell is based on a linear band-pass binocular filter. The

response of a binocular simple cell is described by the summation

of the outputs of its left and right eye filters. Complex cells are

modeled as nonlinear binocular interactions (Figure 2). Their

responses can be computed using the squared sum of an even and

an odd component, i.e., depth-sensitive cells with RF phase

disparity of 00 and 900 (cells in quadrature) [9,11,19].

The example in Figure 2 is a model for disparity selectivity in

complex cells adapted from [3,15]. The model describes the

contributions of the left and right RFs as inputs of four binocular

simple cells, and their rectified outputs constitute the final complex

cell. The RFs profiles illustrated for each binocular simple cell are

identical in both eyes. The spatial distribution arrangement of the

RFs can vary according to excitatory (ON) and inhibitory (OFF)

regions [9]. Excitation increases in the selectivity RF model when

inhibition decreases and vice versa. The set of simple cells are

arranged into two push-pull pairs (labeled S1 and S2; S3 and S4),

because they cannot fire negative values. Simple cells with low

spontaneous firing rate are common. As we show in Figure 2, each

simple cell pair configuration has inverted RF profiles, therefore,

cells can preserve bipolar signals information. The two pairs of

simple cells are also a quarter-cycle shift between ON and OFF

regions, i.e., they are in the quadrature phase. The pairs of

quadrature simple cells have spatial RF profiles which share a

common space location and the same preferred orientation

[3,15,20].

Several works in the literature compute the binocular disparity

in real world images considering the energy model [21–24]. They

provide a representation of the visual cortical cell modeled by

Gabor functions [10] to solve the stereo correspondence problem.

Although these descriptions have been widely adopted, this paper

aims to examine log-Gabor functions to achieve a mathematical

description of the initial stages of the brain’s stereo algorithm.

In [21] an algorithm is described that uses a coarse-to-fine

procedure with both phase-shift and position-shift receptive fields

mechanisms for processing of binocular disparity. The response of

a binocular simple cell is computed by using a 2D Gabor

functions. In spatial pooling a 2D Gaussian function is used to

combine the responses of quadrature pairs around each location.

Orientation pooling is performed by means of the average of the

population response curves within the full range of orientations.

The peak location of the averaged curve is computed by a

Figure 1. Disparity tuning curves of a pair of receptive fields
(Left RF solid lines; Right RF dashed lines) of binocular simple
cells with position shift (left) and phase shift (right). Position-
shift disparity tuning curves have identical shapes and a horizontal
translation between them. Phase-shift disparity tuning curves have
different shapes and the same location in the two eyes.
doi:10.1371/journal.pone.0080745.g001

Figure 2. A model of a complex cell. The response of a binocular
simple cell is described by the summation of the outputs of their left
and right eye filters. The RF configuration is consistent with ON and OFF
regions. Complex cells are modeled as nonlinear binocular interactions
outputs of two quadrature pairs of simple cells. (:)2 denotes a squaring
operation for each matrix element. The final complex cell is arranged as
the energy model (sum of squares).
doi:10.1371/journal.pone.0080745.g002
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parabolic fit of three points around the peak. The results suggest

that phase-shift RF mechanism is better suited for disparity

computation than the position-shift mechanism.

The work in [22] estimates the disparity using a population of

hybrid position-disparity and phase-disparity neurons. The Gabor

RFs are shifted symmetrically in opposite directions. The stimulus

disparity can be found at a local extremum (maximum or

minimum) of the population response. The characteristics of the

extremum points are as follows: the position disparities should be

at a local maximum or a local minimum, and the phase disparities

should be at a local maximum. The maximum and minimum

points selected are used to compute the extremum point using the

Nelder-Mead algorithm. The resulting maps of different spatial

frequencies and orientation channels are pooled using a simple

robust-averaging heuristic. Using this method, and for uniform-

disparity stimuli, the algorithm is guaranteed to find the correct

disparity, even within a single spatial-frequency and orientation

channel.

The authors in [23] adopt an algorithm for disparity estimation

based on a confidence measure that uses a population of hybrid

disparity neurons tuned to different phase-shifts and position-shifts.

The confidence measure is used to classify the stimulus disparities

as inside or outside the range of preferred disparities in the

population. The classification error is reduced applying Bayesian

classifiers. The position-shift selection involves a winner-takes-all

network and the estimated disparity is improved using spatial and

orientation pooling. The paper suggests that the pixels with low

confidence are likely to be in occluded regions.

