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Abstract

set of 46,579 PPIs to be further explored.

Background: The oral cavity is a complex ecosystem where human chemical compounds coexist with a particular
microbiota. However, shifts in the normal composition of this microbiota may result in the onset of oral ailments,
such as periodontitis and dental caries. In addition, it is known that the microbial colonization of the oral cavity is
mediated by protein-protein interactions (PPls) between the host and microorganisms. Nevertheless, this kind of
PPIs is still largely undisclosed. To elucidate these interactions, we have created a computational prediction method
that allows us to obtain a first model of the Human-Microbial oral interactome.

Results: We collected high-quality experimental PPIs from five major human databases. The obtained PPIs were
used to create our positive dataset and, indirectly, our negative dataset. The positive and negative datasets were
merged and used for training and validation of a naive Bayes classifier. For the final prediction model, we used an
ensemble methodology combining five distinct PPI prediction techniques, namely: literature mining, primary protein
sequences, orthologous profiles, biological process similarity, and domain interactions. Performance evaluation of
our method revealed an area under the ROC-curve (AUC) value greater than 0.926, supporting our primary
hypothesis, as no single set of features reached an AUC greater than 0.877. After subjecting our dataset to the
prediction model, the classified result was filtered for very high confidence PPIs (probability >1-107"), leading to a

Conclusions: We believe this dataset holds not only important pathways involved in the onset of infectious oral
diseases, but also potential drug-targets and biomarkers. The dataset used for training and validation, the
predictions obtained and the network final network are available at http://bioinformatics.ua.pt/software/oralint.
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Background

The majority of gene products that crowd a living cell
interact, at least transiently, with other protein molecules.
Virtually all cellular events, such as signal transduction,
intracellular transport, DNA replication, transcription,
translation, splicing, secretion, cell cycle control and inter-
mediary metabolism, are mediated by protein-protein in-
teractions (PPIs) [1]. The same applies to host-pathogen
systems, where PPIs are essential in the establishment of
infection [2]. The binding domains of interacting proteins
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reveal high structural and physical-chemical affinity with
an associated degree of conservation. This is further evi-
denced by the fact that close protein homologs frequently
interact in the same way [3-7]. With this in mind, we can
expect understanding of the human interactome to pro-
vide insight into physiopathological mechanisms [8].
Numerous experimental techniques have been explored
to attain the human interactome: two-hybrid screening
[9,10], affinity purification mass spectrometry [11], DNA
microarrays [12], protein microarrays [13-15], synthetic le-
thality [16], phage display [17], X-ray crystallography and
nuclear magnetic resonance spectroscopy [18], fluorescence
resonance energy transfer [19], surface plasmon resonance
[20], atomic force microscopy [21], and electron micros-
copy [22]. These methods have major drawbacks that ren-
der them non-applicable in large-scale PPI prediction,
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namely the amount of time, associated cost and minimal
protein interaction network coverage per run. Additionally,
high-throughput approaches are also often associated with
low-specificity and large numbers of both false negatives
and false positives [23]. Moreover, these techniques were
developed to detect intra-species PPIs, which renders them
sub-optimal in inter-species PPI identification. Still, experi-
mental methods remain the only viable methodology to val-
idate PPIs.

As an alternative to experimental methods, a wide range
of computational approaches for the prediction of intra-
species PPIs have been proposed. Computational methods
can be categorized according to the types of information
they analyze. One common approach consists of using
text mining to extract known PPIs from the biomedical lit-
erature [24]. Additionally, there are methods based on
genomic data (gene neighborhood [25-28], gene fusion
[29,30], phylogenetic profiles [31-33], codon usage similar-
ity [34]), protein structure (homology-based method [35],
threading-based method [36]), domain information (single
domain pairs [37-41], multi-domain pairs [42,43]), protein
sequence [44-56], and Gene Ontology (GO) [57] annota-
tion semantic similarity ([58-61]). In contrast, computa-
tional efforts to predict inter-species PPIs have been very
limited. Dyer et al. [2] combined domain information with
a maximum likelihood estimator algorithm [37], while
Davis et al [62] adapted an approach following the
threading-based method [36]. To provide a better predic-
tion, Tastan et al. [63] applied a method combining mul-
tiple data sources, and used a random forest classifier to
predict interactions between HIV-1 virus and human pro-
teins. Despite these advances, the interactomes of several
species are still far from complete. Nonetheless, the results
of some of these studies provide great working knowledge
of the characteristics of protein and gene interaction net-
works. For instance, the topological characteristics of pro-
tein interaction networks (PINs) have been proven to
reflect the functionality of the interacting genes. This was
demonstrated in yeast, where essential genes were more
likely to be well connected and globally centered in the
PIN [64,65].

