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Abstract. We show that the non-local susceptibility χ̄ (r, r′) for a non-
translationally invariant homogenized wire medium is, modulo a constant, given
by a simple Green function related to the material geometry. We also show that
two previous methods for solving wave interaction problems for bounded wire
media (wave expansion method and transport equation) are equivalent to each
other, and to a third method involving particle reflection at the boundary. We
discuss the importance of the dead layer or virtual interface, and find it to be
analogous to the excitonic semiconductor case. Several examples are provided
to clarify the material.
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1. Introduction

The interaction of electromagnetic waves and wire media has been of interest for many
years [1–3], driven by applications utilizing artificial plasma [4, 5], epsilon-near-zero
materials [6, 7], negative refraction [8, 9], wave canalization [10, 11] and other uses. When
the period of the wires is small compared to wavelength, the structure can be considered as a
homogeneous (homogenized) medium. Early models of wire media neglected spatial dispersion
of the homogenized material, but it has more recently been shown that non-local effects are
very strong for wire media and often cannot be ignored [12–15]. However, the incorporation of
spatial dispersion greatly complicates the analysis of wave–object interaction problems. For
material half-space problems and related multi-region problems involving laterally infinite,
finite-thickness material layers, the usual technique is to expand the field in all regions in
terms of the waves that can propagate in each region as if it were infinite, and then enforce
the usual boundary conditions and additional boundary conditions (ABCs) that account for the
extra waves generated in non-local materials [13, 16, 17]. A considerable body of work has
shown that this technique provides solutions that agree well with measurement and full-wave
modeling (i.e. brute-force numerical codes that explicitly consider the individual wires rather
than a homogenized medium) [14, 18–20]. Another technique is based on solving the drift-
diffusion equation [21, 22] resulting in an integro-differential equation that usually requires
numerical solution, but which is easily applied to various two- and three-dimensional (3D)
objects [23–25].

A key property of bounded non-local materials is that polarization and electric field are
related by the susceptibility tensor χ̄ (r, r′), rather than the tensor χ̄ (r − r′) which holds for
translationally invariant media (alternatively, electric displacement and field are related by the
tensor ε̄ (r, r′), where χ̄ (r, r′) = ε̄ (r, r′) − 1δ (r − r′) and 1 is the identity dyadic). Whereas
determination of χ̄ (r − r′) or ε̄ (r − r′) is a relatively straightforward task starting from the
transform-domain permittivity ε̄ (q) (the quantity usually known) [25], there have been few
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attempts to determine χ̄ (r, r′), which must incorporate information about the boundary. One
aim of this work is to show that, when material response and field are related by a linear
differential equation, a ‘local’ Green function for the same geometric region provides the
quantity χ̄(r, r′) (equivalently, the permittivity); information about the boundary is included
by enforcing the ABC on the Green function. We explicitly show this for the case of an
homogenized wire medium. The other aim of the work is to show that the two previously
described methods for homogenized wire media (the wave expansion and drift-diffusion
methods, both which avoid the need to know χ̄(r, r′)) are, in fact, equivalent, and are also
equivalent to a third method that utilizes χ̄(r, r′) decomposed into a principal and reflection
term that provides insight into the permittivity as well as the required ABCs. Non-local wire
medium material boundaries in the space domain are also discussed in [26]. Some aspects of
boundary conditions for interfaces of homogenized media are discussed in [27, 28]. Although
the material in this work is for homogenized materials, interface conditions and the idea of a
transition layer (discussed below) have also come up for periodic structures [29, 30].

2. Boundary- and geometry-dependent non-local susceptibility χ̄ (r, r′)

For a translationally invariant, homogeneous, non-local medium, P (r) = D (r) − ε0E (r) =

ε0

∫
χ̄ (r − r′) · E (r′) dr′, such that in the spatial transform domain (r ↔ q), P (q) = ε0χ̄ (q) ·

E (q) = ε0 (ε̄ (q) − 1) · E (q) and D (q) = ε0ε̄ (q) · E (q). Of course, for a local material P (r) =

ε0χ̄ · E (r) = ε0 (ε̄ − 1) · E (r) and D (r) = ε0ε̄ · E (r).
For a finite material region the above non-local relations will not hold, and more general

relations are required [16, 17]:

D(r) = ε0

∫
ε̄(r, r′) · E

(
r′
)

dr′, (1)

P(r) = ε0

∫
χ̄(r, r′) · E(r′) dr′. (2)

In this case, the material response must take into account the material boundary—it cannot be
derived simply from the bulk response. For natural materials, surface effects can be accounted
for using a microscopic model; in a fully quantum mechanical treatment the current–current
or density–density response can be used [16, 31, 32], and the Boltzmann equation is often
used in a semi-classical treatment [33]. However, these methods are often not feasible due to
the complexity of the problem and a lack of knowledge of the true surface conditions present.
Often, it suffices to use a macroscopic, phenomenological method [16, 17]. In the following,
for homogenized wire media we develop the non-local material response that accounts for a
material boundary from a macroscopic perspective.

The first main point of the paper is to show that in many cases χ̄ (r, r′) can be determined
by a Green function for the given geometry containing a simple (local) material. In fact, this is
the case when P (r) and E (r) are related by a linear differential equation. Indeed, if

LP(r) = E (r) ,

B (P) = 0,
(3)

where L is a linear differential operator and B (P) are boundary conditions, then one can define
a Green function Lḡ (r, r′) = 1δ (r − r′), B (ḡ) = 0 such that P (r) =

∫
ḡ (r, r′) · E (r′) dr′.
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Figure 1. Non-local half space characterized by susceptibility χ̄ (r, r′).

Therefore, since one may consider the electric field to be arbitrary, by (2) we have ε0χ̄ (r, r′) =

ḡ (r, r′). Below we illustrate this for the explicit case of a wire medium half-space and slab,
although the same procedure also holds for natural non-local materials.

For simplicity, we will first consider a material half-space, as depicted in figure 1, and
concentrate on the susceptibility response, from which one trivially obtains the permittivity.
The position vector is r = ρ̂ρ + ẑz.