The algorithm presented in our previous work [24] is a bio-

inspired computational model to compute binocular disparity with

position-shift receptive field. The binocular energy model

employed two Gabor functions whose phase value is always zero.

The initial values used by the algorithm are based on the most

responsive complex cells. After the first spatial frequency, the

complex cells responses at a local maximum or a local minimum

are selected. The resulting maps with different spatial frequencies

and RF orientations are pooled.

This work is an alternative approach to investigate the

mechanism of disparity encoding of the log-Gabor filters [25–

27], that support general neurophysiological findings in V1

neurons. We developed a model to consistently represent the

complex cells with a suitable filter (log-Gabor) to compute the wide

bandwidths of the cortical-cells. The model proposed emphasizes

the physical disparities unlike the others models [21–23] that

depend of nonphysical disparities to decode images. Our model

facilitates computation and implementation of the disparities by

providing a simple selection of the complex cells responses. The

results achieved are better for the same three images from

Middlebury stereo repository [6] than the results showed in [22]

whose algorithm is very time-consuming. We also provide results

computing disparity maps for random dot stereograms with the

same characteristics shown in [21] and our algorithm presents

good results. Finally, there is another important factor that needs

to be considered, which is that our proposed algorithm always

shows better results with log-Gabor filters than with Gabor filters

in equivalent experimental conditions (position-shift disparity,

Figure 3. Square stereogram. A: Left image. B: Right image. C: Ground truth disparity map. D: Disparity map using log-Gabor filters. E: Disparity
map using Gabor filters.
doi:10.1371/journal.pone.0080745.g003
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complex cells response selection and estimated disparity maps

pooling).

Modeling Stereo Disparity Estimation

In a mathematical model of depth perception based on primary

visual cortex (V1) concepts, the neurons can be treated as 2D

filters with a broad range of spatial dimensions, orientation

bandwidths and spatial frequency bandwidths [10]. The energy

model might be understood as modeling the response of four

simple cells by means of two pairs of band-pass filters in

quadrature followed by a half-power function. Gabor and log-

Gabor filters encode natural images efficiently when the band-

width is not more than 1 octave. For larger bandwidths (over one

octave), the frequency response of the log-Gabor filter permits a

more compact representation [25]. Most of the cells in V1 have

bandwidths between 1.0 and 1.5 octaves. The average bandwidth

of simple cells and complex cells is about 1.4 and 1.5 octaves,

respectively [28]. Therefore, log-Gabor filters seem to be adequate

when dealing with bio-inspired models due to the wide bandwidth

of the simple and complex cells.

Functions of frequency response of many V1 cells are symmetric

on a log axis. Log-Gabor function captures the relative symmetry

of the tuning curves on a log axis, differently of a Gabor function.

With the constant bandwidths, the Gabor filters responses are

redundant at low frequencies and over one octave this character-

istic becomes more visible. While using log-Gabor functions, the

information is maintained uniformly spread across the scales. In

addition, the DC component of the log-Gabor is zero for narrow

or larger bandwidths. On the contrary, Gabor filters cannot keep a

zero DC component for bandwidths greater than 1 octave. Log-

Gabor functions allow obtaining wide band spectral information

using filters of minimal spatial extent because they have an

extended tail at the high frequency end [25].

In agreement with Gabor and log-Gabor functions character-

istics concerning bandwidth, log axis symmetry and DC compo-

nent, there are evidences that the best-fitting for RFs should be

log-Gabor filters. Theoretically, log-Gabor filters provide the most

complete description of how to represent a RF and they can work

properly to represent depth in an energy model algorithm. Both

filters have not been compared in a single study to determine

which could provide the best performance. In this work such a

comparison is performed (section of Results).

Logarithmic Gabor functions, like traditional Gabor functions,

can be used to determine the RFs of simple cells. To do this,

instead of using a linear frequency scale, as was done in [21–24],

we now look at the logarithmic frequency scale [25,29,30]. Simple

cell RFs computation is modeled through a set of log-Gabor filters

in the Fourier domain to analyze the signal. A frequency domain

computation is provided by taking the two-dimensional Fourier

transform of the space-time RF. We start by converting the filter

coordinates from Cartesian to polar coordinates. Each point (x,y)
can be described with two polar coordinates (r,Q). Let r be the

radial coordinate (1) and Q is the anticlockwise angular coordinate

(2). In the left RF the positional difference is given by dleft~{d=2

and the right RF is dright~d=2, where d is the positional difference

between the left and right RFs.

