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It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments
of quarks in high-density quark matter under the tensor-type four-point interaction. The spin
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1. Introduction

One recent area of interest in the physics governed by quantum chromodynamics (QCD) is to clarify
the phase structure of QCD with respect to the temperature, baryon chemical potential or baryon
number density, external magnetic field, and so on [1]. In the region with high temperature and low
density, the lattice QCD simulation gives many insights on the QCD world. However, as is well
known, in the region of large quark chemical potential, there are some problems to be solved in
order to calculate the physical quantities definitely. However, it is expected that there are still many
interesting phenomena in the region of low temperature and large chemical potential. In particular,
it is expected that there are many exotic phases such as the two-flavor color superconducting phase,
the color–flavor locked phase [2–4], the quarkyonic phase [5], the phase with the inhomogeneous
condensate [6], and so forth.

In heavy-ion collision experiments such as the relativistic heavy-ion collider (RHIC) experiments
at Brookhaven National Laboratory, it is believed that the quark–gluon phase is realized apart from
the hadronic phase. Thus, the quark matter may be created and the extreme states of QCD with finite
temperature and density may be realized in the heavy-ion collision experiments. On the other hand,
the high-density hadronic phase or quark phase may be realized in the inner core of compact star
objects such as neutron stars, magnetars, and quark stars, if they exist. In the core of these compact
stars, it is expected that the hadron or quark phase exists at low temperature and high baryon density.
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For example, quark matter is considered to exist in the core of pulsars with two solar masses in
compact stars, and in the case of heavy ion collisions [7]. Therefore, the investigation of quark matter
in the region of low temperature and large quark chemical potential is a very interesting and important
subject in order to understand the whole world governed by QCD.

It is further known that neutron stars, especially the so-called magnetars [8–10], have a strong
magnetic field. However, the origin of the strong magnetic field is not so clear. It has been pointed
out that the strong magnetic field may be created if the quark liquid exists in the core of the com-
pact stars [11]. Further, the possibility of quark spin polarization in the high-density quark matter
has been investigated when the pseudovector-type interaction between quarks exists [12]. Under the
pseudovector-type interaction, it was shown that the spin polarized condensate appears, which leads
to ferromagnetism in quark matter [13]. However, the spin polarized condensate only appears in a
narrow region of the quark chemical potential.

In addition to the pseudovector-type interaction in the extended Nambu–Jona-Lasinio (NJL) model
in Eq. (1.1), it is possible to include the other four-point interactions retaining chiral symmetry,
namely, tensor-type four-point interactions such as LT :

L = iψ̄γ μ∂μ + LS + LV + LT ,

LS = −GS

[(
ψ̄ψ

)2 + (
ψ̄iγ5�τψ)2

]
,

LV = −GV

[(
ψ̄γ μ�τψ)2 + (

ψ̄γ5γ
μ�τψ)2

]
,

LT = −GT

[(
ψ̄γ μγ ν �τψ)2 + (

ψ̄iγ5γ
μγ νψ

)2
]
. (1.1)

As for the tensor-type four-point interaction, this interaction term was also introduced to investigate
meson spectroscopy, in particular for vector and axial-vector mesons [14]. As another application,
the dynamic properties of vector mesons were investigated in the extended NJL model including
the tensor-type interaction [15]. As for the spin polarized condensate, it has been shown that the
tensor-type interaction between quarks leads to the spin polarized phase in high-density quark matter
[16–18], while the spin polarization owing to the pseudovector-type interaction disappears at high
baryon density. The present authors have shown the possibility of the quark spin polarized phase in
quark matter at high baryon density against the two-flavor color superconducting phase [19] and the
color–flavor locked phase [20] under both the quark pairing interaction and tensor-type four-point
interaction in the NJL-type model [21–23]. However, the magnetic feature has not been considered
in tensor-type interactions until now.

In this paper, the magnetic features are investigated under the existence of the spin polarized con-
densate in the NJL model with the tensor-type four-point interactions. It will be shown that the
anomalous magnetic moments of quarks play an essential role, the existence of which leads to the
spontaneous magnetization of quark matter. As for the anomalous magnetic moments of quarks, there
already exists much work. For example, in the massless QED, it has been shown that the magnetic
catalysis of chiral symmetry breaking leads to the anomalous magnetic moment dynamically [24].
In a preceding study, it has been indicated that chiral symmetry breaking leads to the anomalous
magnetic moments of massless quarks by using the NJL model [25]. In particular, in the case of the
QCD-inspired nonlocal NJL model with nonlocal interaction between quarks, it has been shown that
the derived anomalous magnetic moments are compatible with those derived by the constituent quark
model. Further, in the NJL model with one-gluon exchange interaction, it has been shown that the
values of the anomalous magnetic moments of quarks are consistent with those derived by using the

2/18

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/10/103D

01/2461000 by U
N

IV.C
O

IM
BR

A/FAC
.PSIC

O
LO

G
IA E user on 09 O

ctober 2023



PTEP 2015, 103D01 Y. Tsue et al.

SU(6) quark model [26]. Recently, the effects of the anomalous magnetic moments of quarks in hot
quark matter have also been investigated in [27], in which the inverse magnetic catalysis is reported
by using the values of the anomalous magnetic moments of quarks obtained by the constituent quark
model. Here, we will therefore use the values of anomalous magnetic moments of quarks described
in [28], which are compatible with the values obtained by the constituent quark model. Also, the
implications for the magnetic field of compact stars such as neutron stars with quark matter, namely
hybrid stars, will be discussed.

