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Abstract. For the Bickel-Rosenblatt goodness-of-fit test with fi-
xed bandwidth studied by Fan [13] we derive its Bahadur exact
slopes in a neighbourhood of a simple hypothesis f = f0 and we
use them to get a better understanding on the role played by the
smoothing parameter in the detection of departures from the null
hypothesis. When f0 is a univariate normal distribution and we
take for kernel the standard normal density function, we compute
these slopes for a set of Edgeworth alternatives which give us a
description of the test properties in terms of the bandwidth h.
A simulation study is presented which indicates that finite sam-
ple properties are in good accordance with the theoretical prop-
erties based on Bahadur local efficiency. Comparisons with the
quadratic classical EDF tests lead us to recommend a test based
on a combination of bandwidths in alternative to Anderson-Darling
or Cramér-von Mises tests.

1. Introduction

Let X1, X2, . . . , Xn, . . . be a sequence of independent and identically

distributed d-dimensional random vectors with unknown density func-

tion f . As it has been shown by Bickel and Rosenblatt [5], a test of

the simple hypothesis H0 : f = f0 against the alternative Ha : f 6= f0,

where f0 is a fixed density function on R
d, can be based on the L2 dis-

tance between the kernel density estimator of f introduced by Rosen-

blatt [22] and Parzen [20], and its mathematical expectation under the
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null hypothesis (see also Fan [12] and Gouriéroux and Tenreiro [14]):

I2n(hn) = n

∫

{fn(x)− E0fn(x)}
2dx, (1)

where, for x ∈ R
d,

fn(x) =
1

n

n
∑

i=1

Khn
(x−Xi),

Khn
= K(·/hn)/h

d
n with K a kernel, that is, a bounded and integrable

function on R
d, and (hn) is a sequence of strictly positive real num-

bers converging to zero, when n goes to infinity (bandwidth). The

Bickel-Rosenblatt test is asymptotically consistent and has a normal

asymptotic distribution under the null hypothesis.

Following an idea of Anderson, Hall and Titterington [2] that have

used kernel density estimators with fixed bandwidth for testing the

equality of two multivariate probability density functions, Fan [13] uses

the statistic (1) with a constant bandwidth for testing the composite

hypothesis that f is a member of a general parametric family of density

functions. He provides an alternative asymptotic approximation for the

finite-sample properties of the Bickel-Rosenblatt test by showing that,

for a fixed h, the asymptotic distribution of I2n(h) is an infinite sum of

weighted χ2 random variables. Moreover, by noticing that I2n(h) can

be interpreted as a test based on the L2 weighted distance between the

empirical characteristic function and the parametric estimate of the

characteristic function implied by the null model with weight function

t → |φK(th)|
2, Fan [13] concludes that, for a given kernel, the test

properties depend on h which determines the weight given to different

directions of departure from the null hypothesis.

Restricting our attention to the test of a simple hypothesis, the main

purpose of this paper is to derive the Bahadur local exact slopes of

goodness-of-fit tests based on I2n(h), for a fixed h > 0, and use them

to get a better understanding of the role played by the smoothing pa-

rameter in the detection of departures from the null hypothesis. For

completeness reasons we give in Section 2 the asymptotic null distribu-

tion and the consistency of the test based on kernel density estimators

with a fixed bandwidth. Using the integral and quadratic form of I2n(h),

we derive in Section 3 its Bahadur local exact slopes. They naturally

depend on the smoothing parameter, on the kernel, on the null den-

sity f0 and, finally, on the considered departure direction from the null
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hypothesis. In Section 4, in the particular case of a test for a simple uni-