The δ region, to be discussed later, is called the ‘dead layer’ in natural excitonic
materials [16], and is analogous to a transition layer or virtual interface for wire media
[13, 34, 35]. Noting the translational invariance in the xy plane we write

χ̄(r, r′) = χ̄(|ρ − ρ ′
|, z, z′) = χ̄(z, z′)δ(ρ − ρ ′), (4)

thus

P (ρ, z) = ε0

∫
∞

0
χ̄(z, z′) · E(ρ, z′) dz′. (5)

In this section we determine the non-local response χ̄ (z, z′) for uniaxial wire media that
accounts for the interface. In section 3 we consider the connected 3D isotropic wire medium.

Consider a uniaxial wire medium consisting of perfect electrically conducting (PEC) wires
immersed in a host medium characterized by relative permittivity εh, as depicted in figure 2.

For the case of an infinite medium, in the spatial Fourier transform (FT) domain z ↔ qz,
assuming the usual homogenization conditions p/λ � 1, the bulk material response is [12, 36]

ε̄bulk (qz) = εhε0

(
1 + ẑẑ

k2
p

q2
z − k2

h

)
, (6)

where kh = ω
√

µ0ε0εh = k0
√

εh is the wavenumber in the host medium and kp = ωp/c is

the plasma wavenumber ((kp p)2 ∼= 2π/ ln(
p2

4r(a−r)
) ∼= 2π/(ln(

p
2πr ) + 0.5275) where p and r are

the wire period and radius, respectively [14, (11)]). It is convenient to separate the local,
bound-charge polarization response of the background (Ppol) from the non-local conductive
polarization response (Pcond),

Ppol (ρ, qz) = ε0χ̄
pol
bulk · E (ρ, qz) = ε0 (εh − 1) E (ρ, qz) (7)
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2r p

Figure 2. Uniaxial wire medium consisting of perfectly conducting wires.

and

Pcond (ρ, qz) = D (ρ, qz) − εhε0E (ρ, qz) = ε0χ̄
cond
bulk (qz) · E (ρ, qz) , (8)

where

χ̄ cond
bulk (qz) = ẑẑ

εhk2
p

q2
z − k2

h

. (9)

It is simple to invert (9) to the space domain, resulting in

χ̄ cond
bulk

(
z − z′

)
=

1

2π

∫
∞

−∞

χ̄ cond
bulk (qz) ejqz(z−z′)dqz

= ẑẑεhk2
p

e−jkh|z−z′|

2jkh
(10)

using e−jγ |z|/2jγ ↔ (q2
z − γ 2)−1.

In the following we consider several equivalent models for determining the non-local
conductive response for the half-space problem. Since the bound charge is assumed local, its
response is trivial and we assume χ̄pol (z, z′) = χ̄

pol
bulk (z − z′) throughout.

2.1. Model I: transport equation model

To determine χ̄ (z, z′), we need to identify the differential equation that relates polarization and
electric field. In particular, the drift-diffusion equation from semiconductor theory has recently
been applied to model wire media [21–25] and provides the desired description. To adapt this
formulation to wire media we start with the general anisotropic drift-diffusion model for a bulk
medium

Jcond(r) = σ̄ 0 · E(r) − D̄0 · ∇ρ(r)

= σ̄ 0 · E(r) +
1

jω
D̄0 · ∇∇ · Jcond(r), (11)

New Journal of Physics 15 (2013) 083018 (http://www.njp.org/)

http://www.njp.org/


6

where σ̄ 0 = σ̄ 0 (ω) and D̄0 = D̄0 (ω) are the ‘local’ conductivity and diffusion coefficient
tensors that are assumed independent of position. If we assume conduction and diffusion only
along the wire axis then D̄0 = ẑẑDz and σ̄ 0 = ẑẑσz, so that from (11) we have Jx = Jy = 0 and(

1 −
Dz

jω

∂2

∂z2

)
Jcond

z (r) = σz Ez (r) . (12)

Fourier transformation z ↔ qz leads to

Jcond (ρ, qz) = ẑẑ
σz

1 + Dz

jω q2
z

· E (ρ, qz) = σ̄ (qz) · E (ρ, qz) , (13)

where σ̄ (qz) is now a non-local conductivity tensor that accounts for both conduction and
diffusion [21, 22].

Since the bound-charge polarization response is local and governed by the permittivity
tensor ε̄b, from Ampere’s law

∇qz × H (ρ, qz) = jω

(
ε̄b − j

1

ω
σ̄ (qz)

)
· E (ρ, qz) , (14)

where ∇qz = x̂∂/∂x + ŷ∂/∂y + ẑ (jqz), we obtain the combined permittivity

ε̄ (qz, ω) = ε̄b + ẑẑ
σz

jω + Dzq2
z

.

If we compare this expression to (7)–(10) we see that ε̄b = 1εhε0 and

σz = −jωεhε0

k2
p

k2
h

=
ω2

pε0

jω
= Dzεhε0k2

p, (15)

Dz = −jω
1

k2
h

=
v2

h

jω
, (16)

where vh = 1/
√

µ0ε0εh is the phase velocity in the host medium. Then, with Jz = jωPz, (12) we
have the desired differential equation for polarization(

1 +
1

k2
h

∂2

∂z2

)
Pcond

z (r) = −
k2

p

k2
h

εhε0 Ez(r). (17)

This is the same differential equation for the conductive part of the polarization as would be
obtained starting from the bulk susceptibility (9). That is, Pcond

z (ρ, qz) = ε0χ
cond
zz,bulk Ez (ρ, qz),

and multiplying both sides by the factor q2
z − k2

h and inverting to the space domain we
obtain (17).

We assume a generalized boundary condition (discussed in the following)(
Pcond

z (z) + α
dPcond

z (z)

dz

)∣∣∣∣
z=δ

= 0, (18)

where α = 0 is the correct ABC for a wire medium terminated by an insulator [13], α → ∞

is the correct ABC for a wire medium terminated by a perfect conductor [19] and 0< |α| <∞

describes the case of a uniaxial wire medium terminated by a thin, imperfect conductor [3].
From (17) we can form a Green function problem(

∂2

∂z2
+ k2

h

)
g(z, z′) = −δ(z − z′), (19)
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7 (
g(z, z′) + α

dg(z, z′)

dz

)∣∣∣∣
z=δ

= 0, (20)

so that

Pcond
z (z) = k2

pεhε0

∫
∞

δ

g(z, z′)Ez(z
′) dz′. (21)

Note that we enforce the same boundary condition on the Green function as on the polarization,
which is based on microscopic conditions at the wire ends. Comparing with (5) adjusted to
account for δ, we see that

χ cond(z, z′) = εhk2
p g(z, z′). (22)

Therefore, the usual Green function for local materials forms the boundary-dependent non-local
susceptibility (and obviously the permittivity via ε (z, z′) = εhk2

pg (z, z′) + εhδ (z − z′)). This is
the first main point of the paper.