This paper is organized as follows: In the next two sections, the thermodynamic potential under
the external magnetic field is given with and without the spin polarized condensate. In Sect. 4, an
approximate expression for the thermodynamic potential with a small magnetic field is derived. In
Sect. 5, it is shown that the spontaneous magnetization does not appear in the case of no anomalous
magnetic moments of quarks. In Sect. 6, the anomalous magnetic moments of quarks are introduced
within the mean field approximation. As a result, spontaneous magnetization occurs in quark matter
in the region of high baryon density due to both the spontaneous spin polarization and the anomalous
magnetic moments of quarks. In Sect. 7, the implications for hybrid compact stars are discussed
briefly and it is shown that a strong magnetic field in the surface of the compact stars may appear.
The last section is devoted to a summary and concluding remarks.

2. Thermodynamic potential under external magnetic field

We consider the two-flavor case. Let us start from the following Lagrangian density with chiral
symmetry:

L0 = ψ̄iγ μ∂μψ − G

4

( (
ψ̄γ μγ ν �τψ) (

ψ̄γμγν �τψ
) + (

ψ̄iγ5γ
μγ νψ

) (
ψ̄iγ5γμγνψ

) )
, (2.1)

where �τ represents the flavor SU(2) generator.
In previous study, we have found that a spin polarized condensate F3 = −G

〈
ψ̄�3τ3ψ

〉
may be

realized at high baryon density, where �3 = −iγ 1γ 2 is the spin operator. Thus, the Lagrangian
density under the mean field approximation is obtained as

LMF = iψ̄γ μ∂μψ − F3ψ̄�3τ3ψ − F2

2G
,

F3 = −G〈ψ̄�3τ3ψ〉 = Fτ f , �3 = −iγ 1γ 2 =
(
σ3 0
0 σ3

)
, (2.2)

where τ f = 1 for u-quark ( f = u) and τ f = −1 for d-quark ( f = d) denote the eigenvalues of τ3.
Here, σ3 is the third component of the Pauli spin matrices.

Hereafter, let us consider a system that is subject to an external magnetic field B along the z-axis.
The Lagrangian density is recast into

L = iψ̄γ μDμψ − F3ψ̄�3τ3ψ − F2

2G
, (2.3)

where Dμ represents the covariant derivative:

Dμ = ∂μ + i Q Aμ, Aμ =
(

0,
By

2
, − Bx

2
, 0

)
= (0, −A) . (2.4)

Here, for up (down) quark, Q = 2e/3 (−e/3) where e is the elementary charge. Because we inves-
tigate quark matter at finite density, the Hamiltonian density with quark chemical potential μ is
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obtained as

H − μN = ψ̄
(
−iγ · (∇ − i QA)− μγ 0

)
ψ + F3ψ̄�3τ3ψ + F2

2G

= ψ† (h − μ)ψ + F2

2G
, (2.5)

where N represents the quark-number operator. Here, h can be expressed as

h = α · (p̂ − QA
) + F3τ3β�3

= αz p̂z + αx P̂x + αy P̂y + F3τ3β�3, (2.6)

where, by using the Dirac representation of the Dirac gamma matrices,

αi = γ 0γ i =
(

0 σi

σi 0

)
, β = γ 0 =

(
1 0
0 −1

)
,

p̂i = −i
∂

∂xi
, P̂x = p̂x + Q B

2
y, P̂y = p̂y − Q B

2
x . (2.7)

Hereafter, let us consider two cases, namely F > 0 and F = 0, respectively.

2.1. F > 0 case

The Dirac equation is written by i∂ψ/∂t = hψ = Eψ , namely(
F3τ3σz − E p̂zσz + P̂xσx + P̂yσy

p̂zσz + P̂xσx + P̂yσy −F3τ3σz − E

)(
φ

ϕ

)
= 0, (2.8)

where φ and ϕ are two-component spinors. Eliminating ϕ and noting that [P̂x , P̂y] = i Q B, we obtain
the following equation:[{

−E + E

E2 − F2

(
p̂2

z + P̂2
x + P̂2

y

)
− F

E2 − F2 Q B

}

+ σz

{
F − F

E2 − F2

(
p̂2

z − P̂2
x − P̂2

y

)
− E

E2 − F2 Q B

}

− 2F

E2 − F2 p̂z

(
σx P̂x + σy P̂y

)]
φ = 0,

F3τ3 = Fτ f τ3 =
(

F 0
0 F

)
= F1, Q =

{
2
3e for up quark

−1
3e for down quark

, (2.9)

where 1 is the identity matrix in the isospin space. Let us consider the Q > 0 case, that is, the case
of the up quark. We introduce new operators instead of P̂x and P̂y as

a = 1√
2Q B

(
P̂x + i P̂y

)
, a† = 1√

2Q B

(
P̂x − i P̂y

)
, (2.10)
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where the commutation relation [a, a†,] = 1 is satisfied. Then, Eq. (2.9) is recast into[{
−E + E

E2 − F2

(
p̂2

z + Q B
(
aa† + a†a

) − F

E2 − F2 Q B

}

+ σz

{
F − F

E2 − F2

(
p̂2

z − Q B
(
aa† + a†a

) − E

E2 − F2 Q B

}

− 2F

E2 − F2 p̂z

√
Q B

2

(
σx

(
a + a†)− iσy

(
a − a†))]φ = 0. (2.11)

Here, expressing the two-component spinor φ as φ = t (φ1, φ2), the above equation can be
expressed as [

X0 + Y0 + (X1 + Y1) a†a
]
φ1 − Ca†φ2 = 0,

− Caφ1 +
[

X0 − Y0 + (X1 − Y1) a†a
]
φ2 = 0, (2.12)

and, eliminating φ2, the following equation can be derived from Eq. (2.11):[[
X0 + Y0 + (X1 + Y1) a†a

