
J. Sens. Actuator Netw. 2015, 4, 293-314; doi:10.3390/jsan4040293
OPEN ACCESS

Journal of Sensor
and Actuator Networks

ISSN 2224-2708
www.mdpi.com/journal/jsan

Article

On Optimal Multi-Sensor Network Configuration for
3D Registration
Hadi Aliakbarpour 1,*, V. B. Surya Prasath 1 and Jorge Dias 2,3

1 Computational Imaging and Visualization Analysis (CIVA) Lab, Department of Computer Science,
University of Missouri-Columbia, Columbia 65211, MO, USA; E-Mail: prasaths@missouri.edu

2 Institute of Systems and Robotics, University of Coimbra, Faculty of Science and Technology,
Coimbra 3000-315, Portugal; E-Mail: jorge@isr.uc.pt

3 Robotics Institute, Khalifa University of Science, Technology & Research, Abu Dhabi 127788,
United Arab Emirates

* Author to whom correspondence should be addressed; E-Mail: aliakbarpourh@missouri.edu;
Tel.: +1-573-882-8391; Fax: +1-573-882-8318.

Academic Editor: Miao Jin

Received: 25 July 2015 / Accepted: 30 October 2015 / Published: 4 November 2015

Abstract: Multi-sensor networks provide complementary information for various tasks
like object detection, movement analysis and tracking. One of the important ingredients
for efficient multi-sensor network actualization is the optimal configuration of sensors.
In this work, we consider the problem of optimal configuration of a network of coupled
camera-inertial sensors for 3D data registration and reconstruction to determine human
movement analysis. For this purpose, we utilize a genetic algorithm (GA) based optimization
which involves geometric visibility constraints. Our approach obtains optimal configuration
maximizing visibility in smart sensor networks, and we provide a systematic study using
edge visibility criteria, a GA for optimal placement, and extension from 2D to 3D.
Experimental results on both simulated data and real camera-inertial fused data indicate we
obtain promising results. The method is scalable and can also be applied to other smart
network of sensors. We provide an application in distributed coupled video-inertial sensor
based 3D reconstruction for human movement analysis in real time.

Keywords: optimal configuration; sensor network; genetic algorithm; 3D; reconstruction;
registration; human movements
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1. Introduction

Multi-sensor networks are prevalent today and can be found in various areas such as surveillance,
visual surveying, robotics, swarm of drones, with applications in localization, reconstruction, tracking,
activity and object detection. The multi-sensor network brings a unique set of problems, and one of
the fundamental ones is how to solve the optimal configuration or placements of the sensors so as to
get the maximum data capture. This is an important problem especially when visual data capturing is
involved such as a network camera where the continuous stream of images and visibility are important
issues. The optimal configuration for multi-sensor networks based on visual sensors requires a careful
treatment of placements, number of sensors, and visibility angles so as to minimize errors in data and to
maximize the information content. Synergy among several heterogeneous sensors can provide more
precise results, especially when there are mobile networks of sensors involved, for example, visual
sensors mounted on a mobile robot [1]. The heterogenous sensor networks require fusion strategies
for maximizing information content [2–7] and optimal configuration of sensor networks are thus very
important.

Optimal configuration of different sensors in general, and distributed video sensors in particular, can
be posed as a geometric optimization problem [8–12]. Shim et al. [13] considered an optimal sensor
configuration for inertial navigation systems based on navigation, fault detection and isolation, see
also [14]. Cheng et al. [15] studied an orthogonal rotation method in order to improve the accuracy
and reliability of micro-electro mechanical systems. Optimal configuration of sensors in a network
can pose a considerable challenge to standard optimization procedures. Genetic algorithms (GA)
provide a powerful meta-heuristic way to optimize and find better minimizers for complicated cost
functions than traditional deterministic optimization procedures. They are an alternative approach in
solving hard optimization problems across various domains, see [16] for an introduction to GAs. In
particular, in the multi-sensor fusion framework, GAs can quickly obtain an optimal solution based on
global search property. GAs can also provide automatically the best suitable tradeoff solution when the
objective function is non-convex or if there are hundreds of possible solutions for the given task. Ray
and Mahajan [17] calculated optimal configuration for ultrasonic sensors in a 3D position estimation
system by solving GAs. Recently, Biglar et al. [18] used GAs for the configuration of piezoelectric
sensors and actuators for active vibration control of a plate. Zhu and O’Connor [19] proposed a
GA based optimization framework for wireless sensor networks to optimize the performance metrics.
Liang et al. [20] used GA for inclinometer layout optimization for gas sensors. Wang et al. [21]
used binary detection model based biogeography based optimization algorithm for dynamic deployment
of wireless sensor networks. These methods, though they use GAs, do not involve visual imagery
or coupled camera-inertial sensors. The geometry optimization methods of [13–15] provide extra
constraints based either on navigation performance or orthogonal rotations of the sensors.