Here we present a computational model to predict
inter-species PPIs within the human oral cavity, an en-
vironment particularly prone to bacterial colonization.
This is mostly due to the fact that human, microbial and
environmental factors interact in a dynamic equilibrium
within the human oral cavity [66]. Determination of the
salivary interactome will clarify the role of saliva in oral
biology and enable the identification of disease bio-
markers. The presence of blood exudate proteins and
exfoliated epithelial cells in saliva suggest it may be an
alternative to blood as a diagnostic fluid in many in-
stances. Additionally, if we consider the systemic nature
of saliva, the ease and low cost associated with its
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handling, and the minimal risk linked to its collection
for both medical staff and the patient, the reason for
studying the oral cavity becomes clear [67].

As a result of this work, analysis of the resulting PPI
network revealed some interesting features. Some of the
PPIs involving the Rothia mucilaginosa microorganism
are very specific and relevant. Moreover, our method not
only predicted new PPIs between periodontal pathogens
and the host, but also PPIs between different periodontal
pathogens, suggesting a synergistic course of action.

Results

We conducted a series of pre-test analyses to assess the
performance of our model. Then, we proceeded to test our
approach on high-quality experimental protein-protein
interaction (PPI) data collected from five databases. The
selected databases exclusively contain manually curated
PPI data.

Computational model for predicting the human-microbial
interactome

Figure 1 summarizes the procedure used to achieve the
model of the human-microbial interactome. The starting
point of this work is a set of 4,707 proteins identified by
proteomic studies as being present in the oral cavity and
available on the OralCard database [66,67].

Since there is no well-established gold standard for
PPIs, we collected data from five databases containing
high-quality experimentally determined interactions as
described further on in Methods. Extracted PPIs from
the five databases were merged, creating our gold stand-
ard of positive interactions. The gold standard of nega-
tive interactions was obtained by randomly pairing the
protein list on the premise that all protein pairs pro-
duced must differ from those on the positive dataset. A
total of 18,371 positive and a similar number of negative
pairs were obtained.

Simultaneously, for each possible pair of proteins, we
constructed five clusters of features based on: (1) litera-
ture; (2) primary protein sequence information; (3) ortho-
logous profiles; (4) biological process similarity, and; (5)
enriched conserved domain pairs. This was performed by
accessing public databases, extracting, and then processing
the collected data.

The gold standard dataset was used to train a Naive
Bayes classifier and to perform further validations on the
final model. The classifier was then applied to the set of
all possible pairs of protein interactions. Finally, by ag-
gregating all individual pairs of predicted interactions,
the final network was obtained.

Evaluating the reconstruction of the human interactome
In this section, we evaluate the performance of the pro-
posed method when applied to the set of human proteins
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Figure 1 Workflow applied on the construction of the Human-microbial oral interactome”. [t also contains footnote information: “a) the
proteins identified on the oral proteome are obtained from the Oralcard database; b) the gold standard used for training and validation is
obtained by combining the five most relevant curated protein interaction databases; c) for each protein interacting pair five clusters of features
are constructed; d) the previously trained classifier is applied to each pair of interaction; and e) finally the interactome network is obtained by

from the gold standard. We performed a 5-fold cross-
validation to assess the combined and individual contribu-
tions of the clusters of features. Table 1 shows the results
for the performance of each individual cluster while Table 2
presents the contribution of each cluster to the final classi-
fier by iteratively removing each cluster.

