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Abstract

The fruitfly compound eye has been broadly used as a model for neurodegenerative diseases. Classical quantitative
techniques to estimate the degeneration level of an eye under certain experimental conditions rely either on time
consuming histological techniques to measure retinal thickness, or pseudopupil visualization and manual counting.
Alternatively, visual examination of the eye surface appearance gives only a qualitative approximation provided the
observer is well-trained. Therefore, there is a need for a simplified and standardized analysis of fruitfly eye degeneration
extent for both routine laboratory use and for automated high-throughput analysis. We have designed the freely
available ImageJ plugin FLEYE, a novel and user-friendly method for quantitative unbiased evaluation of
neurodegeneration levels based on the acquisition of fly eye surface pictures. The incorporation of automated
image analysis tools and a classification algorithm sustained on a built-in statistical model allow the user to
quickly analyze large sample size data with reliability and robustness. Pharmacological screenings or genetic
studies using the Drosophila retina as a model system may benefit from our method, because it can be easily
implemented in a fully automated environment. In addition, FLEYE can be trained to optimize the image
detection capabilities, resulting in a versatile approach to evaluate the pattern regularity of other biological or
non-biological samples and their experimental or pathological disruption.
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Introduction

The retinal system in Drosophila has been for long a very
useful model to study the pathogenic mechanisms of hu-
man neurodegenerative diseases [1] and to test the efficacy
of phenotypic modifiers of a pathological condition that
arise from diverse genetic screenings [2]. The fruitfly com-
pound eye is formed by around 800 units, called omma-
tidia, which display a very regular pattern. The stereotypic
development of the insect retina and the extensive know-
ledge of the cellular and molecular mechanisms involved,
make this a very reliable system to evaluate whether alter-
ing the expression of mutated proteins is linked to cell
degeneration.
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Poly-glutamine-based neurodegenerative diseases, such
as Huntington’s and a number of Spinocerebellar ataxias,
have been studied using the Drosophila retina as a test tube
and the Drosophila GAL4-UAS system for transgene ex-
pression [3-5]. A qualitative examination of the external
appearance of the fly eye (described as rough-eye pheno-
type) has been widely used to categorize whether a muta-
tion would improve or worsen a given degeneration level.
However, most quantitative estimates have relied upon
methods involving tissue fixation, paraffin or cryostat sec-
tions, histochemical/immunohistochemical staining or
scanning/transmission electron microscopy (SEM/TEM).
Using these preparations, researchers have evaluated ret-
inal thickness, rhabdomere counting, the regularity of the
hexagonal photoreceptors array, or have scored for the
presence of expected features in the retinal surface [6-10].

In this work we present a simple and reliable method
to quantify the degree of retinal degeneration based on
fly eye surface photographs. An earlier version of this
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method was successfully used to assess the rescuing abil-
ity of Lipocalin genes and its dependence on autophagic
activity in a model of Type I Spinocerebellar Ataxia [11].
Following tests with other commonly used techniques,
and validation with randomly chosen eye pictures, our
image analysis method was implemented in a freely dis-
tributed plugin (FLEYE) for the open source image ana-
lysis program Fiji [12]. Our user-friendly Fiji plugin
allows for a fast evaluation of the eye regularity pattern,
and for a quantitative unbiased assessment of neurode-
generation under diverse pathogenic levels or genetic
penetrance conditions. Since the method obtains a regu-
larity index for each image, it could also be applied to
study changes in any regular biological pattern.

Methods

Fly lines and maintenance

Flies were grown in a temperature-controlled incubator
at 25°C, 60% relative humidity, under a 12 h light—dark
cycle. They were fed on wet yeast 84 g/, NaCl 3.3 g/l,
agar 10 g/l, wheat flour 42 g/, apple juice 167 ml/l, and
propionic acid 5 ml/l. Fly females were used in all exper-
iments. We used the line gmr:GAL4 to drive transgenes
expression to the eye photoreceptors. UAS:hATXN152Q
was used to trigger the neurodegenerative phenotype
[13] and different UAS:modifier-gene constructs were
used to test the system.