We see that the susceptibility can be written as the sum of the principal part, which satisfies(
∂2

∂z2
+ k2

h

)
χ cond

p (z − z′) = −
1

εhk2
p

δ(z − z′) (23)

and provides the z − z′ dependence, and the scattered part which satisfies(
∂2

∂z2
+ k2

h

)
χ cond

s (z, z′) = 0. (24)

Upon enforcing the same boundary conditions as for the polarization, the scattered part, not
surprisingly, provides the dependence that is other than z − z′.

Note that the Green function is usually used to connect electric field and current via

E(r) =
1

ε0εh

[
k2

h1 + ∇∇
]
·

∫
ḡ(r, r′) · P(r′) dr′ + Ei(r). (25)

The relationship between the electric field and current/polarization is non-local via the
superposition integral involving ḡ, albeit in a rather trivial (purely geometric) sense. However,
as seen in (22), a similar Green function provides the non-local combined material–geometric
response χ̄ cond (z, z′) that accounts for both the material boundary and the material spatial
dispersion.

Next we will explicitly solve for the Green function assuming several different ABCs. We
ignore the dead layer (restored below) and assume a material slab of thickness L , extending
from z = 0 to L surrounded by vacuum regions. We therefore enforce

g(0, z′) = g(L , z′) = 0. (26)

The solution is [37, p 302]

g(z, z′) =
1

2jkh
(e−jkh|z−z′

|
− e−jkhz′

cos(khz) + [e−jkhz′

cot(khL) − e−jkh(L−z′) csc(khL)] sin(khz)).

(27)

Then, in the limit L → ∞ and allowing small loss

g(z, z′) =
1

2jkh
(e−jkh|z−z′

|
− e−jkh(z+z′)), (28)
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such that, from (22),

χ cond(z, z′) =
εhk2

p

2jkh

(
e−jkh|z−z′| − e−jkh(z+z′)

)
. (29)

For the generalized ABC corresponding to (18),5(
g(z, z′) + α

dg(z, z′)

dz

)∣∣∣∣
z=0

= 0,(
g(z, z′) − α

dg(z, z′)

dz

)∣∣∣∣
z=L

= 0

(31)

as L → ∞ and using (22) we have

χ cond(z, z′) = εhk2
p

(
e−jkh|z−z′|

2jkh
−

1

2jkh

(1 + αjkh)

(1 − αjkh)
e−jkh(z+z′)

)
. (32)

Further, we can, for example, impose different generalized ABCs at different boundaries,
e.g. α at z = 0 and β at z = L ,

g(0, z′) + α
dg(z, z′)

dz

∣∣∣∣
0

= g(L , z′) − β
dg (z, z′)

dz

∣∣∣∣
L

= 0. (33)

Regarding the ABC, we note that the condition Pcond
z = 0 is actually just the usual boundary

condition on current from Maxwell’s equations, although in local problems it does not usually
need to be explicitly applied. However, sometimes it does. For example, for a simple thin-wire
antenna the condition J = 0 needs to be enforced at the wire ends (see e.g. [38, 39] for the
Pocklington’s integro-differential treatment). However, one does not think of this as an ABC as
there are no additional waves.

2.2. Model II: charge carrier reflection model

In the preceding we have determined how to construct the non-local, boundary-dependent
susceptibility χ̄ cond (z, z′) from the differential equation for polarization. In this section we
consider a completely different view of this susceptibility based on a physical model for charge
carrier reflection [16] that leads to the same result, and which leads to insight into the assumption
of translational invariance for convolution-based methods.

In a natural material, charge carriers (electrons, holes, excitons, etc) can interact with a
boundary in various ways. If we assume that the most important process is reflection, then
referring to figure 1 the total distance along the z coordinate that the particle travels upon
leaving the position z′, reflecting off of the boundary with reflection coefficient Ū, and arriving
at position z, is z + z′

− 2δ. For natural materials, the small region of width δ represents the
dead layer, wherein the particle experiences strong repulsive forces associated with the image

5 The negative sign in the second expression is because the general ABC is

n̂ ·

(
Pcond(r) + α

dPcond(r)
dn

)
= 0, (30)

where n̂ can be taken, e.g., to point into the medium. Then, at z = 0 we have n̂ = ẑ leading to the expression
involving the positive sign. For z = L we have n̂ = −ẑ, but the sign of n̂ · dPcond/dn remains the same, leading to
the expression with the negative sign.
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charge as the particle tries to leave the material [16, 17]. Impurity atoms at the surface and
other surface states can also contribute to this effect. Thus, the typical procedure is to posit
that the particle will not be found in the dead layer [16]. For a homogenized wire medium, the
transport model [21, 22] indicates that we can consider effective charge carriers interacting with
the boundary in a similar manner. Therefore, in the dead layer

χ̄ cond(z, z′) = 0̄ (34)

for 0 < z, z′ < δ, and in the material half-space outside of the dead layer

χ̄ cond(z, z′) = χ̄ cond
bulk (z − z′) + χ̄ cond

bulk (z + z′
− 2δ) · Ū (35)

for z, z′ > δ. That is, in (35) we assume the same form for the bulk and surface-related terms,
but allow for different z dependences and the presence of a (charge-carrier) reflection tensor Ū;
this method was developed in [16] for natural excitonic materials.