Figure 4. Ramp stereogram. A: Left image. B: Right image. C: Ground truth disparity map. D: Disparity map using log-Gabor filters. E: Disparity map
using Gabor filters.
doi:10.1371/journal.pone.0080745.g004

Stereoscopic Depth Perception

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e80745



r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xzdleft)

2zy2

q
ð1Þ

Q~ tan{1 ({y=(xzdleft)) ð2Þ

The two-dimensional filter was built in frequency domain by

means of the Fourier transform. It is computed as the product of

two separable factors. One term is an angular Gaussian function

(3). This function does not affect phase data because functions

filtered by a Gaussian undergo amplitude modulation of their

components [26].

g(w)~ exp {
(w{w0)2

2s2

 !
ð3Þ

where (w{w0) is the absolute angular distance of sine and cosine

difference, i.e., (w{w0)~D tan{1 (dsin=dcos)D where the coordinate

system is rotated according to the orientation angle h
(dsin~{ sin (h) cos (Q)z cos (h)sin(Q) and dcos~ cos (h) cos (Q)
z sin (h) sin (Q)). The s is the standard deviation of the Gaussian

function in the angular direction. The standard deviation is

constant and its value is p=6 or p=9, where values are based on the

empirical data.

The other term is a variation of the Gabor function where the

frequency response is a Gaussian on a log frequency axis so-called

log-Gabor filter [25], computed as follows:

g(r)~ exp
{( log (r=f0))2

2( log (k=f0))2

 !
ð4Þ

where f0 is the central radial frequency, k is the standard deviation

used to determine the bandwidth of the filter in the radial direction

and r is the radial coordinate (a point in the frequency domain).

The term k=f0 has a fixed value of 0.65 to achieve constant shape

ratio filters, i.e., filters that are all geometric scaling of some

reference filter. This value will result in a filter bandwidth of

approximately 1.5 octaves [26].

Figure 5. Gabor stereogram. A: Left image. B: Right image. C: Ground truth disparity map. D: Disparity map using log-Gabor filters. E: Disparity
map using Gabor filters.
doi:10.1371/journal.pone.0080745.g005

Table 1. Random dot stereograms.

Log-Gabor Filter Gabor Filter

B R B R

Square stereogram 6.18 0.95 10.18 1.14

Ramp stereogram 9.73 0.87 14.29 0.98

Gabor stereogram 7.28 0.25 9.51 0.34

doi:10.1371/journal.pone.0080745.t001
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Figure 6. Tsukuba stereogram. A: Left image. B: Right image. C: Ground truth disparity map. D: Disparity map using log-Gabor filters. E: Disparity
map using Gabor filters.
doi:10.1371/journal.pone.0080745.g006

Figure 7. Venus stereogram. A: Left image. B: Right image. C: Ground truth disparity map. D: Disparity map using log-Gabor filters. E: Disparity
map using Gabor filters.
doi:10.1371/journal.pone.0080745.g007

Stereoscopic Depth Perception

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e80745



The statistics of natural images analyzed in [25] show that

scenes from the natural world can be expected to have amplitude

spectra falloff of 1=f . This value is a rough average and in our

algorithm we have 4 different spatial frequencies where f0~1=f .

The overall 2D log-Gabor filter is represented in (5) through the

multiplication of the two terms (3) and (4), i.e., the angular

Gaussian function multiplied by the log-Gabor filter:

g(w,r)~g(w)|g(r) ð5Þ

The response of ON (excitatory regions) and OFF (inhibitory

regions) simple cells pair (8) is obtained by the squaring

nonlinearity of the half-wave rectified sum of the results of

multiplication of the 2D log-Gabor filters with the left (Ileft) and

right (Iright) images in the frequency domain ((6) and (7)). The

inclusion of OFF simple cells is consistent with Figure 2 as

described previously. The basic idea behind combining simple

cells pairs of opposite RF profiles is to remove the half-wave

rectification to analyze the signal [3,15,17]:

L~gleft(r,w)|Ileft ð6Þ

R~gright(r,w)|Iright ð7Þ

S(ON)zS(OFF)~(LzR)2~L2zR2z2LR ð8Þ

The binocular interaction RF of a complex cell is given by the

sum of the responses in quadrature of two push-pull pairs of

binocular simple cells:

C~S(ON)
even zS(OFF )

even zS
(ON)
odd zS

(OFF)
odd ð9Þ

The two pairs of simple cells in quadrature means that the filters

are orthogonal in phase, i.e., filters which have a p=2 phase shift,

while all the other parameters of the cells are identical. Complex

cells constructed with Hilbert transform are phase invariant. This

is not the case when sine and cosine Gabor functions are used in a

quadrature phase relationship, since the two functions have

different frequency amplitudes at zero spatial frequency

[19,25,30].