Histological methods

Adult fly heads were fixed with 4% paraformaldehyde,
dehydrated in ethanol, and included in paraffin. Paraffin
sections (4 pm) were dewaxed with xylene and rehy-
drated in an ethanol series. Histochemical staining with
hematoxylin and eosin was performed according to
standard procedures. The labeled sections were photo-
graphed with an Eclipse 90i (Nikon) fluorescence micro-
scope equipped with DS-Ril (Nikon) digital camera.
Images were acquired with the NIS-Elements BR 3.0 soft-
ware (Nikon), and processed with Image]J (version 1.48p).

External eye surface digital imaging

Digital pictures (1280x960 pixels) of the surface of fly
eyes were taken with a DS-L1 digital camera, in a
Nikon SMZ1000 stereomicroscope equipped with a
Plan Apo 1x WD70 objective. The flies were anaesthe-
tized with CO, and frozen for 10 minutes at —20°C.
Their bodies were immobilized on dual adhesive tape,
and their heads set up to have an eye parallel to the
stereomicroscope objective. Fly eyes were illuminated
with a homogeneous fiber optic light (20 W; KL 200,
Zeiss). A white balance was performed on the back-
ground white surface. Additional settings include a 6x
optical zoom in the stereomicroscope that results in a
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final resolution of 1.85 pm/pixel. Image files were saved
in Tiff format.

Special care must be put into maintaining the same il-
luminating conditions and camera settings between ex-
periments, as differences among pictures of the same
stack may introduce undesired artifacts that would ham-
per the discrimination capacity of FLEYE.

Statistical analysis

The statistical analyses and graphical outputs for the
measurements described below were performed and
generated using SAS 9.2 and SPSS.

Multiple Box plots and histograms, and dispersion dia-
grams and pairwise sample correlations have been used
to describe variable distributions within groups and pair-
wise relationship respectively.

Differences between eyes with different degeneration
degrees were assayed using ANOVA for the selected var-
iables describing the degree of regularity in each image
(see below). A principal component analysis (PCA) was
performed and the scores of the first principal compo-
nent were used to generate clusters. A Multinomial
Logistic Model for the clusters defined previously, was
fitted using only a subset of the data set (considered as
the training data). The remaining data were used as a
test to validate the model. The final set of predictive var-
iables was selected using a stepwise variable selection
approach, and the estimated probabilities of each image
to belong to each cluster were used to derive a regularity
index (IREG) adopting values from 0 to 1. The robust-
ness of the procedure was tested by randomly splitting
the data set in different ways (in training and test sets)
and comparing the resulting regularity indexes.

Final comparisons of IREG medians between different
experimental classes (genotypes) were performed using
Kruskal-Wallis non-parametric hypothesis contrast. Post-
hoc tests followed the Dunn’s method. A p-value <0.05
was considered statistically significant.

FLEYE plugin requirements
The FLEYE plugin is composed of four different Ima-
geJ1 macros: FLEYE_menu_v2.jjm, Fleye_ROISv1.2.ijm,
Fleye_optimizer_v4.2.ijm and Fleye_v10.2.ijm. It has
been developed in the Image] version 1.49d, using Fiji.
The plugin uses the “Bio-Formats Importer”, released by
the OME Consortium (http://openmicroscopy.org) to be
able to open the different formats of image files. The ‘Bio-
formats Importer’ plugin is included in the Fiji package.
Thus, we recommend using this package to run FLEYE.
The FLEYE plugin pack, a quick guide and user
manual, and the GNU general public license file are
provided in Additional files 1, 2, 3, and can be accessed
at http://imagejdocu.tudor.lu/doku.php?%20id=plugin:
analysis:fleye:start&#fleye.
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Results and discussion
Retinal degeneration in a Drosophila model of human
spinocerebellar ataxia SCA1
Poly-glutaminated proteins are a common pathogenic
mechanism of a diverse array of human neurological dis-
eases. Here we have used the GAL4/UAS system to ex-
press a pathogenic version of human Ataxin 1 with an
expanded glutamine tract (hATXN1%2Q) in Drosophila
retinal photoreceptors using the gmr:GAL4 driver. In
this model of SCA1, photoreceptors accumulate nuclear
inclusions of the human protein and start degenerating
during late pupal stage when flies develop at 25°C [13].
After expressing the mutated pathogenic protein form,
the adult retina degenerates and the eye surface morph-
ology loses its regular pattern appearance [13].