From (10)

χ̄ cond(z, z′) =
εhk2

p

2jkh
ẑẑ
(

e−jkh|z−z′| + Uzze
−jkh(z+z′

−2δ)
)

(36)

for z, z′ > δ, where we assumed that Ū is diagonal. Therefore, with χ̄ cond defined as (35) and
(36) the non-local conductive polarization response is

Pcond(r) = ε0

∫
∞

δ

χ̄ cond(z, z′) · E(ρ, z′)dz′. (37)

Note that Ū = ±1 corresponds to specular/antispecular particle scattering.
If we ignore the dead layer, this model with Ū = 0̄ is known as the ‘dielectric

approximation’ (DA), wherein the bulk response is assumed to apply right up to the interface,
and where the interface does not affect the material response (other than terminating the
material). That is, everywhere in the material half-space

χ̄(z, z′) ≡ χ̄ bulk(z − z′). (38)

Note that in the local limit (setting χzz = (εh − 1) δ (z − z′)) we recover the usual local result
Pcond

z (r) = ε0 (εh − 1) Ez (r), which applies everywhere in the half-space. Although simple, the
DA obviously cannot account for the particulars of the interface. Moreover, compared to the
local material case, it is a much more questionable assumption for the conductive response of
non-local materials since in that case the charge carrier dynamics at z depend on what happened
at z′, and as the particle travels from z′ to z it may have encountered the material interface.

2.2.1. Boundary condition. An interesting aspect of the charge carrier reflection model is
that it leads directly to the ABC—there is no ambiguity in specification of the correct (self-
consistent) ABC to be prescribed at the point z = δ. Thus, for z = δ and z′ > δ we have,
from (37),

jkh Pcond
z = ~

∫
∞

δ

(1 + Uzz)e
−jkh(z′

−δ)Ez(z
′) dz′,

∂ Pcond
z

∂z
= ~

∫
∞

δ

(1 − Uzz)e
−jkh(z′

−δ)Ez(z
′) dz′,

(39)
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where ~ = ε0εhk2
p/2. Upon adding these expressions we find

jkh Pcond
z +

∂

∂z
Pcond

z = 2~ejkhδ

∫
∞

δ

e−jkhz′

Ez(z
′) dz′ (40)

and subtracting the two expressions (39) and using (40) we obtain the generalized ABC [16, 17](
Pcond

z + α
∂

∂z
Pcond

z

)∣∣∣∣
z=δ

= 0, (41)

where

α = −
1

jkh

(1 + Uzz)

(1 − Uzz)
. (42)

Obviously, (41), which applies to several different physical terminations of the wire medium, is
the same as (18).

If Uzz = 0 (DA)

Pcond
z −

1

jkh

∂

∂z
Pcond

z = 0 (43)

if Uzz = −1,

Pcond
z = 0 (44)

and if Uzz = +1,

∂

∂z
Pcond

z = 0. (45)

The case Uzz = −1 represents the ABC for wire media at the interface with an insulator [13].
In transmission line theory this can be seen to be the usual reflection coefficient for current
at an open circuit (current I = 0). The case Uzz = 1 represents the ABC for wire media at the
interface with a perfectly conducting surface [19], and corresponds to the usual transmission
line reflection coefficient for current at a short-circuit (I is maximum). The DA case Uzz = 0
corresponds to the case of a matched termination in transmission line theory, where the current
satisfies (43). A transmission line model is presented in appendix A. However, ignoring the
dead layer, note that (43) is in conflict with the known physical boundary condition that the
conductive part of the polarization must vanish at the interface with an insulator, Pcond

z = 0,
which casts further doubt on the DA.

The charge carrier reflection method result (36) with Uzz = −1 is the same as the transport
equation result (29) (with the dead layer restored), thus, if Uzz = −1 then solving the drift-
diffusion equation and enforcing the ABC Pcond

z = 0 is equivalent to the charge carrier reflection
model with Uzz = −1. This is the second main point of the paper—that one can assume a
charge-carrier reflection model and, with the proper reflection coefficient, obtain an identical
result to the transport model. The charge carrier reflection model begins with an assumption
about particle reflection from the boundary (requiring specification of a particle reflection
coefficient Ū) and results in determining χ cond (z, z′) and the self-consistent ABC. The transport
model involves solving the drift-diffusion equation, leading to χ cond (z, z′) = εhk2

p g (z, z′), and
requires specifying an ABC prescribed from information about the boundary.
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If α is known we have from (42)

Uzz =
jkhα + 1

jkhα − 1
. (46)

In [3] we show that for the intersection of a wire medium and a thin metal (possibly
homogenized) surface (or, e.g. a graphene sheet) characterized by sheet conductivity (S) σ2d,
then α = σ2d/jωε0εh, in which case

Uzz =
σ2dηh − 1

σ2dηh + 1
, (47)

where ηh =
√

µ0/ε0εh. In appendix B we consider the ABC and susceptibility functions for two
uniaxial wire media connected by an interface.

2.3. Model III: the wave expansion method

The usual (classical, macroscopic) method of solving a plane-wave reflection–transmission
problem for a planar interface in the local case is to use the bulk material properties to determine
the wave types that can propagate in each bulk region, and to write the fields on either side of
the interface in terms of those waves types and enforce the usual boundary conditions. This is a
type of wave-expansion method. For a non-local uniaxial wire medium the permittivity dyadic
predicts that there are three different plane waves that can propagate [13], the usual transverse
magnetic (TM) and transverse electric (TE) modes and a transverse electromagnetic (TEM)
mode. The presence of an extra mode necessitates specifying an ABC at the interface, which,
for a wire medium abutting an insulator, is Pcond

z = 0 [13, 22]. This is the most common method
used to solve such problems. For the example shown below this method is equivalent to the
previously described methods. For the planar interface problem this method is also the most
convenient, but it is not easily adaptable to arbitrarily shaped objects.

2.4. Reflection from a uniaxial half-space

Consider a TM-polarized plane wave in vacuum incident on a non-local material interface, as
depicted in figure 3. For simplicity, we assume εh = 1 so that we need to only consider the
conductive response. We at first ignore the dead layer, which will be discussed later. Writing
ki

= k0

(
x̂ sin θi + ẑ cos θi

)
for TM polarization we have fields (Ex , Ez, Hy).