In this work, we consider a genetic algorithm (GA) based optimization approach and formulate the
visibility criteria by modeling via edge visibilities of polygonal regions of interest. We apply GA for
solving the optimal configuration problem for distributed coupled inertial and video sensor networks.
In contrast to previous approaches [13–15] which involve extra constraints for the hard optimization
of multi-sensor optimal configuration, we instead utilize the power of GA to obtain feasible solutions
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quickly. In particular, for video sensors we provide a geometric cost function along with handling and
avoiding scenarios where some sensors in the network overlap excessively. Our simulations indicate that
we can avoid excessive overlap at the same time maximizing the visibility within a given set of smart
sensors. We discuss the issue of having appropriate coverage for cameras with 3D data registration
application, and a genetic algorithm is proposed to obtain optimal configuration of smart sensors. We
analyze the edge visibility criteria and optimal camera configurations using synthetic data and minimize a
geometrical error. We provide a real application in geometric multi-sensor fusion framework to register
three dimensional information for human movement analysis. For this application we utilize a fast
CUDA enabled GP-GPU to obtain real-time performance and show that the optimal configuration with
GA helps obtain faithful 3D reconstructions.

We organized the rest of the paper as follows: Section 2 details our genetic algorithm based optimal
multi-sensor configuration. Section 3 provides simulations with a visibility of regular shapes and results
on real 3D human movement reconstructions based on a network of smart sensors. Section 4 concludes
the paper.

2. Optimal Multi-Sensor Configuraion

2.1. Edge Visibility Criteria and Camera Configuration

The proposed volumetric reconstruction method uses silhouettes of an object and provides its
volumetric reconstruction. The completeness of the reconstructed volume depends to some parameters
such as the positions of cameras within the network, number of cameras and the shape of the object.
Figure 1a shows an exemplary case where a convex polygon is observed by two cameras (top view). In
this case, the polygon has five edges and five vertices (pentagon), however, as is shown in Figure 1b, it
is registered on the inertial plane as a six edge polygon, due to the effect of the mentioned parameters
(number of cameras and their positions). The extra part of the polygon after registration is shown in red
in the figure. As previously mentioned, registration of the cross section of an object with an inertial plane
can be thought of as the intersection among all shadows created by cameras, through considering each
camera as a light source. Based on this interpretation, the appearance of the red part can be justified:
the red part is the area which can not be seen by any camera and is shadowed in all views. We intend
to introduce a geometric approach to realize the visibility or invisibility of an edge. Assume a general
convex polygon including k vertices V = {v1, v2, ... vk} and k edges E = {e1, e2, ... ek} (e.g., consider
Figure 2 as an exemplary polygon corresponding to Figure 1). A normal vector can be considered for
each edge resulting in N = {n1, n2, ...nk}. Lets assume a set of nc cameras {c1, c2, ... cnc}. We see
that the normal vector ni at an edge ei can be used to identify visibility from a camera ci. Each camera
ci has a pair of tangents (bounding vectors) (li, ri) to the polygon and for each tangents pair a bisecting
vector bi is considered. Having this, the visibility criteria for the edges can be expressed as following:
an edge ej is visible if and only if there is a bi where 6 (nj,bi) >

π
2
, see Algorithm 1. For example,

in Figure 2 camera c1 sees edges e1, and e5 and the normals n1, n5 make angles greater than π
2

with b1

(clockwise angles). Similarly, camera c2 ‘sees‘ edges e2, and e3 and the normals n2, n3 make angles
greater than π

2
with b1 (clockwise angles). The edge e4 is not visible in either of the cameras and its
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normal n4 makes angles less than π
2

with both bisectors b1, b2. Thus, Algorithm 1 classifies the edges
visibility for a give object.