A qualitative assessment does indeed suffice to categorize
a retina as healthy vs. degenerate (Figure 1A-B). However,
to analyze the effect of genetic modifiers of the rough-eye
phenotype (Figure 1C) or to estimate the outcome of a
drug that could enhance/diminish the extent of degener-
ation, we must quantify the degree of the modification
achieved. A standard way to obtain this estimate has been
to measure retinal thickness after histological processing of
fly retinas, which involves tissue fixation and sectioning
followed by either immunolabeling with retinal markers or
standard histochemical staining (Figure 1D-G). Aside of
the complex and time consuming methodological proce-
dures, the sectioning angle and the variable thickness of
different regions of the degenerated retina introduce a high
degree of variability in the measurements.

Image processing
We have designed a digital image processing to automat-
ically detect the bright spots that appear in the image
due to light reflection in ommatidia.

In a first step, the image is converted to 8-bit gray-
scale (Figure 2A). The user must then define a region
of interest (ROI) delimiting the area of the eye that is
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in focus for each image (Figure 2C). Only the ROI will
be subjected to subsequent analysis. A subtracting-
background step is performed using the Fiji plugin
“Subtract Background” and a surface-like filter applied
to increase the contrast of bright spots. The surface-
like filter duplicates the image, inverts the duplicate,
displaces it horizontally and then creates a new image
by averaging the pixel intensity values of the original
and duplicated images (Figure 2D). This procedure
normalizes the images by removing any disturbances
introduced by variations in the intensity values of the
original colored images.

The next step involves finding the maxima of the inten-
sity pixel function with the “Find maxima” Fiji plugin using
a predetermined tolerance value. In our case, these max-
ima approximate the position of fly ommatidia (Figure 2E).
Therefore, counting the number of maxima gives an esti-
mation of the total number of ommatidia present in the
ROI selected area.

An optional optimization step is also available. This
step requires the user to manually identify ommatidia in
representative areas of eye images (Figure 2B) to cali-
brate two main detection parameters: the tolerance of
the “Find maxima” plugin and the rolling ball radius of
the “Subtract Background” plugin.

Maxima analysis

Our image analysis aims at detecting discrepancies in
the regularity of the spatial distribution of ommatidia.
Our strategy follows two main processes: a global one,
based on distances between maxima, and a local one,
that splits the ROI into a grid of squared cells and ex-
tracts statistical and spatial information of the maxima
in each grid-cell.

Once the coordinates of the local maxima are ob-
tained, we calculated the distance of each single maxima
to its “nearest neighbor” (in normalized units to fit with
our statistical model) using a self-developed algorithm.

gmr>SCA1

WwT

SCA1 Modifier #1

Figure 1 Histological method to analyze Drosophila eye degeneration phenotypes. External pictures of fly eyes surface (A-C) and
histological measurement of retinal thickness (D-F). Images in a column correspond to the same genotype. (G) Retinal thickness quantification in
um, resulting in a significant recovery from the degenerated genotype for the gmr > SCAT Modifier#1 (n = 34-46 sections/genotype).
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information of the pixel distribution in every cell of the grid.

Counter

Figure 2 Representation of image processing steps performed by FLEYE plugin. Starting with eye surface images (A) a “training step” is
performed where the plugin detection is fitted to the number of user-counted ommatidia in WT eyes (B). Then, the user defines a region of
interest (ROI) (C). An averaging step (Filter) normalizes the picture (D) and pixel maxima are identified (E). A squared grid is applied to the
single-pixel maxima image (F). The final variables are obtained either globally from the distance between maxima or locally from spatial

ROI

Finally, to extract local spatial information, the squared
grid (with a cell size set either by default or by the user) is
applied to the single-pixel maxima image. In each different
grid-cell we calculated the number of maxima per cell and
different spatial parameters that are influenced by the dis-
tribution of maxima within each cell (distance between
center of the cell and maxima center of mass, skewness
and kurtosis). Note that the image regions near the edge of
the original user-defined ROI are discarded, as FLEYE only
takes into account the squares that fit completely into the
ROI (Figure 2F). All the variables (global or grid-cell-based,
Table 1) were used to develop a statistical model.

Statistical methods

To estimate the degree of retinal degeneration we followed
a statistical procedure based on two steps: 1) Categorization
of the degeneration extent in discrete classes and estima-
tion of the probability of an eye to belong to a certain class;

2) Computation of the overall regularity degree of each eye
as a weighted mean of those probabilities.