Table 1 Analysis of the prediction performance of
individual features

The best performance is achieved through the ensem-
ble of the five clusters, returning an area under the re-
ceiver operating characteristic (ROC) curve (AUC) of
0.926, a precision of 0.848 and a recall of 0.854. This re-
sult is above the performance of any individual feature
and can only be achieved with the participation of all,

Table 2 Analysis of the contribution to the overall
performance of individual cluster of features

Feature AUC CA F1-score Precision Recall Feature AUC CA F1-score Precision Recall
+ Literature 0.781 0.722 0.723 0.721 0.726 - Literature 0.919 0.841 0.841 0.841 0.841
+ Sequence 0.877 0.784 0.790 0.768 0813 - Sequence 0.891 0.794 0.774 0.855 0.708
+ GO 0817 0.742 0.748 0.735 0.760 -GO 0916 0.838 0.839 0835 0.842
+ COGs 0.663 0.652 0.537 0.806 0402 - COGs 0.923 0.846 0.847 0.842 0.852
+ DDlIs 0.620 0617 0424 0.861 0281 - DDIs 09M 0.831 0.834 0.819 0.850
Final Model 0.926 0.850 0.851 0.848 0.854 Final Model 0926 0.850 0.851 0.848 0.854

For each line the metrics are obtained by considering only that cluster of
features on the classifier. AUC, area under the receiver operating characteristic
(ROCQ) curve; CA, classification accuracy.

For each line the metrics are obtained by removing that cluster of features
from the classifier. AUC, area under the receiver operating characteristic (ROC)
curve; CA, classification accuracy.
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meaning that all features are required and have a com-
plementary contribution.

The Sequence is simultaneously the feature with the
best overall performance (AUC = 0.877) and the one that
causes the most negative impact when removed from
the classifier, making the AUC drop to 0.891. It also has
a very interesting recall of 0.813, partially due to the fact
that all protein sequences are recognized and therefore
the feature has full coverage.

In contrast, the clusters of orthologous groups (COGs,
with AUC = 0.663) and domain-domain interactions (DDI,
with AUC =0.620) have the lowest individual AUCs,
mainly due to the low coverage of their features. Despite
that, they benefit from a considerably high precision that
contributes positively to the final classifier. This is espe-
cially true for the COGs which, when removed, cause the
major drop in precision.

The Literature and the Gene Ontology (GO) features,
while not outstanding in any particular metric, have con-
sistent performance on almost all metrics. Nevertheless,
they make a very relevant contribution to the final classi-
fier while the removal of the Literature causes a drop of
the AUC to 0.919 and the GOs to 0.916.

Global characterization of the human-microbial interactome

The classifier returned a set of 1.9 million possible interac-
tions with a probability higher than 0.5. This corresponds
to an average degree of 404 interactions per protein, which
is much above the range of 3 to 30 documented in previ-
ous studies [68]. Additionally, there are reports of yeast
two-hybrid screenings, the most commonly used high-
throughput experimental method, reaching false-positive
rates of 70%. With this in mind, and in order to minimize
the presence of false-positives in our predicted interac-
tome, we filtered our prediction results to consider only
very high confidence PPIs (probability>1-107). We
neglected the recall for the sake of precision. As can be
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observed in Figure 2, the cutoff of 1-107 is the lowest
probability value where an increment does not imply a de-
crease in the number of interactions. This cut-off resulted
in a total of 46,579 PPIs, with 37,407 being between hu-
man proteins, 6,394 between human and microbial pro-
teins, and 2,778 between microbial proteins. The average
number of protein interactions per protein after the cutoff
was 8. Figure 3 is a visual representation of the interac-
tions between the various organisms found in the oral cav-
ity and the human host. Intra-species interactions are not
shown. The thickness of the ribbons between each or-
ganism is correlated with the number of PPIs between
both organisms, meaning that the organisms sharing
highest number of PPIs with the human are Rothia
mucilaginosa, Leptotrichia buccalis, and Actinomyces
odontolyticus (strain independent).

With the exception of Homo sapiens with 3,030 pro-
teins, the most represented organisms in the human oral
cavity are Rothia mucilaginosa (strain DY-18) (Stomato-
coccus mucilaginosus), Actinomyces odontolyticus (strain
ATCC 17982), and Streptococcus salivarius (strain SK126),
with 68, 54, and 26 proteins, respectively. These organisms
are opportunistic pathogens known to be associated with
periodontitis [69] and caries [70].