(a) (b)

Figure 1. Investigation of the criteria for visibility of a general convex polygon. (a) An
exemplary convex polygon is being observed by two cameras. The images are shown
from the top view of the inertial reference plane πref . (b) The registration of the polygon
corresponding to left picture. The registration includes the object and some extra areas
(coloured in red) which do not belong to the polygon. This red area has appeared because of
not having visibility on the lowest edge of the polygon.

Figure 2. The figure shows the involved vectors. Green vectors, li and ri, respectively,
indicate the left and right tangents (bounding vectors) of a camera ci. The bisector vector
for each camera bounding pair (the tangents) of li and ri is shown in red (bi). ni stands for
the normal of the edge ei. After performing the registration process based on the proposed
algorithm, the area colored in red also become registered as a part of the object.
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ALGORITHM 1: Criteria to check the edges visibility for a given polygon. k is number of
polygon’s edges and ej is the j’th edge. nj is the normal vector corresponding to ej . bi is the
bisecting vector for camera i. Each edge is checked and will be labelled as either ‘visible’ or
‘invisible’. Labelled as ‘invisible’ for an edge means that it is invisible for all the cameras.

for j = 1 to k do

if ∃bi, i ∈ 1..nc where 6 (nj,bi) >
π
2

then

consider the edge ej as < visible >

else
consider the edge ej as < invisible >

2.2. Optimal Camera Placement Using Genetic Algorithm

The visibility criteria defined in Algorithm 1 can be used for obtaining an optimal solution for camera
placement. The question to be solved is as following: given a convex polygon with k vertices and
k edges and nc number of cameras, what would be an optimal solution for placements of cameras in
order to have the best observation of the polygon for applying the proposed reconstruction method. This
question can be considered in another form: Given a polygonal space to be monitored by a camera
network, what would be an optimal solution to place n cameras around the space. Genetic algorithms
(GA) are bio-inspired algorithms, which are known as appropriate mechanisms to solve such a problem.
We continue to describe our GA-based algorithm to solve the mentioned problem.

Population in GA is a set of members called chromosome. Each chromosome includes a number of
elements named gene. Note that, in our case, a gene is equivalent to a camera and its properties and a
chromosome is synonymous to a set of cameras. The structure of a chromosome string is defined in the
Table 1. In this structure p and b stands for the vectors of position and bisector of the camera, fov is
the angle of field-of-view (FOV) and cost is an scaler value corresponding to the gene’s cost. Based on
these definitions, an algorithm to generate a valid gene is provided in Algorithm 2. The inputs of the
algorithm are the vector of vertices of the given polygon, V, the search space of the camera positions
and maximum possible FOV. Algorithm 3 presents a function to generate a chromosome including Nc

genes (a chromosome string with length = Nc).

Table 1. Structure of a chromosome string.

Chromosome

gene(1) gene(2) ... gene(nc)

p fov b cost p fov b cost ... p fov b cost
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ALGORITHM 2: Algorithm to generate a valid gene. V is the matrix of vertices of the
polygon. max_fov is the maximum possible FOV for each gene (camera) and ‘space’ is the
search space. Having these as the inputs, the algorithm generates a valid gene with its properties.
The position of each gene signifies the position of the corresponding camera. The function
getTangentsToPolygon(V,p) receives the matrix of the vertices of the polygon (V) and the position
(p) of the camera (gene) and returns two vectors (l and r) which are tangents to the given polygon.
Then, the angular bisecting vector is stored in b. This bisecting vector will be used to compute the
cost value of the gene. It can be also interpreted as the looking direction of the camera. Then the
generated gene is returned as the result of the function createGene()

Function createGene()

Input: {V, max_fov, space}

Output: {gene}

begin

repeat
p← random 2D position in space ;

[l, r] ← getTangentsToPolygon(V,p) ;

fov← arccos(
l.r

|l||r|
)

until fov <= max_fov ;
gene← generate_an_empty_gene() ;

gene.p← p ;

gene.fov← fov ;

gene.b← |l| r + |r| l ;

end
return gene
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ALGORITHM 3: Algorithm to generate a chromosome. V is the matrix of vertices of the polygon.
Nc indicates the chromosome’s length or in other words the number of cameras. max_fov is the
maximum possible FOV for each gene (camera) and ‘space’ is the search space. Given these as
inputs, the algorithm generate a chromosome with Nc genes and returns it (using Algorithm 2).