] − [
X0 − Y0 + (X1 − Y1)

(
a†a − 1

)]−1
C2a†a

]
φ1 = 0, (2.13)

where we define the following quantity for simplicity:

X0 = −E + E p̂2
z

E2 − F2 + E − F

E2 − F2 Q B, Y0 = F − F p̂2
z

E2 − F2 − E − F

E2 − F2 Q B,

X1 = 2E Q B

E2 − F2 , Y1 = 2F Q B

E2 − F2 , C = 2F p̂z
√

2Q B

E2 − F2 . (2.14)

Here, p̂z and a†a should be replaced by their eigenvalues pz and ν (= 0, 1, 2, . . .). Further, since the
case Q > 0 is treated, namely the case of the up quark, so F3 = F . Then, from the coefficient of φ1

being 0, we can get the eigenvalue of the Dirac equation, E , which is expressed as εflavor
pz,ν

, as

ε
up
pz,ν =

√(
F ±

√
2Q Bν

)2 + p2
z (for ν = 1, 2, . . .) (2.15)

with Q = 2e/3. It should be noted here that it is necessary to pay special attention to the case
ν = 0 because aφ(ν = 0) = a|ν = 0〉 = 0 is satisfied. For ν = 0, from φ1 = |ν = 0〉, Eq. (2.11)
is reduced to

X0 + Y0 = 0, φ2 = 0 (2.16)

because aφ1 = a|ν = 0〉 = 0. From X0 + Y0 = 0, which leads to a quadratic equation with respect
to E , we have

ε
up
pz,ν=0 =

√
F2 + p2

z (2.17)

for the positive energy solution. Thus, for ν = 0, the solution only appears once, and the energy
corresponding to ν = 0 is not degenerate.

5/18

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/10/103D

01/2461000 by U
N

IV.C
O

IM
BR

A/FAC
.PSIC

O
LO

G
IA E user on 09 O

ctober 2023



PTEP 2015, 103D01 Y. Tsue et al.

In the same way, we can get the eigenvalue E in the case of the down quark where Q < 0. Instead
of (2.10), we define new operators as

a = 1√−2Q B

(
P̂x − i P̂y

)
, a† = 1√−2Q B

(
P̂x + i P̂y

)
, (2.18)

where [a, a†] = 1 is satisfied. Then, we obtain the equation instead of (2.11) as

[{
−E + E

E2 − F2

(
p̂2

z − Q B
(
aa† + a†a

) − F

E2 − F2 Q B

}

+ σz

{
F − F

E2 − F2

(
p̂2

z + Q B
(
aa† + a†a

) − E

E2 − F2 Q B

}

− 2F

E2 − F2 p̂z

√
− Q B

2

(
σx

(
a + a†) + iσy

(
a − a†))]φ = 0. (2.19)

Eliminating φ1, which is the upper component of the two-component spinor φ, we obtain the
following equation:

[[
X̃0 + Ỹ0 − (

X̃1 + Ỹ1
)
a†a

]
−

[
X̃0 − Ỹ0 − (

X̃1 − Ỹ1
)(

a†a − 1
)]−1

C̃2a†a

]
φ2 = 0, (2.20)

where

X̃0 = −E + E p̂2
z

E2 − F2 − E + F

E2 − F2 Q B, Ỹ0 = −F + F p̂2
z

E2 − F2 + E + F

E2 − F2 Q B,

X̃1 = 2E Q B

E2 − F2 , Ỹ1 = − 2F Q B

E2 − F2 , C̃ = −2F p̂z
√−2Q B

E2 − F2 . (2.21)

Thus, we obtain the eigenvalue for down quark, εdown
pz,ν

, by replacing p̂z and a†a into their eigenvalues
pz and ν (= 0, 1, 2, . . .):

εdown
pz,ν

=
√(

F ±
√

−2Q Bν
)2 + p2

z (for ν = 1, 2, . . .)

εdown
pz,ν=0 =

√
F2 + p2

z (for ν = 0) (2.22)

with F3 = −F and Q = −e/3.
Thus, the single-particle energy of quarks with flavor f = u or d for up and down quarks can be

expressed as

ε
f
pz,ν,η =

√(
F + η

√
2|Q f |Bν

)2 + p2
z

{
ν = 0, 1, 2, . . . for η = 1,

ν = 1, 2, . . . for η = −1,
(2.23)

with Qu = 2e/3, Qd = −e/3, and η = ±1.
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The thermodynamic potential� can be expressed in terms of the vacuum expectation values of the
Hamiltonian Ĥ and the particle number operator N̂ , in which the quarks occupy the energy levels
from that with the lowest energy to that with the Fermi energy. Thus, we obtain � as

� = 1

V

〈
Ĥ − μN̂

〉 = 3 · 1

V

∑
pz,ν

(
ε

f
pz ,ν,+≤μ

)
[(
εu

pz,ν,+ − μ
)

+
(
εd

pz,ν,+ − μ
)]

+ 3 · 1

V

∑
pz,ν

(
ε

f
pz ,ν,−≤μ

)
[(
εu

pz,ν,− − μ
)

+
(
εd

pz,ν,− − μ
)]

+ F2

2G
, (2.24)

where V represents the volume under consideration and the factor 3 represents the color degree
of freedom. Here, it should be noted that the sum with respect to pz and ν can be regarded as the
following:1

1

V

∑
pz,ν

=
∫

dpz

2π
· |Q f |B

2π

ν
f (η)

max∑
ν=ν f (η)

min

. (2.25)

Thus, the thermodynamic potential can be obtained finally as

� = 3
∫ pF

−pF

dpz

2π

∑
f =u,d,η=±

|Q f |B
2π

ν
f (η)

max∑
ν=ν f (η)

min

[√(
F + η

√
2|Q f |Bν

)2 + p2
z − μ

]
+ F2

2G
, (2.26)

where pF , ν f (η)
min , and ν f (η)

max are determined by the condition ε f
pz,ν,η ≤ μ.