The most frequent biological processes are related to
host-microbial interactions: GO:0044281 (small molecule
metabolic process, involved in 173 PPIs), GO:0019048
(viral interaction with host, involved in 161 PPIs), and
GO:0045087 (innate immune response, involved in 145
PPIs).

We also identified the top three human hub-proteins
present in our data: epidermal growth factor receptor
(EGFR) (UniProt AC P00533, involved in 3247 PPlIs), fibro-
nectin (UniProt AC P02751, involved in 3143 PPIs), and
cullin-associated NEDD8-dissociated protein 1 (CAND1)
(UniProt AC Q86VP6, involved in 2911 PPIs). In terms of
non-human original hub-proteins, the most common are a
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between both organisms.

Figure 3 Representation of the Human-microbial inter-species protein interactions. Each section represents an organism. The ribbons
connecting any two sections symbolize the PPIs between two organisms. The thickness of each ribbon correlates with the number of PPIs

serine/threonine protein kinase from Leptotrichia buccalis
(UniProt AC C7NEKO, involved in 258 PPIs), a kinase do-
main protein from Parviromonas micra ATCC 33270
(UniProt AC A8SMO03, involved in 194 PPIs), and Ras-
related protein SEC4 from Saccharomyces cerevisiae (Uni-
Prot AC P07560, involved in 163 PPIs).

Discussion
Functional analysis of the human-microbial interactome
Unsurprisingly, the most frequent GO biological pro-
cesses in our final PPI dataset are associated with host-
pathogen interactions. The preeminence of innate im-
mune response and viral interaction with host as the
most frequent biological processes are self-explanatory.
However, the association between small molecule metab-
olism and host-microbial interactions is not so direct.
When faced with an infection, the body will respond
by initiating two major cellular signaling pathways with
opposing functions: the nuclear factor (NF)-kB and

glucocorticoid-mediated signal transduction cascades.
While the NF-kB pathway promotes the immune re-
sponse and inflammation, the glucocorticoid-mediated
signal transduction cascade suppresses it. In order to ex-
plain the association between small molecule metabol-
ism and host-pathogen interactions we must focus on
the NF-kB cascade, as it is known to mediate the tran-
scriptional activation of several cytokines (cell-signaling
molecules) involved in immunity [71]. Tumor necrosis
factor (TNF)-a and TNEF-B, two of these cytokines, play
key roles in immune regulation and inflammation [72].
However, these cytokines are mainly responsible for the
metabolic instabilities that occur during the infection, as
they increase the metabolism of triglycerides inducing
hyperlipidemia (escalation of blood lipid levels), stimu-
late lipolysis (degradation of lipids), accelerate glycogen
breakdown and glucose consumption and uptake, and
increase the serum levels of hormones that regulate glu-
cose metabolism. These metabolic changes possibly
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explain the great number of “small molecule metabolic
process” biological processes.

Analysis of hub proteins

The top three hub proteins identified share a common
trait: these are exploited by pathogens in an attempt to
gain entry to the host and survive inside it.

EGEFR is a transmembrane protein mainly produced in
the salivary glands and the kidneys [73]. Its association
with microbial invasion has already been reported for
Salmonella typhimurium [74], Candida albicans [75],
Reovirus [76], and Vaccinia virus [77]. Apparently, all
these pathogens initiate cellular invasion, at least to
some extent, by binding to EGFR. This suggests the
possibility that several other pathogens are using the
EGER to start host colonization, as supported by Buret
et al. [78].

Similarly to EGFR, fibronectin appears to also play the
role of a “microbial-anchor”. This glycoprotein is found
bound to the ; integrins in the cell surface, and is gen-
erally seen as a key protein for bacterial adhesion within
the oral cavity [79,80].