variate hypothesis of normality and taking for K the standard normal

density function, the Bahadur local slopes are numerically evaluated

for different values of h for a set of Edgeworth alternatives. These al-

ternatives express departures from the null hypothesis in terms of each

one of the first four moments. The tests based on I2n(h) for different

values of h are compared with the corresponding ones of the quadratic

EDF tests of Anderson-Darling (A2) and Cramér-von Mises (W 2). The

results we obtain suggest that a large bandwidth is adequate for de-

tection of location alternatives whereas a small bandwidth is adequate

for detection of alternatives for scale, skewness and kurtosis. A simu-

lation study indicating that finite sample properties of tests I2 are in

good accordance with the theoretical properties based on the Bahadur

local slopes is also presented. Moreover, if one does not know much

about the unknown density function it suggests that a test based on a

combination of bandwidths, that establish a compromise between the

two opposite effects that location and nonlocation alternatives have in

the choice of h, is a good practical recommendation in alternative to

traditional A2 or W 2 tests.

For convenience of presentation the proofs of some results in this

article are given in Section 5. We denote by as
n→+∞
−→ the convergence

with probability 1 and by d
n→+∞
−→ the convergence in distribution.

2. Asymptotic null distribution and consistency

Consider the following assumptions onK which ensure that d(f, g) =
(∫

{Kh ⋆ f(x) − Kh ⋆ g(x)}2dx
)1/2

, where ⋆ denotes the convolution

product, is a distance on the set of integrable functions (see Anderson

et al., [2]).

Assumptions on K (K)

K is a bounded and integrable function on R
d with Fourier transform

φK such that {t ∈ R
d : φK(t) = 0} has Lebesgue measure zero.

In order to derive the asymptotic distribution of I2n(h) under H0 for

a fixed h > 0, we first note that I2n(h) is a V -statistic, that is,

I2n(h) =
1

n

n
∑

i,j=1

Qh(Xi, Xj), (2)
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with kernel

Qh(u, v) =

∫

k(x, u; h)k(x, v; h)dx,

where

k(x, u; h) = Kh(x− u)−Kh ⋆ f0(x), (3)

for u, v, x ∈ R
d. From the hypothesis on K, the kernel Qh is bounded.

Therefore the functions u→Qh(u, u) and Qh are P0 and P0 ⊗ P0 in-

tegrable, respectively, where P0 = f0λ and λ is the Lebesgue measure in

B(Rd). Moreover, Qh is symmetric and degenerate, i.e.,
∫

Qh(·, v)dP0(v)

= 0, a.e. (P0). From Gregory [15], we know that the asymptotic

distribution of I2n(h) under H0 can be characterized in terms of the

eigenvalues of the symmetric Hilbert-Schmidt operator Ah defined, for

q ∈ L2(R
d,B(Rd), P0) =: L2(P0), by

(Ahq)(u) =

∫

Qh(u, v)q(v)dP0(v). (4)

In view of the degeneracy property of Qh, q0,h = 1 is an eigenfunction

of Ah corresponding to the eigenvalue λ0,h = 0. Denoting by 〈 1 〉 the

subspace generated by q0,h and H(P0) =
{

g ∈ L2(P0) :
∫

gdP0 = 0
}

the

tangent space of P0, we have L2(P0) = 〈 1 〉⊕ H(P0). The operator Ah

is positive definite on H(P0) as follows from the integral form (3) of

Qh and assumption (K). In fact, if 〈Ahq, q〉 = 0, for some q ∈ H(P0),

where 〈·, ·〉 denotes the usual inner product in L2(P0), we have

0 =

∫

q(u)k(·, u; h)dP0(u)

= K ⋆ (qf0)(·), a.e. (λ),

yielding φK(t)φqf0(t) = 0, for all t ∈ R
d. From assumption (K) and the

continuity of the Fourier transform, we deduce that φqf0(t) = 0, t ∈ R
d,

i.e., q = 0, a.e. (P0).

Finally, using the the infinite-dimensionality of H(P0) and the posi-

tivity of Ah on H(P0) we can conclude that Ah has a countable infinite

collection {λk,h, k ∈ N} of strictly positive eigenvalues (see Dunford

and Schwartz [8], Corollary X.4.5).

The following result follows from the limit distribution of degener-

ate V-statistics (cf. Theorem 4.3.2 of Koroljuk and Borovskich [18]).