Function generate_chromosome()

Input: {V, max_fov, Nc, space}

Output: {chromosome}

begin

// creating an empty chromosome with length = Nc

chromosome← empty_chromosome(Nc) ;

for i← 1 to Nc do
gene(i)← createGene(V, max_fov, space) // from Algorithm 2 ;

getChromosomeCost(chromosome) // from Algorithm 4 ;

end
return chromosome

One of the crucial points in GA-based algorithms is to have a suitable cost function in order to
evaluate the fitness of a member in the population. In the case of our coverage problem, a cost function
f(α = 6 (b,n)) : [0..π] → [0..λ] is defined (see Figure 3) for a bisector b and the normal of an edge n

as following:

Figure 3. Defined function to measure the cost between a camera and a polygon edge. The
maximum cost is equal to λ and happens when α <= π/2 or in other words the edge is
invisible by the camera.
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f(α = 6 (b,n)) =


| 2
π
(α− π)| ; π

2
< α ≤ π

λ ; others

(1)

where 1 < λ < 2 and α is the angle among the two vectors b and n. An algorithm to compute the
cost of each gene in a chromosome string using the defined cost function in Equation (1) is proposed
in Algorithm 4. Firstly, the cost among each individual gene of the chromosome and each edge of the
polygon is computed (We chose λ = 1.2 in our algorithm and simulations reported here, any value
between 1 < λ < 2 can be used and we observed similar convergence rates.) (the whole algorithm
except, the innermost if loop). The primary costs for each gene and the polygon’s edges were obtained
regardless of considering the other genes in the chromosome. Secondly, the cost of each gene gets
updated by taking into account the previous genes in the chromosome, in order to avoid getting trapped
in a local minima). Figure 4 shows an exemplary case where a triangular polygon is supposed to be
optimally observed by three cameras. Based on the cost function in Equation (1) (the second part of
Algorithm 4) an optimal arrangement for the cameras is when all three cameras observe the edge e12 (e12
denotes the edge connecting vertix v1 to vertix v2). In this situation the cost value for each camera is close
to zero (using Equation (1)), since the angle among the bisector vector of the cameras and n1 (normal
of e12) is straight (π). This case is considered as a local minima for the camera placement. In order
to avoid the GA to fall into such a local minima, an update on the cost of each gene in a chromosome
with regards to the other genes in the same chromosome is proposed in Algorithm 4. In this part, the
cost of each gene-edge gets increased (penalized) if the same edge was previously observed by another
antecedent gene in the chromosome. In this case, the unidirectionality between the bisector vectors of
such two genes (bc and bp for the current gene and the antecedent one) determines the penalty value to
be augmented to the cost value of the second gene. The more aligned in the same directions, the more
penalty value is applied by using the following equation:

aug(bc,bp) = |1−
6 (bc,bp)

π
| (2)

This causes the genes who are observing the same edges get far from each other and converge
other edges.
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ALGORITHM 4: Algorithm to compute the cost of a chromosome and its genes. The inputs
are V, the vertices’s matrix and chromosome. The cost value among each individual gene in the
chromosome and each edge of the polygon is computed using the Equation (1). The cost value gets
penalized for the genes which are visiting an edge that was previously visited by an antecedent gene
of the chromosome). The penalty value is obtained using Equation (2).

