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The minimum weight states of the Lipkin model consisting of n single-particle levels and obeying
the SU (n) algebra are investigated systematically. The basic idea is to use the SU (2) algebra,
which is independent of the SU (n) algebra. This idea has already been presented by the present
authors in the case of the conventional Lipkin model consisting of two single-particle levels and
obeying the SU (2) algebra. If this idea is followed, the minimum weight states are determined for
any fermion number appropriately occupying n single-particle levels. Naturally, the conventional
minimum weight state is included: all fermions occupy energetically the lowest single-particle
level in the absence of interaction. The cases n = 2, 3, 4, and 5 are discussed in some detail.
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1. Introduction

In 1965, in the early stages of the study of nuclear many-body theories, Lipkin, Meshkov, and
Glick proposed a schematic model for understanding the microscopic structure of nuclear collective
vibration [1]. Hereafter, we will call it the Lipkin model. Naturally, it was an up-to-date problem in
those days. The Lipkin model treats many-fermion systems consisting of two single-particle levels
with the same degeneracy as each other. In this paper, the degeneracy is denoted as 2�, which is
a positive even number. For this model, we can construct the SU (2) algebra in terms of certain
bilinear forms in single-particle fermion operators under the condition that the total fermion number
operator commutes with the SU (2) generators. The Hamiltonian adopted in this model is expressed
as a function of these SU (2) generators. Concerning the total fermion number N , the simplest case
may be the following: In the absence of interaction, all fermions fully occupy an energetically lower
single-particle level, i.e., N = 2�. Following the review article by Klein and Marshalek [2], we call
this case a “closed-shell” system. Conventionally, only this case has been investigated. With the aid
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of this model, we are able to obtain a schematic understanding of collective vibrational states of the
“closed-shell” system in terms of superposition of particle–hole pair excitations. In this case, it is
easy to define the particle and the hole operators.

As a natural generalization of the Lipkin model, Li, Klein, and Dreizler [3] and Meshkov [4]
first investigated the model consisting of three single-particle levels. Needless to say, this model is
treated in the frame of the SU (3) algebra. Further, the generalization to the case of n single-particle
levels was performed mainly by Okubo [5] and Klein [6]. The degeneracy of each level is also equal
to 2�. The mathematical framework in this case is given by the SU (n) algebra with the condition
that the total fermion number operator commutes with the SU (n) generators. Needless to say, the
Hamiltonian should be expressed as a function of the SU (n) generators. Hereafter, we will call it the
SU (n) Lipkin model. Including the case n ≥ 3, also only the “closed-shell” system, i.e., N = 2�,
has been investigated.

We guess that there exist two reasons why only the case N = 2� has been investigated. One of
the reasons may be the following: The Lipkin model aims at describing the particle–hole pair type
collective vibration and its ideal form may be expected to be realized in this case; it may thus not
be necessary to investigate any case except for the “closed-shell” system. The second is related to
the minimum weight state. The Lipkin model is a kind of algebraic model. Therefore, in order to
complete the description of the model, the first task is to determine the minimum weight states.
The “closed-shell” system corresponds to the simplest minimum weight state, which enables us to
formulate various results of the Lipkin model quite easily. However, in the case of the SU (2) Lipkin
model, recently, the present authors proposed an idea [7]. Under this idea, the minimum weight
states can be determined in the concrete form for the case of any fermion number. The prototype new
boson realization of the SU (2) algebra in the Lipkin model used in [7] can be found in [8]. This idea
suggests that we may know the concrete forms of the minimum weight states of the SU (n) Lipkin
model for any fermion number. This problem will be discussed in this paper (I). However, even if
the minimum weight state can be determined, we still have a problem to be solved. In the SU (2)

Lipkin model, the orthogonal set built on a chosen minimum weight state can easily be obtained by
operating the raising operator successively on the minimum weight state. In the case of the SU (n)

Lipkin model, formally, there exist too many generators which play a role similar to that of the raising
operator in the SU (2) Lipkin model. Therefore, in order to make the SU (n) Lipkin model workable,
we must present any idea for the operators, the role of which is similar to that of the SU (2) Lipkin
model, i.e., the raising operator. This problem will be discussed in the next paper (II).