Remark that the asymptotic distribution presented by Fan [13] in The-

orem 4.2, is not correct. In general the P0-integrability of u→Qh(u, u)

is not a sufficient condition for
∑

λk,h < ∞.
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Theorem 1. If assumption (K) is fulfilled then, under H0 we have

I2n(h)
d

n→+∞
−→ I∞,

with

I∞ =

∫

Qh(u, u)dP0(u) +
∞
∑

k=1

λk,h(Z
2
k − 1),

where the sequence (λk,h), with λ1,h ≥ λ2,h ≥ . . . and λk,h → 0, k →

+∞, is described above and (Zk) are i.i.d. standard normal variables.

Moreover, the test I2(h) = (I2n(h)) defined by the critical regions {I2n(h)

> cα}, where P(I∞ > cα) = α, is asymptotically of level α and consis-

tent to test H0 against Ha.

Remark 1. If the density f0 has a compact support S and Qh is

continuous in S × S, from the Mercer’s expansion for Qh (see Dunford

and Schwartz [8], p. 1088) it follows that
∫

Qh(u, u)dP0(u) =
∑∞

k=1 λk,h

and therefore Y∞ takes the form Y∞ =
∑∞

k=1 λk,hZ
2
k .

3. Bahadur local efficiency

In order to compare the test I2(h) with other test procedures, or to

compare I2(h) tests obtained for different values of h, we derive in the

following its Bahadur exact slopes CI2(h)(f), for f in a neighbourhood

of f0. They coincide with the Bahadur approximate slopes (and then

with the Bahadur local approximate slopes) derived by Gregory [16].

For the description of Bahadur’s concept of efficiency, see Bahadur [3, 4]

or Nikitin [19].

Throughout, || · ||p denotes the norm of the Lebesgue space Lp(R
d,

B(Rd), λ) =: Lp(λ). The proof of the following result is given in Section

5.

Theorem 2. We have

CI2(h)(f) =
bI2(h)(f)

λ1,h
(1 + o(1)), as ||f − f0||1→0,

where

bI2(h)(f) =

∫

{Kh ⋆ f(x)−Kh ⋆ f0(x)}
2dx,

and λ1,h is the largest eigenvalue of the operator Ah defined by (4).

If f0 belongs to a family of probability density functions of the form

{f(·; θ) : θ ∈ Θ}, where Θ is a nontrivial closed real interval and f0 =
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f(·; θ0), for some θ0 ∈ Θ, it is natural to compare a set of competitor

tests through its Bahadur local exact slopes when θ→θ0.

Consider the following assumptions on the previous parametric fam-

ily:

Assumptions on {f(·; θ) : θ ∈ Θ} (P)

For all x ∈ R
d the function θ→f(x; θ) is continuously differentiable

on Θ, and there exists a neighbourhood V ⊂ Θ of θ0 such that the

function x→supθ∈V

∣

∣

∂f
∂θ
(x; θ)

∣

∣ is integrable on R
d.

The following result comes easily from Theorem 2, assumption (P)

and the dominated convergence theorem.

Corollary 1. Under assumption (P), we have

||f(·; θ)− f(·; θ0)||1→0, when θ→θ0,

and

CI2(h)(f(·; θ)) =
boI2(h)(f(·; θ))

λ1,h

(θ − θ0)
2 (1 + o(1)), when θ→θ0

where

boI2(h)(f(·; θ)) =

∫

(

Kh ⋆
∂f

∂θ
(·; θ0)(x)

)2

dx.

Let us denote by {qk,h, k ∈ N0} the orthonormal basis for L2(P0)

corresponding to the infinite collection of eigenvalues of Ah, i.e., for all

k and j,
∫

Qh(·, v)qk,h(v)dP0(v) = λk,hqk,h, a.e. (P0) and 〈 qk,h, qj,h 〉 =

δkj, where δkj is the Kronecker symbol. In the following result, we

establish a representation for the local slope CI2(h)(f(·; θ)) when θ→θ0,

in terms of the weights (λk,h) and the principal components (qk,h). It

is proven in Section 5.