Our image sample includes 152 fly eyes of five differ-
ent experimental groups, with a retina surface displaying
a morphology gradient from strong degeneration to a
wild type state. The fly genotypes were not introduced
in the modeling steps, which were blind to the assign-
ment of each image to the model-generated clusters. As
described above, we first extracted 18 mathematical vari-
ables from the processed images (Table 1). A correlation
analysis reduced the number to 9 variables, eliminating
those with very high and significant correlation indexes
with at least one of the remaining variables. Differences
between eyes with different degeneration degrees were
then tested using ANOVA for the 9 variables selected
(Table 2).

A principal component analysis (PCA) was performed
using the 9 selected variables (Figure 3). The first com-
ponent (PC1) explains 60% of the variance, and the

Table 1 List of the 18 variables used for the statistical model development

Variables
Grid-based variables:
Grid-Cells % Nmaxima<2 N maxima <4 Nmaxima<6 Nmaxima<8
Maxima per cell Meant Variancet Skewnesst Totalt
Distance to the center of mass Meant Variancet Skewnesst
Kurtosis Mean Variance Skewness
Skewness Mean Variancet Skewness
ROI-based variables:
Nearest Neighbor Variancet

Each row accounts for a given spatial measurement of the point distribution per grid cell or per ROI. Grid-Cells (%) refers to the percentage of cells with less than
a certain number of maxima (2, 4, 6 or 8). Variables marked with t passed the correlation test and were tested in the ANOVA analysis (Table 2).
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Table 2 Test of the discrimination power of 9 selected variables

Sum of squares Degrees of freedom Mean squares F Significance

TOTMAX Between-groups 313102.269 2 156551.135 37.026 0.000
Within-groups 629991.204 149 4228.129
Total 943093474 151

MPCM Between-groups 13.228 2 6.614 52478 0.000
Within-groups 18.779 149 0.126
Total 32.007 151

MPCVAR Between-groups 0.99 2 0495 7.345 0.001
Within-groups 10.041 149 0.067
Total 11.031 151

MPCSKEW Between-groups 6.51 2 3.255 33911 0.000
Within-groups 14.302 149 0.096
Total 20812 151

SKEWVAR Between-groups 66.349 2 33.175 9.356 0.000
Within-groups 528341 149 3.546
Total 594.69 151

DISTM Between-groups 37.854 2 18.927
Within-groups 62.047 149 0416 45451 0.000
Total 99.901 151

DISTVAR Between-groups 79.766 2 39.883
Within-groups 386.099 149 2.591 15.391 0.000
Total 465.865 151

DISTSKEW Between-groups 5.542 2 2.771 37.751 0.000
Within-groups 10.937 149 0.073
Total 16479 151

LOGNNVAR Between-groups 17.848 2 8924 49.302 0.000
Within-groups 2697 149 0.181
Total 44817 151

ANOVA test was performed on 9 out of 18 variables that passed the correlation test and resulted in reasonable discrimination between degeneration groups by
PCA analysis. TOTMAX is the total number of maxima detected per image. MPCM, MPCVAR and MPCSKEW refer to the mean, variance and skewness of the maxima
per cell, respectively. SKEWVAR is the skewness of the intensity values variance per cell. DISTM, DISTVAR and DISTSKEW refer to the mean, variance and skewness
of the centroid-to-mass-center distance, respectively. LOGNNVAR is the logarithm of the nearest neighbor variance. The between-groups and within-groups
components of the variance are estimated computing the squared errors (sum of squares) and averaging by the degrees of freedom (df, obtained as k-7 between
groups, N-k within groups and N-1 overall; where k is the number of groups involved, and N the sample size), thus resulting in the quadratic mean (52 between
groups and Efv within groups). The F-value is §§/§ﬁ,, whose significance is evaluated following a F; 149 distribution.

second component (PC2) 20% of the variance. PC1
clearly discriminates the wild type and fully degenerated
eyes, but the distribution of PC1 scores in the intermedi-
ate group exhibits a multimodal pattern indicating a
mixture of different groups within the intermediate level
(Figure 3A). PC1 was used then to split the intermediate
group into 3 different categories (Figure 3B-D). Five dif-
ferent categories are therefore considered in our data:
Class 0 corresponds to wild type retinas; intermediate
degeneration degrees belong to classes 1 to 3, and fully
degenerated eyes are assigned to class 4.