2.2. F = 0 case

Next, let us consider the F = 0 case. For Q > 0 and Q < 0, Eqs. (2.11) and (2.19) are valid with
F = 0. Thus, the following equation for the two-component spinor φ is obtained:[{

−E + 1

E

(
p̂2

z + |Q|B(
2a†a + 1

)} ∓ σz
1

E
|Q|B

]
φ = 0, (2.27)

where the upper (lower) sign in front of σz corresponds to the case Q > 0 (Q < 0). Replacing p̂z

and a†a by their eigenvalues and φ = t (φ1, φ2), the above equation is written as(
−E2 + p2

z + 2|Q|Bν
)
φ 1

2
= 0,(

−E2 + p2
z + 2|Q|B (ν + 1)

)
φ 2

1
= 0. (2.28)

Thus, the single-particle energy E is obtained as

E =
⎧⎨⎩
√

p2
z + 2|Q|Bν√

p2
z + 2|Q|B (ν + 1)

(2.29)

1 Usually, 1
V

∑
p is replaced with

∫ d3p
(2π)3 . Here, p2

x + p2
y can be regarded as 2|Q|Bν (= p2

⊥).

Thus, the following correspondence may be understood:
∫∫

dpx dpy = ∫
2πp⊥dp⊥ = 2π

∫ √
2|Q|Bν

√
2|Q|B
2
√
ν

dν = 2π |Q|B ∫
dν = 2π |Q|B ∑

ν .
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This result is included in Eq. (2.23). Thus, the thermodynamic potential �0 can be calculated as

�0 = 3
∑
f =u,d

∫ p0

−p0

dpz

2π
· |Q f |B

2π

⎡⎣ ν
f

M∑
ν=0

(√
p2

z + 2|Q f |Bν − μ

)
+

ν
f

M−1∑
ν=0

(√
p2

z + 2|Q f |B(ν + 1)− μ

)⎤⎦
= 3

∑
f =u,d

∫ p0

−p0

dpz

(2π)2
|Q f |B (|pz| − μ)+ 3

∑
f =u,d

∫ p0

−p0

dpz

(2π)2
2|Q f |B

ν
f

M∑
ν=1

[√
p2

z + 2|Q f |Bν − μ

]
,

(2.30)

where p0 and ν f
M should be determined later.

3. The thermodynamic potential in three cases: F > μ, 0 < F < μ, and F = 0

First, let us integrate out with respect to pz in the thermodynamic potential (2.26) and (2.30).
The condition (F + η

√
2|Q f |Bν)2 + p2

z ≤ μ2 gives the range of integration with respect to
pz . Namely,

−
√
μ2 −

(
F + η

√
2|Q f |Bν

)2 ≤ pz ≤
√
μ2 −

(
F + η

√
2|Q f |Bν

)2
(≡pF ) . (3.1)

By using the following integration formula,

∫
dpz

√
(F + X)2 + p2

z = pz

2

√
(F + X)2 + p2

z

+ (F + X)2

2
ln

(
pz +

√
(F + X)2 + p2

z

)
, (3.2)

we can carry out the integration with respect to pz in Eq. (2.26), which leads to

� = 3

2π

∑
f =u,d;η=±

|Q f |B
2π

ν
(η)
f,M∑

ν=ν(η)f,m

⎡⎣ − μ

√
μ2 −

(
F + η

√
2|Q f |Bν

)2

+
(

F + η
√

2|Q f |Bν
)2

ln
μ+

√
μ2 − (

F + η
√

2|Q f |Bν
)2

F + η
√

2|Q f |Bν

⎤⎦ + F2

2G

= F2

2G
+ 3

8π2

∑
f =u,d;η=±

2|Q f |B
ν
(η)
f,M∑

ν=ν(η)f,m

gη
(
2|Q f |Bν

)
, (3.3)

where ν(η)f,m and ν(η)f,M are determined by the condition

μ2 −
(

F + η
√

2|Q f |Bν
)2 ≥ 0, (3.4)
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which guarantees that pz is real. Here, gη(x) is defined by

gη (x) = −μ
√
μ2 − (

F + η
√

x
)2 + (

F + η
√

x
)2

ln
μ+

√
μ2 − (

F + η
√

x
)2

F + η
√

x
. (3.5)

3.1. F ≥ μ case

For η = 1, the condition (3.4) is not satisfied for any F . On the other hand, for η = −1, if
F <

√
2|Q f |Bν, the condition (3.4) gives

√
2|Q f |Bν ≤ μ+ F . If F >

√
2|Q f |Bν, the condition

(3.4) gives
√

2|Q f |Bν ≥ F − μ. Thus, we summarize the condition for ν as follows:

0 
= ν
(−)
f,m ≡

[
(F − μ)2

2|Q f |B

]
+ 1 ≤ ν ≤

[
(F + μ)2

2|Q f |B

]
≡ ν

(−)
f,M , (3.6)

where [· · · ] represents the Gauss symbol. Thus, the thermodynamic potential can be expressed as

� = 3

2π

∑
f =u,d

|Q f |B
2π

ν
(−)
f,M∑

ν=ν(−)f,m

⎡⎣ − μ

√
μ2 −

(
F − √

2|Q f |Bν
)2

+
(

F − √
2|Q f |Bν

)2
ln
μ+

√
μ2 − (

F − √
2|Q f |Bν

)2

F − √
2|Q f |Bν

⎤⎦ + F2

2G

= 3

8π2

∑
f =u,d

2|Q f |B
ν
(−)
f,M∑

ν=ν(−)f,m

g−
(
2|Q f |Bν

) + F2

2G
(3.7)

with (3.6).