Model II (charge carrier reflection model) involves solving (37). Using the lateral transform
form of (25) (ρ↔ qρ) we have

Pcond
z (z) =

∫
∞

0
dz′

k2
p

2jk0

(
e−jk0|z−z′| + Uzze

−jk0(z+z′)
)

×

([
k2

0 +
∂2

∂z′2

] ∫
∞

0

e−p|z′
−z′′|

2p
Pcond

z

(
z′′
)

dz′′ + ε0 E i
z(z

′)

)
, (48)

where Pcond
z (z) = Pcond

z (qρ, z) and similarly for E i
z, Uzz = −1, p =

√
q2

ρ − k2, q2
ρ = q2

x + q2
y and

k0 = ω
√

µ0ε0. This form is the most time-consuming to compute since it involves a two-fold
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Figure 3. TM wave incident on a uniaxial wire medium–vacuum interface,
generating two transmitted fields (the usual TM field, and a TEM field).

semi-infinite integral (for more general objects such as material spheres or cubes this would be
a six-fold integration over the volume of the object). The DA would involve solving (48) with
Uzz = 0 (i.e. in the absence of incorporating information about the boundary and simply using
the bulk response (10)), however, the mathematically consistent ABC would be (43), which is
at odds with the known physical ABC (44).

Model I (drift-diffusion model) involves solving (17). This can be done in two ways. One
is by solving (17) directly as an integral–differential equation in the qρ transform domain

−
k2

0

k2
p

(
1 +

1

k2
0

∂2

∂z2

)
Pcond

z (z) =

[
k2

0 +
∂2

∂z2

] ∫
∞

0

e−p|z−z′|

2p
Pcond

z (z′) dz′ + ε0 E i
z(z). (49)

This form involves a single semi-infinite integral (for more general objects such as material
spheres or cubes this would be a three-fold integration over the object’s volume). The benefits
of this method have been shown in [23, 24] for 3D objects.

The second method of solving (17) from the drift-diffusion model is via Green’s functions
using (21)

Pcond
z (z) = k2

pεhε0

∫
∞

0
g(z, z′)Ez(z

′) dz′. (50)

With (28) this results in the same equation as Model I.
Model III involves solving for the bulk plane waves that exist in each region and enforcing

the usual boundary conditions along with the ABC. For qy = 0 and assuming TM wave
incidence, the fields for z < 0 are

Hy = (e−γ0z
− Reγ0z)e−jqx x ,

Ex =
−1

jωε0

∂ Hy

∂z
=

γ0

jωε0
(e−γ0z + Reγ0z)e−jqx x , (51)

Ez =
1

jωε0

∂ Hy

∂x
=

−jqx

jωε0
(e−γ0z

− Reγ0z)e−jqx x ,
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where R is the reflection coefficient and γ0 =

√
q2

x − k2
0 . For z > 0,

Hy = (ATMe−γTMz + BTEMe−γTEMz)e−jqx x ,

Ex =
1

jωε0
(γTM ATMe−γTMz + γTEM BTEMe−γTEMz)e−jqx x , (52)

Ez =
−η0(k2

p + q2
x )

k0qx
ATMe−γTMze−jqx x ,

where γTM =

√
q2

x + k2
p − k2

0 and γTEM = jk0. The ABC equivalent to Pcond
z = 0 is that Ez is

continuous at z = 0 [13]; enforcing this condition and matching tangential fields results in
q2

x BTEM = k2
p ATM

R =
(γTM − γ0) (γTEM − γ0)

(γ0 + γTM) (γ0 + γTEM)
(53)

and

ATM =
2q2

x γ0

(k2
p + q2

x )γ0 + q2
x γTM + k2

pγTEM
. (54)

It can be shown that these fields satisfy

∇ × E = −jωµH,

∇ × H = jωε0E + ẑ
k2

p

2η0

∫
∞

0

(
e−jk0|z−z′| − e−jk0(z+z′)

)
Ez(z

′) dz′ (55)

and therefore this solution is equivalent to the other methods. Numerical plots of internal fields
are shown in [23].

2.4.1. Dead layer. In [13] it was shown that the model needs to incorporate a virtual air-layer
(analogous to the dead layer), but that this layer is extremely thin (06 δ 6 p/2π ) and usually
can be ignored. In the preceding example we ignored the dead layer, which we address here.
For convenience with the previous results we assume the dead layer exists from −δ 6 z 6 0
and the rest of the material occupies z > 0. Since εh = 1 there is no bound-charge polarization
response and Pcond only exists for z > 0. Therefore, the dead layer is simply a small vacuum
region existing for −δ 6 z 6 0, and so this amounts to appending this thin vacuum region to be
part of the material half-space. Thus, for Model I and Model II there is no change in (48) and
(49); the only change is the interpretation of the vacuum dead layer as belonging to the material
(e.g. such as defining the reflection coefficient occurring at z = −δ). In a similar manner, for
Model III the fields for −δ 6 z 6 0 and for z < −δ are the same as (51), and the rest of the
solution is the same as above as well. In this case, the reflection coefficient including the dead
layer is RDL = R eγ02δ. The three methods of solution are again equivalent, and, since γ0 is
imaginary-valued the dead layer only affects the reflection phase in this problem.

Finally, we can comment on the effect of the dead layer. Since 06 δ 6 p/2π , then δγ0 � 1
and so the small shift in the reflection coefficient due to the dead layer is negligible. Regarding
the fields, there are only transverse fields for z < −δ and for −δ 6 z 6 0, and so by continuity
of the transverse fields in the dead layer these will closely resemble the fields for z > 0. If
we call the fields determined with the inclusion of the dead layer the ‘exact’ result, and the
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fields computed ignoring the dead layer as the approximate result, then the difference fields
Ediff

= Eexact
− Eapprox are, in the dead layer∣∣Ediff

x /E exact
x

∣∣' γ0δ (56)

and for z > 0, ∣∣Ediff,TM
x /E exact,TM

x

∣∣= ∣∣Ediff,TM
z /E exact,TM

z

∣∣' γTMδ,∣∣Ediff,TEM
x /E exact,TEM

x

∣∣' γTEMδ,

where we used |γ0,TM,TEM|δ � 1 such that (1 − e±γ0,TM,TEMδ) ' ∓γ0,TM,TEMδ. Thus, as expected,
the difference fields are very small (note that in the dead layer Ediff

z = (η0(k2
p +

q2
x )/k0qx)ATMe−γTMze−γTMδe−jqx since the exact result has Ez = 0 in the dead layer, and so in

this case E exact
z − E approx

z = −E approx
z ).