To evaluate the probability for an eye to belong to a
certain degeneration class, a Multinomial Logistic Re-
gression was performed to estimate the parameters of a

qualitative response model based on a categorical
dependent variable “I” (degeneration class). The retinal
samples were divided through random sampling into
training and testing subsets, which were used to build
the model and to validate it respectively. An automatic
stepwise procedure reduced the number of variables to
3, which were found to be the most predictive factors
for the model. Ultimately, the variables selected by this
statistical procedure are: i) the logarithm of the variance
of the “nearest neighbor” distance between maxima
(LOGNNVAR) (Figure 4A), ii) the mean distance be-
tween the grid-cell centroid and maxima center of mass
(DISTM) (Figure 4B), and iii) the skewness of DIST
(DISTSKEW) (Figure 4C).
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Figure 3 Principal component analysis used to generate FLEYE built-in statistical model. (A) The first component of a PCA analysis
performed with 9 variables discriminates between WT and SCA1 degenerated eyes and shows a polymodal distribution of intermediates. (B) The
first PCA factor splits the sample into five different categories, 0 to 4, ranging from a healthy eye (class 0) to a totally degenerated eye (class 4).
The classification remains the same even after removing 4 redundant variables among the 9 used (not shown). (C) The first PCA component
explains 60% of the total variance and constitutes a clearly discriminating tool (D), whilst the second component explains 20% of the variance,
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The model parameters are shown in Table 3. A total of
16 parameters are estimated and denoted by name_i,
where name can be independent, distm, distskew, or
lognnvar and i=0,1,2,3.

Denoting PP; as the probability for a given retina to be-
long to a certain class of degeneration (for i=0,1,2,3,4),
each PPi is defined in terms of the parameters as follows:

pPp; .
logﬁ = independ; + distm; x DISTM
4
+ distskew; x DISTSKEW
+ lognnvar; * LOGNNVAR

Fori=0,1,2,3.
Therefore,

Pp;
—L— exp (independ,» + distm; x DISTM + distskew;

PP,
*DISTSKEW + lognnvar; x LOGNNVAR)
(2)
Fori=0,1,2,3.

Now, being PPy + PPy + PP, + PP3 + PP, =1
We have that,

1
PPy = — and (3)
D pexplai) +1
PP = — @) o193
Zi:o exp(a;) +1
Where,

a; = independ; + distm; x DISTM + distskew;
* DISTSKEW + lognnvar; *x LOGNNVAR

After training the model with a group of randomly se-
lected retinas, we finally compute the overall retinal de-
generation degree defining a regularity index, IREG:

IREG =
4

(4)

where IREG =1 accounts for total regularity (WT eye),
whilst IREG =0 means total absence of regularity
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Figure 4 Behavior of the three variables accounting for the predictive value of FLEYE statistical model. Values of the three statistical
model variables obtained in healthy (WT) and degenerated (gmr > SCAT) fly eye samples (n = 35/genotype). (A) LOGNNVAR variable operates over
the whole ROI (grid-cell independent). The nearest neighbor distances are expected to be more similar to each other in a WT eye than in a
degenerated one, which has lost regularity and hence distances display a higher variance. (B) The variable DISTM for a grid cell (a representative
pair is enlarged and shown in gray in the grid) is calculated as the mean difference between the centroid (the center point of the cell, marked as
the intersection of dashed lines) and the maxima center of mass (the brightness-weighted average of the x and y coordinates of all pixels in the
image or selection, marked with asterisks). A WT eye is expected to have a more regular distribution of maxima in a cell than a degenerated one,
thus resulting in a mass center value closer to the centroid (lower difference output). (C) The variable DISTSKEW for a grid cell represents an
asymmetry measure of the distance between the centroid and mass center (third spatial moment). As low values of DIST are more frequent in

WT, a right-tailed distribution is expected, resulting in a positive skew value.

(degenerated eye). As a result, the bigger the probabil-
ity of belonging to a low degeneration class (PP, and
PP,) the closer the index moves to 1, and vice versa.
Intermediate values ranging from O to 1 will represent
partial degeneration cases or rescued genotypes.