3.2. F < μ case

For η = 1, the condition (3.4) gives the condition 0 ≤ √
2|Q f |Bν ≤ μ− F . On the other

hand, for η = −1, if F <
√

2|Q f |Bν, the condition (3.4) gives F ≤ √
2|Q f |Bν ≤ μ+ F . If

F >
√

2|Q f |Bν, the condition (3.4) gives 0 ≤ √
2|Q f |Bν ≤ F . Thus, we summarize the condition

for ν as follows:

ν
(+)
f,m ≡ 0 ≤ ν ≤

[
(μ− F)2

2|Q f |B

]
≡ ν

(+)
f,M for η = 1,

ν
(−)
f,m ≡ 1 ≤ ν ≤

[
(μ+ F)2

2|Q f |B

]
≡ ν

(−)
f,M for η = −1. (3.8)

Thus, the thermodynamic potential is (3.3) with (3.8) for η = ±. Namely,

� = F2

2G
+ 3

8π2

∑
f =u,d;η=±

2|Q f |B
ν
(η)
f,M∑

ν=ν(η)f,m

gη
(
2|Q f |Bν

)
. (3.9)
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3.3. F = 0 case

Next, let us consider the F = 0 case. Thus, the thermodynamic potential �0 can be given in (2.30),
which we show again:

�0 = 3
∑

f =u,d

∫ μ

−μ
dpz

(2π)2
|Q f |B (|pz| − μ)

+ 3
∑

f =u,d

∫ √
μ2−2|Q f |Bν

−
√
μ2−2|Q f |Bν

dpz

(2π)2
2|Q f |B

ν
f

M∑
ν=1

[√
p2

z + 2|Q f |Bν − μ

]

= − 3

4π2

∑
f =u,d

|Q f |Bμ2

+ 3

4π2

∑
f =u,d

2|Q f |B
ν

f
M∑

ν=1

⎡⎣−μ
√
μ2 − 2|Q f |Bν + 2|Q f |Bν ln

μ+
√
μ2 − 2|Q f |Bν√
2|Q f |Bν

⎤⎦

= − 3

4π2

∑
f =u,d

|Q f |Bμ2 + 3

4π2

∑
f =u,d

2|Q f |B
ν

f
M∑

ν=1

g0
(
2|Q f |Bν

)
,

g0 (x) = −μ
√
μ2 − x + x ln

μ+
√
μ2 − x√
x

, (3.10)

with

ν
f

M =
[

μ2

2|Q f |B
]
. (3.11)

4. Approximation of the thermodynamic potential by replacing summation
by integration with respect to the Landau level

In the thermodynamic potential (2.26) and (2.30), the quantum number ν, which labels the Landau
level, has to be summed up. However, since it is interesting to consider the spontaneous magneti-
zation, it may be assumed that the external magnetic field B is small and that finally B becomes 0.
Therefore, let us replace the sum with respect to ν by an approximate integral [16].

In general, let us consider a function f (x). Here, we introduce a small quantity a and let us consider
the Tailor expansion around x = aν as follows:∫ aν

a(ν−1)
dx f (x) =

∫ aν

a(ν−1)
dx

[
f (aν)+ d f

dx

∣∣∣∣
x=aν

(x − aν)+ 1

2

d2 f

dx2

∣∣∣∣
x=aν

(x − aν)2 + · · ·
]

= a f (aν)− 1

2
a2 f ′ (aν)+ 1

6
a3 f ′′ (aν)+ · · · . (4.1)

Thus, the following relation is obtained:

νM∑
ν=νm+1

∫ aν

a(ν−1)
dx f (x) ≡

∫ aνM

aνm

dx f (x)

= a
νM∑

ν=νm+1

f (aν)− a2

2

νM∑
ν=νm+1

f ′ (aν)+ a3

6

νM∑
ν=νm+1

f ′′ (aν)+ · · · . (4.2)
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Here, it should be noted that the definition of integral can be used when a is infinitesimally small,
namely,

a
νM∑

ν=νm+1

f ′ (aν) =
∫ aνM

aνm

dx f ′ (x) = f (aνM)− f (aνm) , (4.3)

and so on. Thus, adding a f (aνm) on both sides of Eq. (4.2), a useful approximate formula is obtained
as follows:

a
νM∑
ν=νm

f (aν) =
∫ aνM

aνm

dx f (x)+ a

2
[ f (aνM)+ f (aνm)] − a2

6

[
f ′ (aνM)− f ′ (aνm)

] + · · · .
(4.4)

From this, let us approximate the thermodynamic potential in the case of small B.
For F > μ, Eq. (3.7) is approximated by using the formula (4.4) as follows:

� = F2

2G
+ 3

8π2

∑
f =u,d

[
2
∫ p f

max

p f
min

dp⊥ p⊥g−
(

p2
⊥
)

+ |Q f |B
(

g−
(

2|Q f |Bν(−)f,m

)

+ g−
(

2|Q f |Bν(−)f,M

))
− 2|QF |2 B2

3

(
g′
−
(

2|Q f |Bν(−)f,M

)
− g′

−
(

2|Q f |Bν(−)f,m

))
+ · · ·

]
(4.5)

with (3.5). Here, p f
min =

√
2|Q f |Bν(−)f,m and p f

max =
√

2|Q f |Bν(−)f,M , respectively.
For F < μ, the thermodynamic potential (3.9) is approximated by using (4.2) directly as