The CAND1 protein, formerly TIP120A, was found to
interact with most of the proteins in the Cullin family
[81]. The Cullin protein family plays a key role in the
ubiquitination of cellular proteins, i.e. performing a
post-translational modification in order to label the
target protein with ubiquitin molecules. This labeling
frequently results in the commitment of the ubiquitin-
linked protein to proteasomal degradation [82]. Conse-
quently, CAND1 was suggested to function as a global
regulator of cullin-containing ubiquitin ligases [81,83].
Being one of the top hub-proteins, we investigated the
relationship between the ubiquitination pathway and
pathogen colonization of the host cells. As expected, we
found that certain bacteria corrupt the ubiquitination
machinery as a means of regulating their virulence fac-
tors, or to trigger internalization of bacteria into host
cells [84]. Such a mechanism improves the survival and
replication chances of bacteria inside the host.

Study of the microbiome role in periodontitis

When the data analysis is focused on a particular disease
such as periodontal disease four main features can be ob-
served: i) Rothia mucilaginosa, a microorganism present
in the normal human oral microbiome but considered an
opportunistic pathogen [85], is the species with the most
interactions, with some of them revealing important and
specific interactions; ii) new interactions are predicted be-
tween periodonto-pathogens and the host, and; iii) inter-
actions between periodonto-pathogens are also predicted,
most likely explaining a synergistic course of action, as has
been previously proposed [86].
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Regarding the first observation, the analysis of the sub-
network pertaining to Rothia mucilaginosa shares the
characteristics previously described for the hub proteins
with 37/638 interactions with the EFGR protein, 40/638
interactions with fibronectin and 34/638 interactions with
CANDI1. Furthermore, this sub-network presents two pre-
dicted interactions which have not been described before:
R. mucilaginosa proteins D2NSF5 and C6R5R8, which are
predicted to interact with human immunoglobulin chains
(P01719 and P01781), and could be related to the immune
response specific for this species, explaining why these in-
teractions are worth investigating.

If we consider the bacteria most associated with peri-
odontal disease, our model predicts few interactions be-
tween A. actinomycemcomitans, P. gingivalis, and the host
proteins. As mentioned before, this is due to the fact that
these organisms are not well represented in the original
protein data set. However, besides the interactions pre-
dicted between these bacteria and the human hub proteins
described above, in the case of Porphyromonas gingivalis it
is possible to identify at least two potentially interesting
new types of interactions between bacterial ribosomal pro-
teins and a major histocompatibility complex protein
(P30461). Furthermore, we also identified a possible inter-
action between the bacterial enolase (Q7MTV8) and a
host aquaporin which could interfere with the homeostasis
mechanisms of the host. Additionally, when we consider
the interactions of P. gingivalis with other bacteria, we find
that the same enolase might interact with outer mem-
brane proteins of Haemophilus influenza and Pasteurella
multocida. The role of bacterial enolase as a multitask
protein involved not only in carbohydrate metabolism but
also in virulence has been recognized recently [87].

This suggests that previously unknown and important
PPIs for oral colonization and biofilm formation may be
present in this dataset. Finally the fact there are possible
interactions between P.gingivalis proteases and those of
other periodonto-pathogens such as Kingella oralis and
Treponema denticola is interesting. This may even shed
some light on the synergistic aspects of oral biofilm in
periodontal disease [86].

Conclusion

The continuous yield of large-scale data mainly from mi-
croarrays and yeast two-hybrid studies has made the
study of PPIs very appealing. The main issue associated
with PPI study is the high prevalence of false positives
and negatives in experimental PPI data. Being the only
“reliable” source of PPIs, inaccurate experimental PPI
data will contaminate training datasets and therefore
compromise the performance of computational PPI pre-
diction methods. For this reason, we believe that an im-
provement in the quality of experimental PPI data will
greatly impact the performance of new computational
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PPI prediction approaches. While this is not the case at
present, we must consider how to avoid the effects of
false positives and false negatives in the final PPI predic-
tion model.

We proposed a probabilistic Bayesian-based method to
integrate several data sources, to obtain more robust
and reliable PPI predictions. By applying naive Bayes, we
automatically up-weigh the most informative features
and down-weigh the less informative ones, allowing for
automatic error-correction.