The main aim of this paper is to present concrete forms of the minimum weight states for any
fermion number in the SU (n) Lipkin model, including the “closed-shell” system. The preliminary
argument was performed in the recent paper by the present authors for the SU (2) Lipkin model [7].
In this argument, a certain SU (2) algebra which is independent of the SU (2) algebra in the Lipkin
model plays a central role. We called it the auxiliary SU (2) algebra. The orthogonal sets obtained
under this algebra give us the minimum weight states of the SU (2) Lipkin model. We extend this
idea to the SU (n) Lipkin model. The condition that the auxiliary SU (2) algebra is independent of
the SU (n) algebra in the Lipkin model is formulated in the commutation relation

[ any auxiliary SU (2) generator , any SU (n) generator in the Lipkin model ] = 0. (1.1)

To construct this auxiliary algebra, the raising operator in the SU (2) algebra can be expressed
in a certain form with the nth degree for the fermion creation operators and the Clifford numbers,
unfamiliar to nuclear theory. The minimum weight states of the SU (n) Lipkin model are given in terms
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of the orthogonal sets of the auxiliary SU (2) algebra. In this paper, the terminology of the “closed-
shell” system was used for the case in which, in the absence of interaction, all fermions occupy
fully energetically the lowest single-particle level, i.e., N = 2�. However, in order to formulate
the “closed-shell” system rigorously, not only the condition N = 2� but also other conditions are
necessary, for example, in the case of the SU (2) Lipkin model, s = � (s: the magnitude of the SU (2)

spin for this model).
Recently, the excited state quantum phase transitions have drawn the attention in the field of nuclear

many-body problems [9]. In particular, the Lipkin model is one of the important solvable models to
understand the quantum phase transitions [10]. To give a possible framework of the SU (n) Lipkin
model may also be useful in order to investigate the physics of the excited state quantum phase
transitions.

In next section, the SU (n) Lipkin model is recapitulated and the condition governing the minimum
weight states is given. In Sect. 3, the SU (2) algebra auxiliary to the SU (n) Lipkin model is formulated
under the condition that any of the SU (2) generators commutes with any of the SU (n) generators.
The three generators are expressed as functions of single-particle fermion operators. To obtain the
expressions, the Clifford number may be necessary. In Sect. 4, formal aspects of the minimum weight
states of the SU (2) and SU (3) Lipkin models are discussed. Section 5 is devoted to presenting the
general forms of the minimum weight states concretely in the case of the SU (n) Lipkin model.
Finally, in Sect. 6, the minimum weight states for the SU (n) Lipkin model in the cases n = 2, 3, 4,
and 5 are given in a form slightly different from that presented in Sect. 5, which will be useful for
the discussion in (II).

2. The SU (n) algebra in the Lipkin model

The many-fermion model discussed in this paper consists of n single-particle levels, the degeneracies
of which are equal to 2� = 2j + 1 (j; half-integer). The single-particle states are specified by the
quantum numbers (p, jm). Here, p and m are given by p = 0, 1, 2, . . . , n − 1 and m = −j, −j +
1, . . . , j − 1, j, respectively. Hereafter, we omit the quantum number j. Following the order p = 0 <

p = 1 < · · · < p = n − 1, the levels becomes higher. The level p = 0 is the lowest. The fermion
operators are denoted by (c̃p,m, c̃∗

p,m) and, then, the total fermion number operator Ñ (n) for the case
n can be expressed as

Ñ (n) =
n−1∑
p=0

j∑
m=−j

c̃∗
p,mc̃p,m. (2.1)

With the use of the above fermion operators, we can define the following operators for p, q =
1, 2, . . . , n − 1:

S̃p(n) =
∑

m

c̃∗
p,mc̃0,m, S̃p(n) =

∑
m

c̃∗
0,mc̃p,m

(̃
Sp(n)∗ = S̃p(n)

)
, (2.2a)

S̃p
q (n) =

∑
m

c̃∗
p,mc̃q,m − δpq

∑
m

c̃∗
0,mc̃0,m

(̃
Sq

p (n)∗ = S̃p
q (n)

)
. (2.2b)