� = F2

2G
+ 3

8π2

∑
f =u,d

2|Q f |B

⎡⎢⎣g+ (0)+
ν
(+)
f,M∑
ν=1

g+
(
2|Q f |Bν

) +
ν
(−)
f,M∑
ν=1

g−
(
2|Q f |Bν

)⎤⎥⎦
= F2

2G
+ 3

8π2

∑
f =u,d

2|Q f |Bg+ (0)+ 3

8π2

∑
f =u,d;η=±

[
2
∫ p f (η)

max

0
dp⊥ p⊥g±

(
p2
⊥
)

+ |Q f |B
(

g±
(

2|Q f |Bν(η)f,M

)
− gη (0)

)
− 2|Q f |2 B2

3

(
g′
η

(
2|Q f |Bν(η)f,M

)
− g′

η (0)
)

+ · · ·
]
,

(4.6)

where ν(η)f,M = [
(μ∓ F)2/(2|Q f |B)

]
and p f (η)

max =
√

2|Q f |Bν(η)f,M , respectively.
For F = 0, the thermodynamic potential (3.10) is approximated as

�0 = − 3

4π2

∑
f =u,d

|Q f |Bμ2 + 3

4π2

∑
f =u,d

[∫ a f ν
f
M

0
g0 (x) dx + |Q f |B

(
g0

(
a f ν

f
M

)
− g0 (0)

)

− 2|Q f |2 B2

3

(
g′

0

(
2|Q f |Bν f

M

)
− g′

0 (0)
)

+ · · ·
]
. (4.7)
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Here, since B is small, ν may be regarded as a continuum variable. Remembering the condition
which determines ν(η)f,m and ν(η)f,M , namely, g±(2|Q f |Bν(η)f,M) = 0, and g±(0) 
= 0 with (3.5), then
Eqs. (4.5), (4.6), and (4.7) are simply calculated by performing the integration as

� = �> = − Fμ3

2π
+ F2

2G
+ O

(
B2), for F > μ,

� = �< = 3

π2

[√
μ2 − F2

(
μ3

6
+ F2μ

4

)
− Fμ3

3
arctan

F√
μ2 − F2

+ F4

12
ln
μ+

√
μ2 − F2

F

]
+ F2

2G
+ O

(
B2), for F < μ,

� = �0 = − μ4

2π2 + O
(

B2
)
, for F = 0, (4.8)

where we used the integration formulae:

∫
dyy

√
μ2 − (F + ηy)2 =

√
μ2 − (F + ηy)2

[
−μ

2

3
− F

2
(F + ηy)+ 1

3
(F + ηy)2

]

− Fμ2

2
arctan

⎡⎣(F + ηy)2
√
μ2 − (F + ηy)2

μ2 − (F + ηy)2

⎤⎦ ,
∫

dyy (F + ηy)2 ln
μ+

√
μ2 − (F + ηy)2

F + ηy

=
√
μ2 − (F + ηy)2

[
−μ

3

6
+ Fμ

6
(F + ηy)− μ

12
(F + ηy)2

]

+ Fμ3

6
arctan

⎡⎣(F + ηy)
√
μ2 − (F + ηy)2

−μ2 + (F + ηy)2

⎤⎦
+ 1

12
(F + ηy)3 [−4F + 3 (F + ηy)] ln

μ+
√
μ2 − (F + ηy)2

F + ηy
. (4.9)

5. Spontaneous magnetization for quark matter under tensor-type interaction
between quarks

First, let us calculate the spin polarization F with B = 0 as a function of the chemical potential μ.
This task has been done in our previous papers, [18] or [19]. The thermodynamic potential can be
expressed as

�B=0 = 6 · 1

V

∑
p
(
εp(+)≤μ

)
(
ε(+)p − μ

)
+ 6 · 1

V

∑
p
(
εp(−)≤μ

)
(
ε(−)p − μ

)
+ F2

2G
,

ε(±)p =
√

p2
3 +

(
F + η

√
p2

1 + p2
2

)2

, (5.1)
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(a) (b)

Fig. 1. (a) The spin polarization condensate F is depicted as a function of the quark chemical potential μ.
(b) The baryon number density of quark matter divided by the normal nuclear density ρ0 = 0.17 fm−3 is shown
as a function of the quark chemical potential. Here, μc ≈ 0.407 GeV is the value at which the spin polariza-
tion occurs. Also, in the region of μ ≥ μF ≈ 0.5605 GeV, the spin polarization condensate is greater than the
chemical potential, F ≥ μ.

where the factor 6 represents the color and flavor degrees of freedom and p1 = px , p2 = py , and
p3 = pz . Here, (1/V ) · ∑p can be replaced to the integration

∫
d3p/(2π)3. Integrating the three-

momentum, we have obtained the thermodynamic potential as

�B=0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F2

2G
− 1

π2

[√
μ2 − F2

4

(
3F2μ+ 2μ3

)
+ Fμ3 arctan

F√
μ2 − F2

− F4

4
ln
μ+

√
μ2 − F2

F
for F < μ

F2

2G
− Fμ3

2π
for F > μ.

(5.2)
It should be here noted that Eq. (5.2) is identical to (4.8) with B = 0. The gap equation is derived by
∂�B=0/∂F = 0. The quark number density ρq is also derived through the thermodynamic relation
ρq = −∂�/∂μ [18] for the solution of the gap equation, F = Fmin:

ρq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

π2

⎡⎣(
F2

min + 2μ2
)√

μ2 − F2
min + 3Fminμ

2 arctan
Fmin√

μ2 − F2
min

⎤⎦ for F < μ

3G

4π2μ
5 for F > μ.