Our individual feature analysis results show a great
relevance of the selected features. When applied on a
naive Bayes classifier, the individual features synergize,
boosting the AUC up to 0.926. This suggests that the re-
liability of prediction improves with the increase of sig-
nificant features, meaning that the ensemble final model
actually reduces the disadvantages of the individual
methods.

Cytoscape was successfully used to validate the net-
work when tested with real pathway examples, discover-
ing new potentially interesting interactions in oral
biology, both between the host and the periodontal path-
ogens and between different periodontal pathogens.

We believe our work may be applied in several scientific
areas, and even in other PPI related studies. An example is
biomedical PPI screening, to assess if interactions of par-
ticular interest might occur and what the related interaction
probability is. Another example is pharmacologic research,
as a well-established PPI network can provide insights on
potential drug targets, but also new uses for existent in-
market drugs. Finally, and based on the fact that protein
interaction networks are dynamic [88], our work can sup-
port researchers in identifying evolutionary patterns.

Methods

Oral proteome

As a starting point for our study we used 4,707 proteins,
3500 from Human and 1207 from microbial, available
on the OralCard database [66,67].

These proteins were identified via proteomic analysis
of the saliva, frequently by using 2D electrophoresis/
mass spectrometry or 2D liquid chromatography/mass
spectrometry. By the end of 2012 the salivary proteome
was determined to contain 3500 proteins from human
origin and 1207 from microbial sources.

Predictive dataset construction

The use of positive (interacting pairs of proteins) and
negative (non-interacting pairs of proteins) examples is
required for training and assessing the performance of
the classifier. All data used in the construction of the
positive data set (PDS) and the negative data set (NDS)
was downloaded in March 2013.
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Positive dataset

We collected experimental oral protein-protein inter-
action (PPI) data from five databases: 14,139 PPIs from
BIOGRID ([89], 254 PPIs from DIP [90], 3,555 PPIs from
HPRD [91], 4,135 PPIs from IntAct [92], and 1,481 PPIs
from MINT [93], totaling 23,564 protein interactions
(Figure 4).

All the interacting protein pairs were identified by
their UniProtKB [94] Accession IDs for normalization
purposes. In some instances it was necessary to convert
the database own identifiers to UniProtKB Accession
IDs. The BioGRID database represents interacting pro-
tein pairs using their own identifiers and Entrez Gene
IDs. To match them to UniProtKB AccessionIDs we ex-
tracted the Gene IDs from the protein pairs and down-
loaded the list of respective gene products in the
UniProtKB Accession ID format. UniProtKB allows dir-
ect mapping from the MINT and DIP databases to an-
other identifier. A list of PPI pairs from both databases
was uploaded to the UniProtKB mapping feature, result-
ing in two different sets of UniProtKB Accession ID
pairs. HPRD uses its own identification system coupled
with NCBI Reference Sequence Accession IDs (RefSeq)
to classify PPI pairs. All the RefSeq Protein IDs were
converted to UniProtKB Accession IDs and paired ac-
cordingly. IntAct PPI pairs are identified with Uni-
ProtKB Accession IDs and were directly extracted.

PPI pairs from the five databases were merged and re-
peated entries were removed. From a total of 23,564
PPIs, 5,193 duplicated entries were removed, resulting in
a PDS of 18,371 protein pairs.

Negative dataset

The selection of negative examples to integrate the nega-
tive data was based on two methods described in the lit-
erature [95]. These methods consist of randomly selecting
protein pairs that are not present in a veto list containing
all PPIs from the positive data set. The use of this strategy
was considered acceptable because the probability of com-
mitting an error while picking a random pair is low:

N x K K
P(e) = ———

=N x (N-1) = N1’ (K<«<N)=>P(e)=0,

where N is the number of proteins and K is the average
degree for the final PPI network. In this study the N is
4,707 and for PPIs the typical value of K is between 6
and 16.

With this strategy we generated a NDS of a size simi-
lar to that of the PDS (18,348 “negative” protein pairs),
and combined it with the PDS to obtain a training data
set with 36,719 PPlIs.
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Figure 4 Venn diagram representing the intersections between the five high-quality experimentally determined protein-protein
interaction databases.

Feature construction

In this section we describe the procedure for construc-
tion of the five clusters of features. The final results are
summarized in Table 3.