Function getChromosomeCost() Input: {V, chromosome}
Output: {cost of chromosome}
begin

λ← 1.2;
l← length(chromosome) // number of genes in chromosome;
for i← 1 to l do

gene(i).cost← 0;
for j ← 1 to k do

h← mod(j, k) + 1;
b← gene(i).b;

α← arccos(
b.ejh
|b||ejh|

);

if α > π/2 and α <= π then
gene(i).ejh.cost← 2

π
|α− π|;

//check if ejh was previously visited by an antecedent gene;
for prev_gene← 1 to i− 1 do

if gene(prev_gene).ejh <= 1 then
//yes visited, so penalize it!;
bi ← gene(i).b;
bp ← gene(prev_gene).b;

α← arccos(
bp.bi
|bp||bi|

);

augmented_cost← |1− α

π
|;

gene(i).ejh ← gene(i).ejh + augmented_cost;

else
gene(i).ejh.cost← λ;

gene(i).cost← gene(i).cost + gene(i).ejh.cost;

end
return chromosome.cost

A genetic algorithm (Algorithm 5) to search for an optimal solution is proposed in this section by
using the defined cost function and the introduced sub-functions (Algorithms 2–4). The inputs for
this algorithm are: V , the matrix of vertices; max_fov, maximum for the FOV of a camera (a gene);
Nc, number of cameras (number of genes in a chromosome or chromosome’s length); and ’space’,
the space to be searched by GA for placing cameras (search space). Number of population (number
of chromosomes) is considered as 100. First a new generation is initialized. After applying a fitness
function on each individual (chromosomes) in this population, 20% of them are selected as elites for
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the new generation. The rest of the population (80%) are created by applying crossover and mutation
operations on the elites. For doing so, every time two parents are selected randomly from the elites. Then,
a crossover operation is applied in this selected couple and as the result two children (new member of the
society or chromosomes) are added to the population. On some of the newly created children, a mutation
is applied as well. The probability of happening a mutation on the children is considered as 0.50. In each
cycle, the cost value of the best member (best fitted chromosome) of the elites is saved as the minimum
cost value of that generation. If after a nstop number of consecutive trials the cost value does not get
improved, or the algorithm reaches its maximum iteration (n_trial_max) then it stops. The answer of
the algorithm is an optimal chromosome. This optimal solution includes a set of genes (Nc genes) and
each gene signifies a camera with its properties such as position, direction vector, etc.

Although the proposed algorithm to optimize the camera coverage is discussed in 2D as a case-study,
however it has the potential to be used in 3D with some small modifications. Figure 5 indicates a case
where a semi-cube is demonstrated as an exemplary 3D polygon in a 3D space. The first necessary
modification in the algorithm to deal with a 3D case is that instead of using the normal vectors of the
edges, the normal vectors of the faces have to be used. This counts all faces except the bottom face,
which does not need to be observed. The second needed modification is to consider the camera position
as 3D instead of 2D, e.g., in Algorithm 2, the place where a camera position in space is randomly created
it should be generated as 3D vector. The rest of the algorithm would be the same as the studied 2D case.

Figure 4. The local minima problem for a triangular polygon and three cameras. Using
just the cost value for each gene (camera) regardless of the other genes (cameras) in the
same chromosome (camera network) can lead to have one edge perfectly observed by many
cameras and other edges lacking. In this case, all three cameras are observing the edge
e12 (the line between v1 and v2) with cost values at zero since n1 is opposite to their bisector
vectors (b1, b2 and b3), whereas the two other edges (e23 and e31) are not observed at all since
their cost value can not be zero. The second part of Algorithm 4 is dedicated to eliminating
this problem using the penalty function in Equation (2).
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ALGORITHM 5: Genetic algorithm to search for an optimal solution for camera placement
problem.

Function GA()
Input: {V, max_fov, Nc, space}
Output: {optimal_chromosome}
begin

/* Initialization */;
chrom_length← Nc //number of genes in a chromosome;
nelites ← 20 // number of elites to be selected;
npop ← 100 //number of population;
nstop ← 150 //stop after no change in a consecutive nstop iterations;
search_space← space ;
fovmax ← π/4 //maximum possible FOV for a camera.;
n_trial_max← 2000 //maximum number of iterations;
/* First generation */;

for i← 1 to npop do
pop(i)← generate_chromosome(V, fovmax, chrom_length) //Algorithm 3;

evaluate_fitness() //using Algorithm 4;
elites← pop(1..nelites) ;
cost_history(1)← getChromosomeCost(V , elites(1)) //Algorithm 4;
t← 0 ;
nrepeated ← 0 ;
/* Iterations */;