At this point it is fruitful to discuss a correlation with the natural excitation case discussed
in [33, 40]. In [40] the authors develop a wave expansion method for a non-local (excitonic
semiconductor) half-space, similar in spirit to the wave expansion method discussed here. They
ignore the dead layer and use the Boltzmann equation for the bulk response (i.e. the electron
distribution function f does not depend on position z, and the boundary only enters via the
usual conditions, including the ABC). The non-local response function obtained in [40] from
Boltzmann’s equation is analogous to the non-local wire medium permittivity used here, and so
their wave expansion is analogous to the wave expansion method used here when one ignores the
dead layer. In the second paper, [33], the authors use the Boltzmann equation and a distribution
function f (z) that accounts for the boundary, such that spatially dependent electron distributions
can be obtained. Using this method, the dead layer emerges naturally, and material properties
can vary smoothly over the dead layer into the bulk; the dead layer is implicitly included in
the solution. Comparing these two methods, in [33] the conclusion is that the wave expansion
method ignoring the dead layer (i.e. the solution in [40]) does not agree with the more accurate
method in [33] (which includes the dead layer) over distances near the interface on the order
of the dead layer. This is the same result as we find above for the wire medium problem. Since
all three methods discussed here are equivalent, we can summarize by saying that ignoring the
dead layer leads to one answer and including the dead layer leads to a slightly different answer,
the differences being small and principally occurring within δ of the interface.

2.5. Longitudinal example

As another example of the above ideas, we consider a planar slab of material excited by a
purely longitudinal (with respect to the slab normal) impressed field, like what would be found
between the plates of a capacitor for a quasi-static excitation. The slab has width L , and is
immersed in vacuum, as depicted in figure 4. For this excitation, the 3D wire mesh (connected
or non-connected) provides the same response as the uniaxial wire medium. We assume εh = 1
for simplicity so there is no bound-charge polarization contribution.

For Model I (drift-diffusion model), from (17) we have(
k2

0 +
∂2

∂z2

)
Pcond

z (z) = −k2
pε0(E scat

z (z) + E inc
z (z)), (57)
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Figure 4. Planar slab of wire medium with impressed, purely longitudinal quasi-
static field.

where

E scat
z (z) =

1

ε0

(
k2

0 +
d2

dz2

)∫ L

0

e−jk0|z−z′|

2jk0
Pcond

z (z′) dz′. (58)

Using Leibnitz’s theorem [41], if z ∈ (0, L) then(
k2

0+
d2

dz2

)∫ L

0

e−jk0|z−z′|

2jk0
Pcond

z (z′) dz′
= −Pcond

z (z) (59)

such that E scat
z (z) = −Pcond

z (z) /ε0. Then, from (57),(
β2 +

∂2

∂z2

)
Pcond

z (z) = −k2
pε0 E inc

z (z), (60)

where β2
= k2

0 − k2
p .

Since E inc
z (z) is constant we can solve (60) as

Pcond
z (z) = C sin (βz) + D cos (βz) −

k2
p

β2
ε0 E inc

z (61)

and Pcond
z (0, L) = 0 leads to

Pcond
z (z) =

1

β2
k2

pε0 E inc
z

(
(1 − cos βL)

sin βL
sin (βz) + cos (βz) − 1

)
. (62)

Alternatively, we can define a Green function(
β2 +

∂2

∂z2

)
g(z, z′) = −δ(z − z′) (63)

such that

Pcond
z (z) = k2

pε0

∫ L

0
g(z, z′)E inc

z (z′) dz′, (64)
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Figure 5. Conductive polarization distribution comparing Model I (transport
model, (62)) and the numerical solution of (66) from Model II (charge carrier
reflection model). Wire period is 4 mm and slab thickness is L = 10p.

where

k2
pg(z, z′) = χ cond(z, z′) =

k2
p

2jβ

(
e−jβ|z−z′| − e−jβz′

cos (βz)

+
[
e−jβz′

cot (βL) − e−jβ(L−z′) csc (βL)
]

sin (βz)
)

. (65)

In numerical examples, (62) and (64) give the same answer (and recall this is equivalent to
method II with Uzz = −1). However, for this problem one cannot attempt to invoke the DA
equivalent to Uzz = 0 (such that g (z, z′) = e−jβ|z−z′|/2jβ) since there is no way to enforce
Pcond

z (0, L) = 0.
Alternatively, we can start from Model II,

Pcond
z =

ε0k2
p

2jk0

∫ L

0

(
e−jk0|z−z′| + Uzze

−jk0(z+z′) + Uzze
−jk0(2L−(z+z′)) + U 2

zze
−jk0(2L−|z−z′|)

)
Ez(z

′) dz′,

(66)

where the additional terms compared to (36) are due to the set of infinite multiple reflections
from the two interfaces summed as a geometric series. Since E scat

z (z) = −Pcond
z (z)/ε0 we

have (66) with Ez (z) = −Pcond
z (z)/ε0 + E inc

z , which can be solved subject to a BC on Pcond
z .

We have solved (66) using a Galerkin solution involving complete set of expansion
functions that automatically satisfy the physical boundary condition Pcond

z (0, L) = 0

Pcond
z (z) =

N∑
n=1

an sin
(nπ

L
z
)

. (67)

Figure 5 shows the polarization distribution comparing Model I, (62), and the numerical solution
of (66) from Model II. Wire period is 4 mm and slab thickness is L = 10p. It can be seen that
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Figure 6. Conductive polarization distribution comparing Model I (transport
model, (62)) and the numerical solution of (66) from Model II (charge carrier
reflection model). Wire period is 4 mm and slab thickness is L = 2p.

when Uzz = −1 the numerical solution of (66) is in complete agreement with the analytical
solution from Method I, (62). In figure 5 we also show the solution when Uzz = 0, a DA. In this
case we have also enforced the ABC Pcond

z = 0 (rather than (43)) since this is the physically
sensible condition. However, as described above this condition is not consistent with the ABC
(43) associated with the Uzz = 0 case (which would result in an unphysical solution). The two
solutions for Uzz = −1 and 0 differ considerably, but tend to agree away from the edges. In
figure 6 we show the same result but for L = 2p, where, since the slab is thinner and the edges
are more important, and the DA is considerably worse.