The commutation relations are given in the form

[ S̃p(n), S̃q(n) ] = S̃p
q (n), (2.3a)

[ S̃p
q (n), S̃r(n) ] = δqrS̃p(n) + δpqS̃r(n), (2.3b)
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[ S̃p
q (n), S̃s

r (n) ] = δqsS̃
p
r (n) − δprS̃s

q(n). (2.3c)

In relation (2.3), we can see that the operators (2.2) obey the SU (n) algebra. The simplest Casimir
operator, �̃SU (n), is given as

�̃SU (n) = 1

2

⎡⎢⎣n−1∑
p=1

(̃
Sp(n)̃Sp(n) + S̃p(n)̃Sp(n)

)+
n−1∑

p,q=1

S̃p
q (n)̃Sq

p (n) − 1

n

⎛⎝n−1∑
p=1

S̃p
p (n)

⎞⎠2
⎤⎥⎦ . (2.4)

The operators �̃SU (n) and Ñ (n) satisfy

[ �̃SU (n) and Ñ (n), any of the operators (2.2) ] = 0. (2.5)

Further, it should be noted that Ñ (n) cannot be expressed in terms of the above SU (n) generators.
For the above SU (n) algebra, we can select a Hamiltonian

H̃ (n) = H̃0(n) + H̃1(n). (2.6)

Here, H̃0(n) is the Hamiltonian of individual levels with energies εp, for which we set up

n−1∑
p=0

εp = 0, ε0 ≤ ε1 ≤ · · · ≤ εn−1. (2.7)

Then, H̃0(n) can be expressed as

H̃0(n) =
n−1∑
p=0

εpÑp(n) =
n−1∑
p=1

εpS̃p
p (n). (2.8)

The part H̃1(n) is an interaction term chosen, for illustration only, in the form

H̃1(n) = −G
n−1∑
p=1

[(̃
Sp(n)

)2 + (̃
Sp(n)

)2]
. (2.9)

Here, G(> 0) denotes the coupling constant. The above Hamiltonian can be found in Ref. [2] with
different notation. We call the above many-fermion system the SU (n) Lipkin model. The Hamiltonian
H̃ (n) obeys [

�̃SU (n) and Ñ (n), H̃ (n)
] = 0. (2.10)

The cases n = 2 and 3 reduce to the Hamiltonians of the SU (2) and the SU (3) Lipkin model, which
have been discussed in various problems [2].

For studies of any many-fermion system, implicitly or explicitly, we must prepare orthogonal sets
for the system under investigation. The standard idea for treating the present model may be, first, to
prepare an orthogonal set related by a chosen minimum weight state. The set may be constructed
by operating the generators S̃p(n) (p = 1, 2, . . . , n − 1) and S̃p

q (n) (p > q = 1, 2, . . . , n − 2)

appropriately on the minimum weight state, which we denote |min(n)〉. The state |min(n)〉 obeys
the conditions

Ñ (n)|min(n)〉 = Nn−1|min(n)〉, (2.11)
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Fig. 1. The single-particle levels for the SU (n) Lipkin models depicted schematically.

S̃p(n)|min(n)〉 = 0 (p = 1, 2, . . . , n − 1), (2.12a)

S̃q
p (n)|min(n)〉 = 0 (p > q = 1, 2, . . . , n − 2) (2.12b)

S̃p
p (n)|min(n)〉 = sp(n)|min(n)〉 (p = 1, 2, . . . , n − 1). (2.13)

Conventionally, for |min(n)〉, a “closed-shell” system has been investigated:

Nn−1 = 2�, sp(n) = −2� (p = 1, 2, . . . , n − 1). (2.14)

The above teaches us that the level p = 0 is fully occupied and the levels p = 1, 2, . . . , n − 1 are
vacant. However, even if the treatment is restricted to the “closed-shell” system, there exist many
“closed-shell” systems in the case n ≥ 4; for example, the levels p = 0 and 1 are fully occupied and
the other vacant:

Nn−1 = 4�, sp=1(n) = 0, sp(n) = −2� (p = 2, 3, . . . , n − 1). (2.15)