Equation (9) was rewritten in (10) to detail the application of the

filters in quadrature. The responses of an even filter (11) and an

odd filter (12) are given by:

C~L2
evenzR2

evenzL2
oddzR2

oddz2LevenRevenz2LoddRodd ð10Þ

Leven~Re(gleft(r,w))|Ileft ð11Þ

Lodd~Im(gleft(r,w))|Ileft ð12Þ

where the imaginary part Im(g(r,w)) is the Hilbert transform of

the real part Re(g(r,w)).

Figure 8. Sawtooth stereogram. A: Left image. B: Right image. C: Ground truth disparity map. D: Disparity map using log-Gabor filters. E: Disparity
map using Gabor filters.
doi:10.1371/journal.pone.0080745.g008
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The fitting algorithm used in our study provides an estimated

disparity map created by pooling maps with the same positional

differences range (d) and different spatial frequencies and

orientations.

Binocular disparity may be encoded first at low spatial

frequencies (coarse scales) and then at high spatial frequencies

(fine scales), i.e., a coarse-to-fine algorithm [21,22]. Disparity is

estimated by determining the local extremum of the response of

complex cells computed in (9). The extremum is located at a

maximum or a minimum response of complex cells for a range of

positional differences with the same orientation and spatial

frequency [22].

The determination of the local extremum depends on the spatial

frequency. If the spatial frequency is the first of a range, then the

complex cell selected is the one with the biggest extremum

response value. Otherwise a procedure to determine the values of

disparity selects the extremum with the closest value to the

previous map computed. All values of disparity corresponding to

the local extrema selected are saved in a map. The responses of the

complex cells are computed for a range of orientations and spatial

frequencies. The outputs of the algorithm are a map for each

combination of orientation and spatial frequency.

The final disparity map is created by pooling all maps. The

method used for pooling is the method described in [22]. Briefly,

each spatial position of the disparity map is combined to compute

the average. The resulting average is compared with each spatial

position of all maps and the position whose value is farthest from

the mean is removed. The process is repeated until the total of

spatial positions is reduced by half. The final disparity map is more

accurate than those that would have been obtained without the

pooling step.

The specific parameters used to compute the disparity map for

synthetic stereograms and real world stereograms are given in the

Results section according to the tests performed.

Results

We applied our algorithm to three different kinds of random dot

stereograms with a size of 2006200 pixels. The square stereogram

uses a disparity of 5 pixels for the central region of 1006100 pixels

and a disparity of 21 pixel for the surrounding area (Figure 3).

The ramp stereogram is created with disparity varying linearly

from 25 to 5 pixels in the central area of 1606160 pixels and a

surrounding area with a zero disparity (Figure 4). The Gabor

stereogram is constructed using a Gabor function (see Supporting

Information File S1) multiplied by a maximum disparity of 5

pixels (Figure 5). The parameters of the Gabor function are:

v=2p~1=80 cycles per degree, y~p=2, h~300 and s~40 pixels.

The tests were performed on a set of 1000 synthetic stereograms of

different dot patterns for each kind of stereogram described. The

random dot stereograms used are examples of small (1 pixel) and

large (5 pixels) disparities.

To compute the disparities for the random dot stereograms we

used 6 RF orientations and 4 spatial frequencies. The filter

bandwidth is 1.5 octaves. The RFs were computed in a 2D region

of 49697 pixels. The positional differences have a range of +8
pixels with a step of 1.0 pixel for square stereograms and 0.25 pixel

for ramp and Gabor stereograms. For log-Gabor filters the

standard deviation is p=6, the orientations are 30, 60, 90, 210, 240

and 270 degrees and the spatial frequencies are defined for

wavelength � scalenf , where wavelength is 3 pixels (wavelength of

the smallest scale filter), scale is 1.6 (a scaling factor between

successive filters) and nf varies from zero to 3 because we have 4

spatial frequencies. For Gabor filters the spatial frequencies are

0.5, 1.0, 2.0 and 4.0 cycles per degree, the orientations are 30, 60,

90, 120, 150 and 180 degrees and the DC components in the

stereograms are attenuated by subtraction of the mean luminance

from each one before filtering.