Corollary 2. Under assumption (P), if
∂ ln f

∂θ
(·; θ0) ∈ L2(P0), then

CI2(h)(f(·; θ)) =
∞
∑

k=1

λk,h

λ1,h

a2k,h(θ − θ0)
2(1 + o(1)), when θ→θ0,

where, for k = 1, 2, . . . ,

ak,h =
〈

qk,h,
∂ ln f

∂θ
(·; θ0)

〉

.

From the previous representation, in particular from the fact that

the weights (λk,h) converge to zero, it is clear that only a finite di-

rections of alternatives effectively contribute to CI2(h)(f(·; θ)). The
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natural question, that we discuss in the next section for the test of a

simple hypothesis of normality, is how rapidly the principal directions

loose influence.

4. Testing a simple hypothesis of normality

In this section we consider the test of the simple hypothesis of nor-

mality. Without loss of generality we restrict our attention to the test

of the hypothesis H0 : f = fN(0,1) against the alternative hypothesis

Ha : f 6= fN(0,1).

4.1. Local alternatives. In order to get a better understanding of the

role played by the smoothing parameter in the detection of departures

from the null hypothesis, we consider a set of alternatives that satisfy

(P) with f = fj and θ0 = 0, such that

(A. j)
∂ ln fj
∂θ

(·; 0) = Hj(·)/j!, (5)

for j = 1, . . . , 4, where Hj is the jth Hermite polynomial defined by:

H1(x) = x;
H2(x) = x2 − 1;
H3(x) = x3 − 3x;
H4(x) = x4 − 6x2 + 3.

These alternatives are based on the Edgeworth series for the density

and the corresponding value of θ indicate departures from the null

hypothesis in the jth moment (about Edgeworth expansion see Hall

[17] and the references therein). Remark that the location alternative

f(·; θ) = fN(θ,1)(·) and the scale alternative f(·; θ) = fN(0,1+θ)(·), when

θ→ 0, satisfy (A.1) and (A.2), respectively. The alternative f(·; θ) =

2fN(0,1)(·)FN(0,1)(θ·), when θ ↓ 0, considered by Durio and Nikitin [10],

satisfies (A.1) up to the multiplication by a constant. Finally, the skew

and kurtosis alternatives considered by Durbin et al. [9] satisfy (A.3)

and (A.4), respectively.

4.2. The test statistic. From now on we take for K the standard

normal density K = fN(0,1). This choice for the kernel was mainly

motivated by the fact that the function boI2(h)(f(·; θ)) given in Corollary

1 can be explicitly evaluated for the set of alternatives described above.

Also remark that in this case the calculation of I2n(h) does not involve
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any integration. In fact, the kernel Qh given by (3) takes the form

Qh(u, v) (6)

= fN(0,2h2)(u− v)− fN(0,2h2+1)(u)− fN(0,2h2+1)(v) + fN(0,2h2+2)(0),

for u, v ∈ R (see Bowman [6] and Bowman and Foster [7]).

4.3. Most significant weights. As described in Section 3, the Ba-

hadur local slope of I2n(h) depends on the weights (λk,h) and on the

principal components (qk,h). Numerical evaluations of the most sig-

nificant weights are shown in Table 1 for four values of h. These ap-

proximations have been obtained through the projection method. We

have considered the restriction, Ah|L, of the operator Ah defined by (4)

with kernel given by (3) to the finite dimension subspace L of H(P0)

given by L = {g ∈ H(P0) : g =
∑n

i=1 g(x̄i)1I]xi,xi+1]}, where n = 1400,

xi = −7 + 0.01(i − 1) and x̄i = (xi + xi+1)/2, for i = 1, . . . , n. The

numerical calculation of the eigenvalues of Ah|L have been performed

using Lapack routines (cf. Anderson et al. [1]).