(5.3)

Figure 1 shows (a) the spin polarization condensate F and (b) the baryon density of quark matter
divided by the normal nuclear density, ρ0 = 0.17 fm−3, as a function of the quark chemical poten-
tial μ. Here, we used a parameter G = 20 GeV−2 which has been used2 in our previous papers
[18,19]. Aboutμ = μc ≈ 0.407 GeV, which corresponds to the baryon density being 3.53ρ0, the spin

2 If the vacuum polarization is taken into account, the parameter G with a rather small value, such as
G = 11.1 GeV−2, gives the same results quantitatively under the standard three-momentum cutoff � =
0.631 GeV, although we do not consider the vacuum polarization in this paper.
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polarization appears against the free quark phase. Of course, if the two-flavor color superconductivity
is considered, it has been shown that the spin polarized phase appears about μ = 0.442 GeV (ρB ≈
5.85ρ0) [19].

We derive the spontaneous magnetization through the thermodynamic relation. The spontaneous
magnetization per unit volume, M, is defined by

M = − ∂�

∂B

∣∣∣∣
B=0

. (5.4)

In the right-hand side, B = 0 is adopted. However, from (4.8), the thermodynamic potential does not
depend on B linearly. Thus, the spontaneous magnetization is equal to zero under this consideration,
namely

M = − ∂�

∂B

∣∣∣∣
B=0

= 0, (5.5)

even if quark-spin polarization occurs, while the magnetic polarization which is proportional to B
may appear.

6. Spontaneous magnetization originated from the anomalous magnetic
moments of quarks

In the previous section it has been found that no spontaneous magnetization of polarized high density
quark matter is predicted by the normal coupling to an external magnetic field. However, the spin
polarization F should be observed in some way. We know that the quark has an anomalous magnetic
moment. In this section, let us investigate the effect of the anomalous magnetic moment of quarks.

The effect of the anomalous magnetic moment μA is introduced at the level of the mean field
approximation in this paper. Here, it is known that the anomalous magnetic moment is expressed
as [28]

μA1 =
(
μu 0
0 μd

)
, μu = 1.85μN , μd = −0.97μN ,

μN = e

2m p
= 3.15 × 10−17 GeV T−1. (6.1)

We introduce the effects of the anomalous magnetic moment in the Lagrangian density within the
mean field approximation as

LA = L − i

2
ψ̄μAγ

μγ νFμνψ, (6.2)

where Fμν = ∂μAν − ∂ν Aμ and F12 ≡ −Bz = −B. Here, L is nothing other than Eq. (2.3). We only
takeμ and ν asμ = 1, ν = 2 andμ = 2, ν = 1 because the magnetic field only has a z-component.
Then, in the mean field approximation, Eq. (2.3) is recast into

LA = iψ̄γ μDμψ − ψ̄ (F3τ3 + μA B1)�3ψ. (6.3)

Here, F3τ3 = F1 where 1 is the 2 × 2 identity matrix for the isospin space, as denoted in Eqs. (2.2)
and (2.9). Thus, we introduce the flavor-dependent variables F̃ f as

F̃ f = F + μ f B, namely F̃u = F + μu B, F̃d = F + μd B. (6.4)
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Therefore, the Lagrangian density can be expressed as

LA = iψ̄γ μDμψ − ψ̄ (F + μA B)�3ψ − F2

2G

= iψ̄γ μDμψ − ψ̄ F̃�3ψ − F2

2G
. (6.5)

Thus, we learn that the variable F should be replaced by F̃ f = F + μ f B for each flavor except for
the last term in (6.5). In this replacement, we can derive the thermodynamic potential in the same way
developed in Sect. 4. Namely, the results including the effects of the anomalous magnetic moment of
quarks should be obtained by replacing F by F̃ f for each flavor in the previous calculation developed
in Sect. 4, except for the term originated from the mean field approximation, F2/2G. The results are
summarized as follows:

� = �> = −1

2

∑
f =u,d

F̃ fμ
3

2π
+ F2

2G
+ O

(
B2

)
, for F > μ,

� = �< = 1

2

∑
f =u,d

3

π2

⎡⎣−
√
μ2 − F̃2

f

(
μ3

6
+

F̃2
fμ

4

)
− F̃ fμ

3

3
arctan

F̃ f√
μ2 − F̃2

f

+
F̃4

f

12
ln
μ+

√
μ2 − F̃2

f

F̃ f

⎤⎦ + F2

2G
, for μ ≥ F > 0. (6.6)

Thus, the spontaneous magnetization per unit volume, M, can be derived through Eq. (5.4), that is,

M = −∂�
∂B

∣∣∣∣∣∣B=0 = −
∑

f =u,d

∂�

∂ F̃ f

∣∣∣∣∣∣
B=0

· ∂ F̃ f

∂B
. (6.7)

From (6.6), we can derive the spontaneous magnetization originated from the anomalous magnetic
moment and the spin polarization:

M = − ∂�>

∂B

∣∣∣∣
B=0

= μ3

4π
(μu + μd) , (6.8a)

M = −
∑

f =u,d

∂�<

∂ F̃ f

∣∣∣∣∣
B=0

· ∂ F̃ f

∂B

= 1

2π2

[
2Fμ

√
μ2 − F2 + μ3 arctan

[
F√

μ2 − F2

]
− F3 ln

μ+
√
μ2 − F2

F

]
(μu + μd)

= F

2G
(μu + μd) , (6.8b)

where the gap equation ∂�/∂F = ∑
f =u,d ∂�/∂ F̃ f + ∂(F2/(2G))/∂F = 0 is used from the sec-

ond line to the third line in (6.8b). It should be noted that if F = 0, the spontaneous magnetization
disappears because F = 0 in Eq. (6.8b).