Figures 3(D) and 4(D) show that the log-Gabor functions work

well on these boundary stereograms when compared to figures 3(E)

and 4(E) in which boundaries delivered by Gabor functions are

much more blurred.

Table 1 presents the performance of our algorithm employing

log-Gabor filters and Gabor filters for synthetic stereograms. The

methodologies of evaluation (see Supporting Information File S2)

used are percentage of wrongly matched pixels (B) and root-mean-

squared error (R). Each table result is a mean of 1000 random dot

stereograms. The percentage of wrongly matched pixels is

calculated for regions where the disparity estimates exceed 0.25

pixel of error in the disparity.

According to Table 1 the proposed algorithm has similar or

better results when compared to the estimated disparities in [21],

which show a percentage of wrongly matched pixels of 11% and

7% for ramp and Gabor stereograms, respectively. In [21] there

are no results for R to any stereogram and the square stereogram

does not present results for B.

We tested our algorithm with 25 real world stereo-pairs (three

examples are shown in Figures 6, 7 and 8) from the Middlebury

Table 2. Real world stereograms.

Log-Gabor Filter Gabor Filter

B R B R

Tsukuba stereogram 15.79 1.60 20.72 1.71

Venus stereogram 10.83 1.24 14.03 1.37

Sawtooth stereogram 9.72 1.76 14.40 1.94

Aloe stereogram 14.56 1.33 19.10 1.37

Baby1 stereogram 6.83 0.93 10.37 1.03

Baby2 stereogram 8.26 0.89 11.44 0.99

Baby3 stereogram 11.14 0.93 14.75 1.10

Barn1 stereogram 10.02 1.54 15.51 1.77

Books stereogram 8.68 0.95 12.14 1.26

Bowling1 stereogram 19.04 2.15 25.97 2.36

Bowling2 stereogram 15.01 1.46 21.28 1.76

Bull stereogram 6.80 0.79 8.41 0.84

Cloth1 stereogram 0.76 0.26 0.86 0.26

Cloth2 stereogram 7.56 0.91 9.73 1.27

Cloth3 stereogram 3.73 0.54 5.31 0.60

Cloth4 stereogram 6.82 1.31 9.94 1.54

Dolls stereogram 11.23 0.72 14.32 0.92

Flowerpots stereogram 12.25 1.06 19.04 1.33

Laundry stereogram 16.31 1.36 20.34 1.49

Moebius stereogram 14.28 0.89 18.19 1.06

Reindeer stereogram 20.45 1.94 26.12 2.05

Rocks1 stereogram 4.85 0.48 6.20 0.64

Rocks2 stereogram 2.30 0.38 3.42 0.43

Wood1 stereogram 9.41 1.86 12.19 2.07

Wood2 stereogram 14.04 1.88 20.70 2.14

doi:10.1371/journal.pone.0080745.t002
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stereo repository (http://vision.middlebury.edu/stereo/)

[6,31,32].

To compute the disparity images for the real world stereograms,

the values used for the parameters were, for almost all parameters,

similar to those used for the random dot stereograms. The

positional differences have a step of 0.5 pixel and range of 0 to

215 pixels for the image presented in Figure 6 and a range of 0 to

219 pixels for the images presented in Figures 7, 8 and all other

images used for the results shown in Table 2, according to the

ground truth. The results shown in Table 2 with images from

[31,32] are stereograms files formed by views 1 and 2. The

standard deviation used for the log-Gabor filters is p=9 and the

spatial frequencies are defined with a scaling factor of 2.1. The

parameter values were chosen empirically, based on the best

results obtained.

Table 2 shows the performance of our algorithm with real world

stereograms. The methodologies of evaluation are the same as

Table 1. The percentage of wrongly matched pixels is calculated

for regions where the disparity estimates exceed 1 pixel of error in

the disparity. We also excluded border pixels because the

algorithm does not compute meaningful disparities near the image

boundaries (border regions of 18 pixels).