Table 1
Weights for I2(h) with K = fN(0,1) and f0 = fN(0,1)

h = 0.05 h = 0.2 h = 1.0 h = 2.0

λ1,h 3.59 × 10−1 2.61× 10−1 5.53× 10−2 1.28 × 10−2

λ2,h 3.54 × 10−1 2.36× 10−1 2.16× 10−2 1.93 × 10−3

λ3,h 3.11 × 10−1 1.49× 10−1 3.97× 10−3 1.31 × 10−4

λ4,h 3.06 × 10−1 1.29× 10−1 1.32× 10−3 1.65 × 10−5

λ5,h 2.70 × 10−1 8.46× 10−2 2.85× 10−4 1.33 × 10−6

λ6,h 2.64 × 10−1 7.15× 10−2 8.90× 10−5 1.57 × 10−7

λ7,h 2.35 × 10−1 4.82× 10−2 2.05× 10−5 1.36 × 10−8

λ8,h 2.29 × 10−1 4.00× 10−2 6.17× 10−6 1.55 × 10−9

λ9,h 2.04 × 10−1 2.74× 10−2 1.47× 10−6 1.39 × 10−10

λ10,h 1.98 × 10−1 2.24× 10−2 4.33× 10−7 1.54 × 10−11

λ11,h 1.77 × 10−1 1.56× 10−2 1.06× 10−7 1.42 × 10−12

λ12,h 1.71 × 10−1 1.26× 10−2 3.06× 10−8 1.54 × 10−13

From these values and the representation for the Bahadur local slopes

given in Corollary 2, we expect that test I2n(h) for small values of h

could use information contained in others components different from

the first ones. However, for moderate or large values of h, it appears

that I2n(h) might exclusively use information contained in the first com-

ponents.

4.4. Bahadur local exact slopes. Similarly to the quadratic EDF

tests of Anderson-Darling (A2) and Cramér-von Mises (W 2) (see Nikitin
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Figure 1
Local indices for:
I2(h) – solid line; A2– broken line; W 2– broken and dotted line
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Figure 2
Local indices for:
I2(α; 0.3, 2.0) – solid line; A2– broken line; W 2– broken and dotted line
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[19], p. 73–81), for each one of the alternatives (5) the Bahadur local

exact slopes of the tests based on I2(h) take the form θ2(1 + o(1)), up

to the multiplication by a constant, when θ → 0. Therefore, for the

comparison of such tests it is sufficient to compare the coefficients of

θ2. They are usually called local indices and are plotted in Figure 1 for

h ∈ [0.01, 3] and Qh given by (6). We also plot the local indices for A2

and W 2 tests.

It is clear from Figure 1 that a large bandwidth leads to a strong

predominance of the first principal component whereas a small band-

width leads to a test that uses the information contained in the other

components. For the location alternative, we note that the local in-

dices obtained numerically for large values of h are close to one which

is, from Bahadur-Raghavachari inequality (see Nikitin [19], Theorem

1.2.3), the optimal Bahadur local efficiency for this alternative. How-

ever, the gain of efficiency in the location alternative by taking a large

value of h implies a severe loss of efficiency in the other moment alter-

natives.

4.5. Combining bandwidths effects. A compromise between the

two opposite effects that location and nonlocation alternatives have

in the choice of h can be achieved by considering a test based on a

combination of bandwidths, i.e., a test based on the statistic (2) with

Kh = (1 − α)Kh1
+ αKh2

, where h1 (small bandwidth) and h2 (large

bandwidth) are two fixed bandwidths, and α ∈ [0, 1].

Denoting that test by I2(α; h1, h2) and assuming that {f(·; θ) : θ ∈

Θ} satisfies (P), we have

boI2(α;h1,h2)
(f(·; θ))

= (1− α)2 boI2(h1)
(f(·; θ)) + α2 boI2(h2)

(f(·; θ))

+ 2α(1− α)

∫

Kh1
⋆
∂f

∂θ
(·; θ0)(x)Kh2

⋆
∂f

∂θ
(·; θ0)(x) dx.