In Fig. 2, the spontaneous magnetization is depicted as a function of the quark chemical potential.
The spontaneous magnetization is shown in SI units. For μ < μc ≈ 0.407 GeV, the magnetization
does not occur because the spin polarization does not appear, F = 0. At μ = μc, the spontaneous
magnetization suddenly appears.
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Fig. 2. The spontaneous magnetization per unit volume M is depicted as a function of the quark chemical
potential μ. The vertical axis represents the magnetization M in a logarithmic scale. For μ < 0.407 GeV, the
magnetization does not occur because the spin polarization does not appear, F = 0.

7. Magnetic field of hybrid compact star

As seen in the previous section, for μ > μc, the spontaneous magnetization in the quark matter
appears. Here, the spontaneous magnetization per unit volume M may be regarded as the magnetic
dipole moment. Under this identification, we can calculate the strength of the magnetic field yielded
by the spontaneous magnetization. As is well known in classical electromagnetism, the magnetic
field at position r, namely magnetic flux density B(r), created by the magnetic dipole moment m can
be expressed as

B = μ0

4π

[
− m

r3 + 3r (m · r)

r5

]
, (7.1)

whereμ0 represents the vacuum permeability. In our case, m = (0, 0, M × V ), where V represents
a volume, because M is nothing but the magnetization per unit volume.

Here, let us consider a hybrid star with quark matter in the core of a neutron star. Let us assume
that the hybrid (neutron) star has radius R = 10 km. If there exists quark matter in the inner core of
the star from the center to rq km, the strength of the magnetic flux density on the surface at the north
or south pole of the hybrid star is roughly estimated as

Bz = μ0

4π

(
−M

R3 + 3z2M
R5

)
× 4

3
πr3

q = μ0
2Mr3

q

3R3 [T ]. (7.2)

Figure 3 shows the magnetic flux density as a function of the quark chemical potential μ in the cases
(a) rq = 1 km and (b) rq = 2.15 km where quark matter occupies (a) 0.1% and (b) 1% of the total
volume of the star [(4πr3

q/3)/(4πR3/3) = (a) 0.001 and (b) 0.01], respectively. It should be noted
that the SI unit, tesla, is converted to gauss, namely, 1 T (tesla) = 104 G (gauss). In a magnetar, the
strength of the magnetic field at the surface of star is near 1015 G. Thus, in our calculation, if quark
matter exists and spin polarization occurs, a strong magnetic field of about 1013 or 1014 gauss may
be created.

8. Summary and concluding remarks

It has been shown that spontaneous magnetization occurs due to the anomalous magnetic moments
of quarks in high-density quark matter under the tensor-type four-point interaction. In the Nambu–
Jona-Lasinio model as an effective model of QCD, the tensor-type four-point interaction has been
introduced. Owing to this interaction, the spin polarized condensate appears for each quark flavor in

16/18

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/10/103D

01/2461000 by U
N

IV.C
O

IM
BR

A/FAC
.PSIC

O
LO

G
IA E user on 09 O

ctober 2023



PTEP 2015, 103D01 Y. Tsue et al.

(a) (b)

Fig. 3. The magnetic flux density is shown in a logarithmic scale as a function of the quark chemical
potential μ in the case (a) rq = 1 km where the quark matter occupies 0.1% of the total volume of the star[(

4πr3
q/3

)
/
(
4πR3/3

) = 0.001
]

and (b) rq = 2.15 km where the quark matter occupies 1% of the total volume
of the star

[(
4πr3

q/3
)
/
(
4πR3/3

) = 0.01
]
, respectively. It should be noted that the SI unit, tesla, is converted

to gauss, namely, 1 T (tesla) = 104 G (gauss).

the region of large quark chemical potential. It has been shown that the spin polarized condensate
leads to spontaneous magnetization of quark matter due to the anomalous magnetic moments of
quarks. Also, it has been pointed out that spontaneous magnetization does not occur if no anomalous
magnetic moments of quarks exist.

In this paper, furthermore, the implications for the strong magnetic field in compact stars such
as hybrid stars has been discussed. If there exists quark matter in the core of neutron stars and the
quark number density is rather high, spontaneous magnetization may occur. If quark matter occupies
a volume of 1% of the neutron star, the strength of the magnetic field at the surface of the neutron
star is of the order of 1014 gauss, which is comparable to the strength of the magnetic field in the
so-called magnetar.

As indicated in this paper, the spin polarized condensate appears in the region with a large quark
chemical potential. Thus, the chiral symmetry is broken in this model because the starting Lagrangian
density is constructed with chiral symmetry. Under the magnetic field, the chiral symmetry is broken
and it is shown that the chiral condensate grows at most linearly as a function of the magnetic field B
[29]. Further, in Ref. [30], the tensor-type four-point interaction was introduced in the NJL model in
the case of one quark flavor. In that paper, both the chiral condensate and spin polarized condensate
are treated equally in a finite temperature system. Thus, it may be an interesting problem that the
coexistence of the chiral condensate and the spin polarized condensate is also considered in a finite
baryon density system.

As for the implications for compact stars such as neutron stars, it is important to impose the charge
neutrality condition including electrons in addition to up and down quarks. Then, the chemical equi-
librium condition is also necessary. This is an interesting and important task for future studies to
investigate. Further, it has been shown that there is the possibility of the existence of massive hybrid
quark stars with two solar mass under the strong magnetic field [31]. Thus, the investigation of the
equation of state of quark matter in the spin polarized phase revealing spontaneous magnetization
may be one of the interesting future problems.
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