3. Isotropic wire medium

In this section we discuss the case of isotropic wire media consisting of a 3D mesh of
interconnecting wires (see, e.g. [14, figure 1]; other wire media such as double wires [42, 43]
could also be considered. The relative permittivity is [14]

ε̄bulk (q) = 1εh − κ

(
1 −

1

q2 − ζ 2
qq
)

. (68)

Here, q is the 3D FT variable, q = ρ̂qρ + ẑqz, ε̄(q) = ε̄(qρ, qz), and

κ =

(
k2

0

k2
p

−
1

εm − εh

1

fv

)−1

,

ζ 2
= l0

(
k2

h −
εhk2

p

εm − εh

1

fv

)
,

(69)

New Journal of Physics 15 (2013) 083018 (http://www.njp.org/)

http://www.njp.org/


18

where fv = πr 2/p2 is the volume fraction of the wires (r is the wire radius, p is the wire period),
εm is the wire permittivity, l0 = 3/

(
1 + 2k2

p/β
2
1

)
, and

1

β2
1

= 2
( p

2π

)2 ∞∑
n=1

[
J0

(
2πr

p n
)]2

n2
, (70)

where J0 is the zeroth-order Bessel function. As discussed in [14], this expression is very
accurate below the effective plasma frequency. The isotropic wire medium permittivity (68)
reduces to the simpler form [44]

ε̄bulk (q) = 1εh −
k2

p

k2
0

(
1 −

1

q2 − l0k2
h

qq
)

(71)

when |εm| → ∞, i.e. as the wire conductivity becomes infinite.
The inverse transform of (68) is easily evaluated as

ε̄bulk(r) = (εh − κ)δ(r)1 − κ∇∇
e−jζr

4πr

= (εh − κ)δ(r)1 − κ

((
3r̂r̂ − 1

) ( 1

r 2
−

ζ

jr

)
− ζ 2r̂r̂

)
e−jζr

4πr
. (72)

From

χ̄ cond
bulk (q) = −κ

(
1 −

1

q2 − ζ 2
qq
)

(73)

we have

χ̄ cond
bulk (r) = − κδ(r)1 − κ∇∇

e−jζr

4πr

= − κδ(r)1 − κ

((
3r̂r̂ − 1

) ( 1

r 2
−

ζ

jr

)
− ζ 2r̂r̂

)
e−jζr

4πr
. (74)

For Model I (transport equation), to form the drift-diffusion equation we note that

P (q) = ε0

(
1 (εh − 1) − κ

(
1 −

1

q2 − ζ 2
qq
))

· E (q)

=
[
Ppol (q) + Pcond (q)

]
· E (q) (75)

such that

Pcond (q) = −κ

(
1 −

1

q2 − ζ 2
qq
)

· ε0E (q) →

(
1 −

1

ζ 2
qq
)

· Pcond (q) = −κε0E (q) (76)

using (
1 −

1

ζ 2
qq
)−1

=

(
1 −

1

q2 − ζ 2
qq
)

. (77)

Therefore, the drift-diffusion equation is(
1 +

1

ζ 2
∇∇

)
· Pcond(r) = −κε0E(r) (78)
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subject to Pz (0) = 0 (or one could use the more general form (18)). We therefore define a drift-
diffusion Green function that satisfies(

1 +
1

ζ 2
∇∇

)
· ḡ(r, r′) = −1δ

(
r − r′

)
(79)

subject to ẑ · ḡ (0) = 0.
For the principal Green function we have(

1 −
1

ζ 2
qq
)

· ḡcond
p (q) = −1, → ḡcond

p (q) = −

(
1 −

1

q2 − ζ 2
qq
)

(80)

so that

ḡcond
p

(
r − r′

)
= −1δ

(
r − r′

)
− ∇∇

e−jαR

4π R
, (81)

where R = r − r′ and R =

√
(x − x ′)2 + (y − y′)2 + (z − z′)2. In contrast, the usual free-space

electric Green dyadic that relates current and field is [45]

ḡfs
p (r, r′, ω) = ḡfs

p (r − r′, ω)

=
1

(2π)3

∫
1k2

− qq

k2
(
q2 − k2

)e−jq·(r−r′)d3q (82)

=

[
1 +

∇∇

k2

]
e−jk R

4π R
.

Because of the ABC Pcond
z = 0 (assuming an interface with vacuum), the scattered Green

function should satisfy a perfect magnetic conductor (PMC) condition. Since

ḡcond
p (r − r′) = −(x̂x̂ + ŷŷ + ẑẑ)δ(r − r′) − ∇

(
x̂

∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
e−jζ R

4π R
(83)

it is easy to see that the scattered Green function is

ḡcond
s (r − r′

1) = −(x̂x̂ + ŷŷ − ẑẑ)δ(r − r′

1) − ∇

(
x̂

∂

∂x
+ ŷ

∂

∂y
− ẑ

∂

∂z

)
e−jζ R1

4π R1
, (84)

where

r1 = x̂x + ŷy − ẑz,

R1 = r − r′

1 = x̂(x − x ′) + ŷ(y − y′) + ẑ(z + z′)
(85)

which satisfies

ẑ ·
(
ḡcond

p + ḡcond
s

)∣∣
z=0

= 0. (86)

Thus, we have

ḡcond(r, r′) = ḡcond
p (r − r′) + ḡcond

s (r − r′

1)

= ḡcond
p (r − r′) + ḡcond

s (ρ − ρ ′, z + z′). (87)

By superposition χ̄ cond (r, r′) and ḡcond (r, r′) are simply related as in the scalar case,

χ̄ cond(r, r′) = κ ḡcond(r, r′). (88)
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Comparing to Model II,

ḡcond(r, r′) = ḡcond
p (r − r′) + ḡcond

p (r − r′

1) · Ū, (89)

where Ū = x̂x̂ + ŷŷ − ẑẑ. This is the isotropic case expression analogous to the uniaxial case (35)
and (36) with Uzz = −1. Restoring the dead layer, for Model II (charge carrier reflection
approximation)

χ̄ cond(r, r′) = 0̄, 0 < z, z′ < δ (90)

and for z, z′ > δ,

χ̄ cond
(
r, r′

)
= χ̄ cond

bulk (r − r′) + χ̄ cond
bulk (r − r′

1) · Ū

= χ̄ cond
bulk (r − r′) + χ̄ cond

s

(
ρ − ρ ′, z + z′

− 2δ
)
. (91)

Analogous to the procedure in section 2.2.1, assuming that Ū = ẑẑUzz then the self-
consistent ABC is

Pcond
z (qρ, z) −

(1 + Uzz)

jkz (1 − Uzz)

∂

∂z
Pcond

z (qρ, z) = 0 (92)

which is (41) for the isotropic wire media case (kh in (42) is replaced by kz =

√
ζ 2 − q2

ρ in (92)).