For alternatives (5) we plot in Figure 2 the local indices for the

combined test I2(α; 0.3, 2.0) for α ∈ [0.7, 1]. Notice that h1 = 0.3 and

h2 = 2.0 are appropriated bandwidths for the detection of nonlocation

and location alternatives, respectively (see Figure 1). It follows that the

test I2(0.8; 0.3, 2.0) is superior to W 2 for all the considered alternatives

(A.1-4), and is superior to A2 for alternatives (A.2-4). Remark that

this behaviour cannot be achieved by a test I2(h) for a fixed h (see

Figure 1). The test I2(0.9; 0.3, 2.0) is superior to A2 for alternative
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(A.1) but is inferior to A2 for alternatives (A.2-4). However, the loss

of efficiency for these last alternatives is not as significant as if we take

a test I2(h) with a relative local Bahadur efficiency close to one with

respect to I2(0.9; 0.3, 2.0) for alternative (A.1).

4.6. Some simulation results. The main purpose of this section is

to know if the finite sample properties of the I2 tests for fixed al-

ternatives are in accordance with the theoretical properties based on

Bahadur local efficiency. For that reason we present a simulation study

including the tests I2(0.3) (small bandwidth), I2(0.8) (medium band-

width) and I2(2.0) (large bandwidth) based on fixed bandwidths, and

the test I2(c) := I2(0.8; 0.3, 2.0) based on a combination of band-

widths. Moreover, as before, the EDF tests A2 and W 2 will be use for

comparison.

Table 2
Distributions used in the simulation study

Normal distributions

Case µ σ2 α3 α4 λ1 λ2 λ3 λ4

N1 0.4 1 ” ” — — — —
N2 0 0.36 ” ” — — — —
N3 0.4 0.36 ” ” — — — —

Nonnormal distributions

Symmetric distributions

S0 0 1 0 1.8000 0 0.577350 1 1
S1 0.4 1 ” ” 0.4 ” ” ”
S2 0 0.36 ” ” 0 0.962250 ” ”
S3 0.4 0.36 ” ” 0.4 ” ” ”
SS0 0 1 0 11.6136 0 −0.397012 −0.16 −0.16
SS1 0.4 1 ” ” 0.4 ” ” ”
SS2 0 0.36 ” ” 0 −0.663187 ” ”
SS3 0.4 0.36 ” ” 0.4 ” ” ”

Asymmetric distributions

A0 0 1 0.5129 2.2212 0.835034 0.459063 1.4 0.25
A1 0.4 1 ” ” 1.235034 ” ” ”
A2 0 0.36 ” ” 0.501020 0.765105 ” ”
A3 0.4 0.36 ” ” 0.901020 ” ” ”
AA0 0 1 0.7588 11.4308 −0.116734 −0.351663 −0.13 −0.16
AA1 0.4 1 ” ” −0.283266 ” ” ”
AA2 0 0.36 ” ” −0.070040 −0.586106 ” ”
AA3 0.4 0.36 ” ” 0.329960 ” ” ”
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Figure 3
Distribution shapes considered in the simulation study
Alternative density – solid line; Standard Normal density – broken line
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To examine the performance of these tests when the null hypothe-

sis is false, we consider three normal alternatives and four nonnormal

alternative distribution shapes shown in Figure 3. The nonnormal dis-

tributions are members of the generalized lambda family discussed in

Ramberg and Schmeiser [21]. The distributions of this family are easily

generated because they are defined in terms of the inverses of the cu-

mulative distribution functions: F−1(u) = λ1+(uλ3−(1−u)λ4)/λ2, for

0 < u < 1. The parameters defining the distributions used in the study

and the associated mean (µ), variance (σ2), skewness (α3) and kurtosis

(α4) values, are given in Table 2. Some of these distributions are used

in Fan [12] to examine the performance of the Bickel-Rosenblatt test

with a bandwidth converging to zero as n tends to infinity.