while t < n_trial_max and nrepeated < nstop do
t← t+ 1;
pop(1 : nelites)← elites;
pop(nelites + 1 : npop)← crossover and mutation on elites;
evaluate_fitness() //using Algorithm 4;
elites← pop(1..nelites);
cost_history(t)← getChromosomeCost(V , elites(1)) //Algorithm 4;
if t > 1 and cost_history(t) == cost_history(t− 1) then

nrepeated ← nrepeated + 1;

else
nrepeated ← 0;

optimal_chromosome← elites(1);
return optimal_chromosome

end
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Figure 5. Extension of the proposed algorithm to search for an optimal camera placement
from 2D to 3D. In the case of 3D, instead of considering the normals of the edges of the
polygon, the normal vectors of the faces must be considered. Moreover, the position part of
each gene (p) must be considered as a 3D vector. The rest of the algorithm would be the
same as the 2D case.

3. Camera Placement Optimization Using GAs

3.1. Simulation

In this section, a set of experiments to demonstrate the efficiency and effectiveness of the proposed
GA-based algorithm for camera placement is demonstrated. In total, nine samples are shown in
Figures 6–8. In each sample a convex polygon with k number of edges and nc cameras are considered.
The polygons are randomly generated and the space to be searched by camera placement has a dimension
equal to 1200×1200 cm. The convergence plots of the algorithm for the samples in each figure has been
depicted in the corresponding (d) section. The vertical axes in the plots show the cost value of the best
fittest chromosome in each iteration where the value is divided by number of genes for each sample
(number of cameras nc).

The condition to stop the GA loop is when the cost values of the found solution in 150 consecutive
trials do not improve. As mentioned, the polygon can be either considered as an object to be
reconstructed or an area to be observed by the camera network. However, for our case, it is considered
as the first case. The proposed GA-based algorithm tries to find an optimal placements (position and
direction) of the cameras within the network in such a way that gives the best coverage on the polygon
for the purpose of proposed 3D reconstruction method. We next describe a real-world application in
coupled camera-intertial sensor network for the purpose of human movements in 3D. We briefly provide
the setup and algorithm implementation in GP-GPU and we refer the reader to [22] for more details.
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(a) k = 3, nc = 2 (b) k = 3, nc = 3

(c) k = 5, nc = 3 (d) Convergence plot

Figure 6. Results for camera placement optimization using the proposed GA. (a–c) depict
three different samples. In each sample, a polygon with k vertices is randomly generated
and the purpose of the algorithm is to search for an optimal coverage using nc number of
cameras. The convergences for the samples are plotted in (d). The vertical axis depicts the
cost value for the fittest chromosome in each iteration, once it gets divided into the number
of genes (nc). The dimension of the search space is 1200 × 1200 cm2.
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(a) k = 5, nc = 4 (b) k = 5, nc = 5

(c) k = 10, nc = 2 (d) Convergence plot

Figure 7. Results for camera placement optimization using the proposed GA. (a–c) depict
three different samples. In each sample, a polygon with k vertices is randomly generated
and the purpose of the algorithm is to search for an optimal coverage using nc number of
cameras. The convergences for the samples are plotted in (d). The vertical axis depicts the
cost value for the fittest chromosome in each iteration, once it gets divided into the number
of genes (nc). The dimension of the search space is 1200 × 1200 cm2.
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(a) k = 10, nc = 3 (b) k = 10, nc = 4

(c) k = 10, nc = 5 (d) Convergence plot

Figure 8. Results for camera placement optimization using the proposed GA. (a–c) depict
three different samples. In each sample, a polygon with k vertices is randomly generated
and the purpose of the algorithm is to search for an optimal coverage using nc number of
cameras. The convergences for the samples are plotted in (d). The vertical axis depicts the
cost value for the fittest chromosome in each iteration, once it gets divided into the number
of genes (nc). The dimension of the search space is 1200 × 1200 cm2.