4. Conclusions

We have shown that when the polarization and electric field are related by a linear differential
equation the non-local susceptibility χ̄(r, r′) for a non-translationally invariant wire medium is
given by a Green function related to the material geometry. Further, we have shown that two
previous methods for solving wave interaction problems for bounded wire media are equivalent
to each other, and to a third method involving particle reflection at the boundary.
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Appendix A. Transmission line analogy

Here we develop a transmission line analogy for both the isotropic wire medium [46] and the
uniaxial wire medium. Starting with the homogeneous form of (78), in the transverse Fourier
transform domain ρ ↔ qρ we have(

1 +
1

ζ 2
∇q∇q

)
· Pcond(qρ, z) = 0, (A.1)

where ∇ = −jqρ + ẑ d/dz. Upon defining

V (qρ, z) ≡ ∇q · P(qρ, z) = −jqρ · Pρ +
dPz

dz
(A.2)
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we have, from (A.1),

∇V = −ζ 2(Pρ + ẑPz). (A.3)

Using ∇q V = −jqρV + ẑ dV/dz,

−jqρV = −ζ 2Pρ,

dV

dz
= −ζ 2 Pz.

(A.4)

From (A.2) and using (A.4),

dPz

dz
=

ζ 2
− q2

ρ

ζ 2
V . (A.5)

Defining I (qρ, z) ≡ Pz(qρ, z), then the desired transmission line equations are, using (A.4),

dV

dz
= −ζ 2 I = −Zs I,

dI

dz
= −

q2
ρ − ζ 2

ζ 2
V = −YpV

(A.6)

and we have the propagation wavenumber and characteristic impedance

kz =
√

−ZsYp =

√
ζ 2 − q2

ρ, (A.7)

Zc =

√
Zs

Yp
=

ζ 2

jkz
. (A.8)

If we consider a wire medium half-space (z < 0) and assuming a current reflection
coefficient U at z = 0, we have an impedance

Z(0) = Zc
1 − U

1 + U
(A.9)

and a boundary condition

V (0) = Z(0)I (0) → (∇q · P)z=0 = Z(0)Pz(0). (A.10)

This becomes (
dPz

dz

)
z=0

+ jkz
1 − U

1 + U
Pz (0) = 0 (A.11)

which is equivalent to (92) (the difference in sign being because here the material occupies the
half-space z < 0, and for (92) the material occupies the half-space z > 0). For a uniaxial wire
medium the same analysis holds with V = dPz/dz.
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Figure B.1. Two uniaxial wire mediums intersecting a surface.

Appendix B. Additional boundary condition and Green’s function for the intersection of
two uniaxial wire mediums

Consider two identical uniaxial wire mediums connected by an interface as depicted in
figure B.1. Writing

Pcond
1 (ρ, z) = ε0

∫ 0

−∞

χ̄ cond
11 (z, z′) · E1(ρ, z′) dz′ + ε0

∫
∞

0
χ̄ cond

12 (z, z′) · E2(ρ, z′) dz′,

Pcond
2 (ρ, z) = ε0

∫ 0

−∞

χ̄ cond
21 (z, z′) · E1(ρ, z′) dz′ + ε0

∫
∞

0
χ̄ cond

22 (z, z′) · E2(ρ, z′) dz′

(B.1)

and using Model II (charge carrier reflection model) the susceptibilities are set to zero in the
dead layer (analogous to (34)) and outside the dead layer we have, similar to (36),

χ̄ cond
11 (z, z′) = ẑẑ

εhk2
p

2jkh

(
e−jkh|z−z′| + U11ejkh(z+z′+2δ)

)
,

χ̄ cond
12 (z, z′) = ẑẑ

εhk2
p

2jkh
U12ejkh(z−z′+2δ),

χ̄ cond
21 (z, z′) = ẑẑ

εhk2
p

2jkh
U21e−jkh(z−z′

−2δ),

χ̄ cond
22 (z, z′) = ẑẑ

εhk2
p

2jkh

(
e−jkh|z−z′| + U22e−jkh(z+z′

−2δ)
)

.

(B.2)

Two ABCs are found as generalizations of (41),

Pcond
z1

∣∣
−δ

− Pcond
z2

∣∣
δ

+ α

(
∂ Pcond

z1

∂z

∣∣∣∣
−δ

+
∂ Pcond

z2

∂z

∣∣∣∣
δ

)
= 0,

Pcond
z1

∣∣
−δ

+ Pcond
z2

∣∣
δ

+ β

(
∂ Pcond

z1

∂z

∣∣∣∣
−δ

−
∂ Pcond

z2

∂z

∣∣∣∣
δ

)
= 0,

(B.3)
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where

α =
1 + UR − UT

jkh (1 − UR + UT )
, β =

1 + UR + UT

jkh (1 − UR − UT )
(B.4)

and where U21 = U12 = UT and U11 = U22 = UR. For PEC (UR = 1, UT = 0) and PMC (UR =

−1, UT = 0) terminations these reduce to the previous results, and for a thin conducting
interface characterized by a two-dimensional surface conductivity σ2d as considered in [47],
then

UR =
σ2dη0

σ2dη0 + 2
√

εh
,

UT =
2
√

εh

σ2dη0 + 2
√

εh
.

(B.5)

For Method I (drift-diffusion model), we can form Green’s functions from (17). For
example, if the source is in region 1(

∂2

∂z2
+ k2

h

)
g11(z, z′) = −δ(z − z′),(

∂2

∂z2
+ k2

h

)
g21(z, z′) = 0

(B.6)

and if the source is in region 2(
∂2

∂z2
+ k2

h

)
g22(z, z′) = −δ(z − z′),(

∂2

∂z2
+ k2

h

)
g12(z, z′) = 0.

(B.7)

Enforcing the conditions (B.3) on the Green functions, analogous to (22) this leads to

χ cond
i j (z, z′) = εhk2

p gi j(z, z′) (B.8)

and the same susceptibilities are obtained as in (B.2).
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