To verify that the index obtained does not depend on
the training set, three different divisions of training and
test subsets were considered, and the corresponding
IREG values obtained. The IREG distributions were
very similar within the three groups: WT, SCA1 and
modifiers (Figure 5), indicating the robustness of the
procedure.

Although the large sample size used in our experi-
ments is needed to develop and validate this method,
FLEYE users should comply with standard experimental

Table 3 Parameter values of FLEYE statistical model

Parameter i independent distm distskew lognnvar
0 84.366 -13.681 20.391 -17.32

1 60.004 -11.097 15.005 -6.976

2 29.07 -4.448 7.663 -3.308

3 1.299 0.242 -17.746 -0.104

4 0 0 0 0

Values corresponding to each parameter in the multivariate logistic model
(mathematical expression (1) in the text) for each PP; (probability for a given
retina to belong to a degeneration class, for i=0,1,2,3,4).

design guides to properly evaluate the sample size re-
quired in their experiments.

Fiji macro design

We have developed an Image] plugin (FLEYE) contain-
ing four macros: 1) a menu macro (Figure 6A) which
controls the other three macros, 2) a macro to create
the ROIs of the areas to be analyzed (Figure 6B), 3) a
macro to optimize parameters used for the automated
analysis (Figure 6C), and 4) the macro that analyzes the
images and calculates a regularity index IREG for each
eye and a mean IREG per group (Figure 6D). This last
macro requires an initial user intervention to select the
folders containing the images and ROIs, the folders
where final data and graphs will be saved, and to define
groups and initial parameters. The macro requires ROIs
files with the same name of its corresponding image file
to work properly; thus, it is recommended to use the
provided “Fleye_ROISv1.2” to create such files easily.
The definition of the different parameters used for back-
ground subtraction, increase local contrast (surface-like
filter) and maxima detection is critical to obtain an ad-
equate classification. FLEYE is ready to work with im-
ages with a different resolution from that used here to
derive the statistical model. For such purpose, the inter-
face asks for the image pixel length (in microns), and
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Figure 5 IREG robustness test. Mean IREG values obtained using
three different training sets for WT, gmr > SCA1 and gmr > SCA1
Modifier#1. The robustness of the procedure is demonstrated due to
the negligible changes in the computed values among trials.
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incorporates this value to calibrate the data used in the
statistical model. It is recommended to use images with a
resolution >1.85 pum/pixel (resolution of our images). Fur-
thermore, depending on image features (mainly illumin-
ation and resolution) it could be useful to adjust the
tolerance and rolling ball radius used for maxima detection.
Therefore, we have included a “training macro” (Figure 6B)
that helps to define these parameters for automatic count-
ing. This macro requires that the user counts the omma-
tidia in a restricted area of the eye (Figure 2B), and then an
algorithm changes the tolerance and rolling ball radius till a
number of maxima similar to that obtained by the user is
reached. The user needs to be aware that this macro simply
tries to find the parameters considering the area selected,
being highly dependent on the adequacy of this area as well
as on the user-based quantification. It is recommended to
perform this optimization of parameters using images from
non-degenerated WT eyes. Multiple images can be used to
optimize parameters (one parameter table will be created
for each image). If more than one parameter table is loaded
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for image analysis, the initial parameter dialog-window will
be fed with the mean values obtained from the selected ta-
bles (these values can be changed before initializing the au-
tomated analysis). The final output of FLEYE consists of 7
files with data per image and mean data per group. It also
generates graphs plotting IREG for each group and a histo-
gram per group representing the frequency distribution of
IREGs.

Sample validation and model testing

As a proof of concept, we calculated the computed
IREG values for five different experimental groups of
flies (Figure 7). Alongside the healthy WT and degener-
ated gmr > SCA1 eyes, three groups showing partially
degenerated eyes were included, as an example of vari-
ous candidate SCA1 modifier genes out of which we
find two that rescue and one that does not.