Literature

The literature-based protein-protein interaction scores
were calculated by the method described in van Haagen
et al. [96]. This method is based on comparing the se-
mantic contexts in which two proteins are mentioned in
the published literature. The rationale for the method is
that two proteins occurring in similar contexts will have
a higher similarity score and are therefore more likely to

Table 3 Relative coverage of protein-protein interactions
present in the training and test data by individual
feature clusters

Training data Classification

#Interactions % of total  #Interactions % of total
Literature 22,720 61.9% 4,698,390 69.9%
Sequence 35,379 96.4% 6,703,945 99.8%
GO 23,769 64.8% 5,130,103 76.4%
COGs 9,636 26.3% 1,324,230 19.7%
DDls 5,994 16.3% 516,609 7.7%
Total 36,698 100.0% 6,716,792 100.0%

GO, gene ontology; COGs, clusters of orthologous groups; DDIs,
domain-domain interactions.

interact. The semantic context for a given protein is de-
fined by the concepts, from a pre-defined vocabulary,
that are frequently mentioned in the same articles with
that protein, and is represented by a vector containing a
weight for each concept. These weights are based on the
co-occurrence statistics, and measure the degree of asso-
ciation between the protein and each concept. Following
Jelier et al. [97], we use the symmetric uncertainty coef-
ficient U (X, Y¥j) — where X; is in this case the protein of
interest and Y] is any other concept in the vocabulary —
as the weights used for creating the concept profiles:

H(Y;) + H(X;)-H(H;,Y;)

) =2 T Ty

Where H (X) is the entropy for X and H (X, Y) is the
joint entropy for X and Y, calculated based on document
frequency counts.

We used a corpus of nearly one million abstracts, ob-
tained by searching Pubmed with 17,402 names and syno-
nyms extracted from UniProtKB for 4,707 proteins in
the dataset, after removing nonsensical names such as
“uncharacterized protein”. To identify the concepts men-
tioned in the texts we used Gimli [98], a machine-learning
tool for gene and protein name recognition, together with
dictionary matching to recognize other concepts from ten
different semantic types including chemical entities, ana-
tomical terms, diseases, pathways and GO terms. The
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dictionaries used contain around 1,3 million distinct
names for around 400 thousand concepts. Based on the
concept annotation of this corpus, we were able to calcu-
late concept profiles for 22,720 protein pairs from the
training dataset and 4,698,390 protein pairs for the classifi-
cation dataset.

Primary protein sequence information
Several studies have been carried out where detection of
protein-protein interaction is derived from information
directly extracted from the amino-acid sequences [44-56].
The results indicate that the sequence information alone
is sufficient to detect PPIs with reasonable accuracy [87]
but may be improved if combined with other strategies.

Taking into account the primary protein sequence in-
formation, the following features have been considered
in this work: occurrence of the 20 amino-acids in the
protein sequence, protein atomic composition, molecu-
lar weight and atomic weight, forming a vector of 27 fea-
tures. The interacting protein pair (X, Y) is represented
by concatenating the corresponding features vectors F,
and F), represented by (F,, F,).

We were able to obtain the sequence profile for 35,379
proteins pairs from the training dataset and 6,703,945
protein pairs for the classification dataset.

Orthologous profiles

By definition, clusters of orthologous groups (COGs) are
sets of orthologous genes or orthologous groups of para-
logs from three or more phylogenetic trees. In essence,
this means that two proteins from different lineages be-
longing to the same COG are orthologous. Orthologs
are genes in different species that evolved from a com-
mon ancestor by speciation (i.e. convergent evolution).
In contrast, paralogs are genes related by duplication
within a genome [99].

Lee et al. [100] aimed to expand the interactomes of
various organisms by applying orthology-based methods
in inter-species PPI prediction. They expanded ortholo-
gous pairs of 18 eukaryotic organisms and merged them
with experimental PPI datasets, allowing the inference of
PPIs for various species.