According to Table 2, the proposed algorithm has better results

than the estimated disparities in [22] which shows a percentage of

wrongly matched pixels of 30%, 13% and 21% for Figure 6,

Figure 7 and Figure 8, respectively, and a root-mean-squared

error of 2, 1 and 2 for Figure 6, Figure 7 and Figure 8,

respectively.

Log-Gabor filters always show better results (Table 1 and 2)

than Gabor filters in equivalent experimental conditions. Another

important fact is that our algorithm with Gabor filters has

presented better results for Tsukuba and Sawtooth stereograms

than the algorithm in [22].

Discussion

We provide a biologically plausible computational method for

computing disparity maps from stereo images that fulfill the

requirements of V1 cortical-cells. Our approach uses a complex

cell model that is sensitive enough to encode small and large

disparity information in synthetic and real world stereograms

(using log-Gabor functions).

The results have some interesting implications that may

contribute to our work, since the binocular disparity is encoded

mainly through RF position disparity, considering neuroscientific

relevant features of an energy model. Our biological visual strategy

is a simple method for finding optimal local extrema that capture

image properties of depth perception. The calculations for local

extremum were performed for different spatial locations and the

phase-shift is performed for quadrature pairs of simple cells only.

We aimed to find a model with good capabilities for the

determination of disparities that is not based on a range of phase

differences.

The results with logarithmic Gabor function for synthetic and

real world stereograms may help explain why properties such as

the efficiency with broad bandwidths, no DC component, and the

symmetric frequency response on a log axis, are helpful for the

extraction of disparity information from stereoscopic images.

Another possible factor that may be relevant is the quadrature

relationship with Hilbert transform that is phase invariant. These

considerations lead us to conclude that the log-Gabor functions

are adequate to represent an efficient arrangement of complex

cells more accurately than the common representation encoded by

Gabor functions.

Improved estimates of the percentage of wrongly matched pixels

and root-mean-squared errors are achieved by decreasing the

number of spatial frequencies to 4, if we compare to other

algorithms [21,22] that use 5 or 6 spatial frequencies. Our

algorithm also converges quickly because of the efficiency and

simplicity of computation of the local extremum. An advantage of

our method is the reduction in computational processing time and

the increasing accuracy of estimated disparity maps.

The signal processing algorithms were implemented in C/C++
with CUDA (Compute Unified Device Architecture). The tests

were performed using an Intel quad-core (i7) and a graphics

processing unit Geforce GT 230M. The operating system used was

Windows 7. Our algorithm spent 5, 16, 16 and 15 seconds to

obtain the disparity maps for Figures 3, 4, 5 and 6, respectively.

Figures 7 and 8 required more time because of their size and

bigger disparity range. We spent 3 minutes and 31 seconds for

Figure 7 and 1 minute and 7 seconds for Figure 8. Tests with other

algorithms [21,22] always require more time.

Therefore, our results imply that an algorithm for disparity

computation with position-shift alone can provide reliable and

accurate estimates. Log-Gabor is an appropriate functional form

that contributes to stereoacuity without a hybrid mechanism of

phase- and position-shift. In other words, our economic position-

shift model with log-Gabor provides a significant improvement in

the estimated disparity maps.

Conclusion

We searched for a satisfactory bio-inspired computational

model to provide a consistent perception of depth for the observed

behavior of neurons found in V1 in the neuroscientific relevant

studies [3,12,16,17]. Gabor filters and hybrid disparity neurons are

generally used in computer vision applications for brain modeling

[21–23]. We have proposed a model for computing disparity maps

from stereograms that is based on cortex cells represented by log-

Gabor functions.

In this paper, we have shown that RF position disparities are

sufficient to encode binocular disparities. In addition our

algorithm does not depend on the range of RF phase disparities.

The study of binocular disparities concludes that log-Gabor filters

facilitate the extraction of true targets to achieve a consistent

perception of depth. Our results reflect how well the proposed

methodology represents a successful prediction of the disparity

information aspects by applying a quantitative evaluation of

synthetic and real world stereograms.

In the results presented, we have considered two types of filters

(log-Gabor and Gabor filters) to determine a good model of the

complex cells response. Tables 1 and 2 show that log-Gabor filters

always provide better or similar results when compared to the

other hybrid algorithms. Our modifications in the energy model

and in the response selection provide better estimated disparity

maps.
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