In Table 3 we present the Monte-Carlo empirical power results for the

previous tests drawn from the considered alternatives. These results are

based on 104 Monte-Carlo samples of different sizes for a significance

level of 0.05. For the evaluation of the critical values of the I2 tests we

have used 104 replications. In applying the tests A2 and W 2 we have

followed Stephens [24].
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Table 3
Empirical power at level 0.05 for different values of n

Case n I2(0.3) I2(0.8) I2(2.0) I2(c) A2 W 2

N1 20 .210 .347 .423 .376 .404 .384
50 .499 .722 .807 .759 .785 .761

N2 20 .432 .238 .005 .171 .080 .080
50 .928 .930 .026 .811 .719 .536

N3 10 .362 .357 .183 .319 .245 .335
20 .745 .805 .551 .750 .702 .743

S0 50 .452 .152 .060 .208 .148 .119
100 .780 .277 .068 .450 .292 .211
200 .982 .539 .067 .826 .666 .457

S1 20 .331 .359 .421 .413 .434 .363
50 .712 .712 .784 .804 .816 .720

S2 20 .272 .138 .007 .087 .048 .052
50 .986 .917 .030 .760 .636 .244

S3 10 .259 .299 .183 .260 .221 .276
20 .671 .742 .531 .669 .633 .651

SS0 50 .316 .130 .032 .128 .094 .071
100 .621 .326 .035 .335 .234 .170
200 .915 .704 .041 .715 .613 .476

SS1 20 .391 .458 .455 .484 .494 .500
50 .820 .885 .856 .896 .894 .898

SS2 20 .789 .463 .003 .461 .252 .246
50 .998 .987 .027 .984 .955 .925

SS3 10 .596 .480 .167 .477 .339 .460
20 .934 .903 .581 .899 .844 .881

A0 50 .581 .225 .069 .289 .207 .176
100 .895 .442 .069 .613 .445 .323
200 .998 .780 .082 .957 .905 .686

A1 20 .217 .223 .368 .315 .358 .251
50 .588 .516 .740 .763 .790 .592

A2 20 .427 .187 .006 .156 .085 .086
50 .995 .927 .030 .904 .790 .445

A3 10 .266 .241 .162 .210 .171 .229
20 .870 .824 .519 .861 .739 .772

AA0 50 .320 .149 .038 .140 .107 .087
100 .620 .350 .044 .346 .251 .184
200 .909 .711 .054 .705 .619 .477

AA1 20 .315 .365 .394 .401 .425 .419
50 .739 .828 .822 .857 .864 .857

AA2 20 .781 .455 .003 .449 .248 .241
50 .998 .986 .028 .983 .954 .924

AA3 10 .575 .433 .150 .440 .301 .422
20 .930 .903 .565 .899 .847 .881

From Table 3, and Figures 1 and 2, we conclude that the theoret-

ical results based on Bahadur local efficiency are in good accordance

with empirical ones. The theoretical properties of I2 tests are well

transferred to finite sample situations.

In practice, the choice among the considered tests depends on the

available information about the alternative to the null hypothesis. For

alternatives f whose mean and variance satisfy µf 6= 0 and σ2
f = 1

(Type I alternatives), A2 is in general the best test, and each one

of the tests I2(0.8), I2(2.0) or I2(c) is better than I2(0.3) test. For
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alternatives f satisfying µf = 0 or σ2
f 6= 1 (Type II alternatives),

I2(0.3) is globally the best test. Moreover, for these alternatives each

one of the tests I2(0.3), I2(0.8) or I2(c) is better or significantly better

than A2 or W 2 tests.

If one does not know much about the unknown density function,

the undertaken simulation study suggests that the test I2(c) is a good

alternative to both A2 and W 2 tests. In fact, for Type I alternatives

the I2(c) performance is close to that one of A2 or W 2, and for Type II

alternatives I2(c) is better or significantly better than A2 or W 2 tests.

The practical performance shown by the Bickel-Rosenblatt test with

fixed bandwidth impels the generalization of the results presented in

this paper to the test of a composite null hypothesis. In case of location-

scale null families of density functions, this demands the use of a kernel

density estimator with data-dependent fixed bandwidth matrix which

is out of the scope of this paper. In a future paper we intend to address

this subject.