3.2. Application in 3D Registration for Human Movement Analysis

Each coupled system of Camera + Inertial Sensor can be thought of as a virtual camera where the
camera provides the visual imagery whereas the inertial sensor gives 3D orientation, see Figure 9 for
the experimental setup used in our paper. We utilized AVT Prosilica GC650C cameras coupled with
Xsens MTx inertial sensors mounted on the wall. The inertial unit has several type of physical units
such as gyroscope, accelerometer, gravity sensor, and compass. Some of the inertial sensors like the one
we used (Xsens) have an internal fusion algorithm which combines all measurements from its physical
units (specially gravity sensor and compass for our case) and estimates the 3D orientation of the unit
in the world reference system. In our framework, we use such an estimated orientation and obtain a
3× 3 transformation matrix which maps the coordinates of the unit to the world reference [23]. Having
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the attached camera calibrated with the unit, one can obtain a 3 × 3 transformation matrix which maps
the camera coordinates to the world coordinate systems. The data from both intertial-camera are then
fused to obtain a synergistic virtual sensor and its corresponding co-ordinate system, see Figure 10. The
fusion was undertaken using the inertial sensor’s 3D orientation and with camera reference frame using
homography transformations [24–27]. Figure 11 illustrates the 3D registration framework used after the
GA-optimized optimal configuration of the coupled smart sensors are placed. Note that we only show
one inertial plane πk in Figure 11b, but the overall 3D registration combines multiple inertial frames
which are defined using the orientation given by inertial sensors. We then use infinite homography to use
fuse inertial–visual information and parametric homographic linear transformations between different
internal planes [28]. A detailed evaluation of the data registration framework as well as several other 3D
reconstructions can be found in [29,30].

Figure 9. Experimental setup for a smart sensor. AVT Prosilica GC650C
camera coupled with a Xsens MTx inertial sensor mounted on the wall. We
setup a network of these smart sensors around the room (Videos are available at
YouTube https://www.youtube.com/watch?v=rPibqw4cAxc or in the Supplementary file and
more details are available at the website: http://sites.google.com/site/hdakbarpour/research).

Figure 10. Virtual camera via fusion and downward looking co-ordinate system.

Our main Algorithm for 3D registration and reconstruction is implemented using CUDA enabled
GP-GPU [31], thereby it allowed us to obtain objects/person 3D reconstructions in real-time, see
Figure 12a. As can be seen from the components run-time break-down, the most expensive part is
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the image grabbing from the cameras to the load-shift to the GPU memory. Overall, the framework takes
310 microseconds, thereby enabling us to test it on real time. Figure 12b shows the the processing time
of main loop cycle time against the number of inertial planes and their sizes (in cm2).

(a)

(b)

Figure 11. Illustration of the 3D registration framework using homography concept. (a) A
scene including a human and three cameras is depicted. πk is one inertial-based virtual world
plane. The cameras c1, c2, and c3 are observing the scene. (b) The registration layer (top
view of the plane πk of (a)). Each camera can be interpreted as a light source and our GA
(Algorithm 5) based optimal configuration was used to obtain the final placements and 3D
reconstruction experimental results.

We are currently extending and evaluating our system for dynamic scenes, and Figure 13 shows a
person walking and the corresponding results capture the motion. Figure 14 shows a screen-grab of our
system front-end based on Qt and the movement of a leg is captured. Note that our approach requires
neither feature extraction nor availability of ground plane. A higher number of cameras can induce
further angle constraints depending upon non-trivial intersections and handling these scenarios within
the geometric visibility constraints based GA method is not an easy task. We believe combining a
probabilistic framework [8] with our GA optimization is an interesting option and requires further work.
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(a)

(b)

Figure 12. (a) Our 3D human movement analysis system is implemented using CUDA
enabled GP-GPU enabling real-time performance; (b) Processing time with respect to
number of inertial Euclidean planes and size (cm2) of each inertial planes.
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Figure 13. Dynamic movement of a person under our 3D reconstruction framework.

Figure 14. Online, real-time streaming of our 3D reconstruction results for a dynamic
movement of a leg of a person.
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4. Conclusions

In this work, the coverage problem of cameras within a network of multi-sensors was investigated, in
the context of optimal configuration of sensors. Using a geometric cost function, a genetic algorithm was
proposed to find an optimal camera configuration in the network. Our geometric cost function based on
edge visibility criteria and camera configuration based on visibility vectors is tested on simulated and real
smart sensor scenarios. We applied the optimal configuration obtained using our GA based approach for
a 3D data registration problem, which involves a network of camera-inertial coupled sensors for human
movement analysis. The final pipeline was implemented using CUDA enabled GP-GPU, thereby paving
the way for a real-time analysis of 3D data.
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