In this work we used the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) [101] database
to obtain COGs and their respective combined scores.
The combined score is computed by integrating the like-
lihoods from the different types of evidence, correcting
for the probability of randomly observing an interaction
[101]. This enhances the predictive performance of the
method, as a combined score is only computed when
more than one of the data sources in STRING supports
a given association.
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We were able to obtain the orthologous profile for
9,636 protein pairs from the training dataset and
1,324,230 proteins pairs for the classification dataset.

Biological process similarity
Previous studies have explored the use of GO annotation
similarity between two proteins as a PPI predictor
[59,102-105]. We downloaded biological process infor-
mation from the GO Consortium [57] in March 2013
and calculated the depth of the GO terms (nodes) in the
Directed Acyclic Graph (DAG), and the total number of
proteins comprised between the smallest shared bio-
logical process (SSBP) for each pair of proteins and the
following three branches. Since the depth of the GO
terms in the DAG is implied in the total number of pro-
teins, post-test odds analysis was performed solely on
this feature to avoid redundancy. Such an approach was
based on the general hypothesis that it is progressively
more likely for the proteins comprised within a bio-
logical process to interact, if the total number of pro-
teins involved in that process is progressively smaller.
We were able to obtain the gene ontology profile for
23,769 protein pairs from the training dataset and
5,130,103 protein pairs for the classification dataset.

Enriched conserved domain pairs
The Database of Protein Domain Interactions [106]
(DOMINE) contains binary domain-domain interaction
(DDI) data compiled from a collection of 15 databases
and DDI prediction methods. Additionally, DOMINE
provides a quality measure of the DDI confidence, as
well as a binary classification of whether the domains
are part of the same GO biological process. Here, we as-
sume that whenever two given proteins possess one or
more interacting domains between them, those proteins
will interact. We adopted this DDI data collection as in-
dividual features in our approach. Since DOMINE pro-
vides DDI information from several sources, we tallied
the number of sources that identified a DDI. This strat-
egy confers higher reliability on DDI pairs with higher
scores (closer to 15, the maximum number of DDI
sources).

We were able to obtain the domain profile for 5,994
protein pairs from the training dataset and 516,609 pro-
tein pairs for the classification dataset.

Data classification and validation

The proposed approach was developed, tested, optimized
and performed using Orange, an open-source bioinfor-
matics tool featuring Python scripting and a visual and
programmatic interface. We used the naive Bayes [107]
classifier to predict PPIs in our data. The naive Bayes clas-
sifier calculates the conditional probability of each attri-
bute A; given the class label C, from the training data. The
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Bayes rule is then applied to calculate the probability of C
given the specific instance of A ,..., A,, and then assessing
the class with the greatest posterior probability, ensuing
classification [108].

The receiver operating characteristic (ROC) curve,
which is the plot of the true positive (TP) rate with the
false positive (FP) rate, depicting the relative trade-off be-
tween both rates [109] was used to evaluate the method’s
performance. When comparing classifiers with very simi-
lar ROC curves, it may be necessary to estimate a single
scalar value to represent the expected performance. One
of the most common methods is calculation of the area
under the ROC curve (AUC) [110], which we used to
compare the naive Bayes classifier. Therefore, we assessed
the individual contributions of each feature in terms of
classification accuracy (CA), area under curve (AUC), F1-
score, precision and recall.

Interactome analysis

We used Cytoscape to visualize and validate the ob-
tained PPI network. The PPIs were classified as “HU-
MAN-HUMAN?, if the interacting proteins were only of
human origin, as “MICRO-MICROQO?”, if the interacting
proteins were only of microbial origin, or as “HUMAN-
MICRO”.

We imported the network data to Cytoscape defining
the two proteins in the same interacting protein pair as
Source Interaction (protein one) and Target Interaction
(protein two). The chosen Interaction Type was the
above-mentioned organism-organism classification. A
file containing node attributes was also imported, con-
taining microorganism and biological process informa-
tion extracted from the UniProt database pertaining to
each individual protein in the network.

Availability

All data required to analyze the results and re-run this
experiment are available for download at http://bioinfor-
matics.ua.pt/software/oralint. This includes the unique
list of UniProt AC for the proteins in the oral cavity, the
gold standard of interactions, the dataset used for train-
ing and validation, the predictions obtained, and the
Cytoscape project file with the network.
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