5. Proofs of Theorem 2 and Corollary 2

Proof of Theorem 2: In order to use Theorem 1.2.2 of Nikitin [19]

due to Bahadur [3, 4], we first note that from the strong law of large

number for U-statistics (cf. Theorem 3.1.1 of Koroljuk and Borovskich

[18]) we have

n−1I2n(h)
as

n→+∞
−→ bI2(h)(f),

for all f , where bI2(h)(·) is given in Theorem 2. Secondly, it is necessary

to solve the problem of determining large deviation asymptotics of the

sequence (I2n(h)) under the null hypothesis. This problem can be solved

by using the integral and quadratic form of I2n(h) and a generalization of

Chernoff large-deviation result due to Sethuraman [23] (see also Nikitin

[19], p. 23). In fact, we have

I2n(h) =
(

n−1||Z1,h + · · ·+ Zn,h||2
)2

,

where (Zi,h) are i.i.d. random variables taking values on L2(λ) given

by Zi,h(x) = Kh(x−Xi)−Kh ⋆ f0(x), for x ∈ R
d. Moreover, for all g ∈

L2(λ) we have
∫ ∫

g(x)Z1,h(x)dxdP =
∫

g(x)
∫

Z1,h(x)dPdx = 0, and,

for all z ∈ R,
∫

exp(z||Z1,h||2)dP ≤ exp(z
∫

||Z1,h||2dP ) < +∞, since

||Z1,h||2 is a bounded random variable. The conditions of Sethuraman’s
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theorem are thus fulfilled. Then, for all a > 0,

lim
n→+∞

n−1 lnP (n−1I2n(h) ≥ a) = G(a),

where G is a continuous function in a neighbourhood V0 of zero such

that

G(a) = −
a

2σ2
h

(1 + o(1)), as a→0,

and

σ2
h = sup

{

∫ ( ∫

g(x)Z1,h(x)dx
)2
dP : ||g||2 = 1

}

= sup
{

∫ ∫

g(x)g(y)
∫

Z1,h(x)Z1,h(y)dPdxdy : ||g||2 = 1
}

= sup
{

∫ ∫

g(x)g(y)Q̄h(x, y)dxdy : ||g||2 = 1
}

,

with Q̄h(x, y) =
∫

k(x, u; h)k(y, u; h)dP0(u) and k is given by (3).

By the Rayleigh equation (see Dunford and Schwartz [8]), σ2
h is the

largest eigenvalue of the integral operator Āh, with kernel Q̄h, defined

on L2(λ). Since the set of eigenvalues of Āh coincide with the corre-

sponding one of the operator Ah defined by (4), we get

G(a) = −
a

2λ1,h
(1 + o(1)), as a→0,

where λ1,h is the largest eigenvalue of the operator Ah.

Finally, from the continuity in f0 of the function bI2(h)(·) from L1(λ)

to [0,+∞[, there exists a neigbourhood Vf0 of f0 such that {bI2(h)(f) :

f ∈ Vf0} ⊂ V0, and therefore, from Theorem 1.2.2 of Nikitin [19], we

conclude that

CI2(h)(f) = −2G
(

bI2(h)(f)
)

,

for all f ∈ Vf0. �

Proof of Corollary 2: For boI2(h)(f(·; θ)) given in Corollary 1, we have

boI2(h)(f(·; θ)) =

∫ ∫

Qh(u, v)
∂ ln f

∂θ
(u; θ0)

∂ ln f

∂θ
(v; θ0) dP0(u)dP0(v)

=
〈

Ah
∂ ln f

∂θ
(·; θ0) ,

∂ ln f

∂θ
(·; θ0)

〉

.

The result follows now from Corollary 1 and the representation Ahq =
∑∞

k=1 λk,h〈 q, qk,h 〉 qk,h, for all q ∈ L2(P0). �
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