This set of experiments helped us to calculate a percent
recovery for a statistically reasonable sample of flies of a
given genotype (n=30 eyes/genotype). As an example,
gmr > SCAI Modifier#1 showed a 68% recovery as judged
by comparing its median IREG with the WT and gmr >
SCA1 IREGs. The IREG-based percent recovery slightly
overestimates the recovery of the same modifier calculated
from retinal thickness measurements (see Figures 1 and 7).
This difference is expected since degeneration of lens and
of the general architecture of ommatidial surface proceeds
at a slower pace, in comparison with the fast disruption of
retinal thickness due to massive photoreceptor cell death
in this model of SCA1. These differences are in a tolerable
range, and we are confident that the IREG values estimated
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by FLEYE and the derived percent recovery are valuable
parameters to quickly assess the effect of genetic and
pharmacological modifiers of a degenerative condition in
the Drosophila eye model. Our method can also be used to
appraise treatment variations in a genetically homogeneous
fly sample as well as to estimate differences in genetic
penetrance of a given genotype. In cases where full degen-
eration is achieved by the experimental process, resulting
in eyes that yield few or no light reflections, FLEYE will as-
sign “complete degeneration” values.

While performing the experiment to validate our
method, we have estimated the total time that takes a re-
searcher to analyze an experimental group of 30 flies
with our FLEYE plugin: 3 hours from anesthetizing the
flies until the IREG plot was statistically assessed and in-
corporated into a manuscript figure. This time contrasts
to the several days needed to analyze retinal parameters
from fixed tissues and pictures from SEM, TEM or
standard histological sections [8-10]. Another advantage
of our methodology is the number of ommatidia ex-
plored in each ROI of a single fly (over 200/sample), in
comparison with the 30-40 ommatidia counted in each
eye when using the deep pseudopupil technique [7].

In contrast to the complex and non-automated method-
ologies mentioned above that evaluate retinal patterning, a
recent work has implemented an automated quantification
of the structural features of eye surface obtained from
SEM pictures of fly heads using edge detection and
boundary-walking algorithms [10]. This method allows for
proper statistical analysis of phenotypic differences in fly
eye surface, attaining a proper quantitative assessment of
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Figure 7 FLEYE method validation. IREG value distribution in a sample of fly eyes (n =85, 2 15/genotype). Healthy (WT) and degenerated

(gmr > SCAT) eyes are shown alongside three SCA1 Modifiers. Representative pictures of the eye surface for every genotype are displayed below each
box. Statistical significant differences (**) were found between degenerated gmr > SCAT eyes and the Modifiers #1 and #2, indicating significant
phenotypic recovery of the regularity of their eye surface pattern. Statistical significance between experimental classes was assessed by Kruskal-Wallis test
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retinal distortions. Furthermore, the software using the
method algorithm is also freely available. As an advantage,
our FLEYE approach is based on the unbiased develop-
ment of a statistical model that selects the most robust var-
iables accounting for the differences observed between sets
of degenerate and wild-type retinas. Moreover, Caudron
et al. methodology uses SEM pictures, which imply a
lengthy histological procedure and the need of a scanning
electron microscope.

Finally, although in the current FLEYE protocol we rely
on a simple but manual fly immobilization and image ac-
quisition method, as well as a user-based ROI selection, we
can envision simple automatic setups to take well focused
and reproducible eye surface pictures of anesthetized flies
combined with an easily implemented automatic ROI selec-
tion in the near future. Also our method does not require
decapitation of flies and can be used to follow the progres-
sion of single flies throughout life provided that the
immobilization method is reversible. These developments
make our method a good candidate for full automation and
therefore for potent high throughput screenings in search
of therapeutic agents for neurodegenerative diseases.

Conclusions

In this work we present a novel, easy, and fast method
to quantitatively rate the degeneration level of the com-
pound eye of fruit flies with a high degree of reliability
and robustness. This new method is based on the acqui-
sition of images from the surface of the eye, the use of
automated image analysis tools and a classification algo-
rithm sustained on a built-in statistical model.

The easy-to-use properties of our method, plus the po-
tential to be fully automated, make it a valuable tool for
unbiased quantitative estimations of degeneration de-
grees in genetic or pharmacological screenings using the
Drosophila retina as a model system.

In addition, the FLEYE plugin, following the adjustment
of model parameters and grid size, could easily be adapted
to evaluate the pattern regularity (and their experimental
or pathological disruption) of different biological or non-
biological origins: from images of crystal structures or bee-
hives, to those of mammalian retina with patterns of cone
photoreceptors, or neurons in histological sections of
stereotypically organized brain structures.
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