Including such “closed-shell” systems, it may be interesting to investigate the case with arbitrary
fermion number, i.e., 0 ≤ Nn−1 ≤ 2n�. Further, for constructing the orthogonal set built on
|min(n)〉, the appropriate choice of the operators as functions of S̃p(n) (p = 1, 2, . . . , n − 1) and
S̃p

q (n) (p > q = 1, 2, . . . , n−2) is inevitable. The simplest examples are given by S̃p(n)|min(n)〉 and
S̃p

q (n)|min(n)〉. However, S̃p
q (n)̃Sq(n)|min(n)〉 and S̃q(n)̃Sp

q (n)|min(n)〉 are not independent of each
other, because of the relation [ S̃p

q (n), S̃q(n) ] = S̃p(n). We call the appropriately chosen operators
the “building blocks.” The above argument tells us that, as was mentioned in Sect. 1, we have two
tasks for formulating the present model: (1) to determine the minimum weight state, and (2) to con-
struct the building blocks. Although these two are interrelated, the concrete contents are completely
independent of each other. Therefore, after discussing task (1) in (I), we will consider task (2) in (II).

The main aim of this paper is to present an idea, under which the minimum weight states of the
SU (n) Lipkin model are systematically constructed. In order to make our idea understandable, we
show the single-particle level scheme in Fig. 1. Let |min(ν)〉 denote a possible candidate of the
minimum weight state of the SU (ν) Lipkin model for 2 ≤ ν ≤ n. We set up the following relations
for |min(ν)〉:

Ñ (ν)|min(ν)〉 = Nν−1|min(ν)〉, (2.16)
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S̃p(ν)|min(ν)〉 = 0 (p = 1, 2, . . . , ν − 1), (2.17a)

S̃q
p (ν)|min(ν)〉 = 0 (p > q = 1, 2, . . . , ν − 2), (2.17b)

S̃p
p (ν)|min(ν)〉 = (γν−1(p) − γν−1(0))|min(ν)〉 (p = 1, 2, . . . , ν − 1). (2.18)

Here, (γν−1(p) − γν−1(0)) is given through the relation∑
m

c̃∗
p,mc̃p,m|min(ν)〉 = γν−1(p)|min(ν)〉 (p = 0, 1, . . . , ν − 1). (2.19)

The total fermion number Nν−1 is expressed as

Nν−1 =
ν−1∑
p=0

γν−1(p). (2.20)

It may be necessary to give some comment on the relations (2.18)–(2.20). The definitions of Ñ (ν)

and S̃p
p (ν) shown in the relations (2.1) and (2.2b), respectively, for the case n = ν are rewritten in

the form

∑
m

c̃∗
p,mc̃p,m =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

ν

⎛⎝Ñ (ν) −
ν−1∑
q=1

S̃q
q (ν)

⎞⎠ (p = 0), (2.21a)

S̃p
p (ν) + 1

ν

⎛⎝Ñ (ν) −
ν−1∑
q=1

S̃q
q (ν)

⎞⎠ (p = 1, 2, . . . , ν − 1). (2.21b)

The relation (2.21) tells us the following: Since the state |min(ν)〉 is regarded as the eigenstate of
Ñ (ν) and S̃p

p (ν), |min(ν)〉 should also be the eigenstate of
∑

m c̃∗
0,mc̃0,m and

∑
m c̃∗

p,mc̃p,m. Then, the
relation (2.19) may be permitted to be set up, and the relations (2.18) and (2.20) are obtained.

The relations (2.16)–(2.20) are set up for the range 2 ≤ ν ≤ n. However, it may be convenient
for later arguments to add the point ν = 1 to 2 ≤ ν ≤ n. Judging from Fig. 1, it may be natural to
consider that the case ν = 1 may be restricted only to p = 0. Then, in this case, the relations (2.17)
and (2.18) are meaningless and the relations (2.16) and (2.19) may be meaningful:

Ñ (1)|min(1)〉 = N0|min(1)〉 = γ0(0)|min(1)〉. (2.22a)

Here, Ñ (1) is given by the relation (2.1) for n = 1 in the form

Ñ (1) =
∑

m

c̃∗
0,mc̃0,m. (2.22b)

Let |min(ν)〉 be obtained. Then, we can show that |min(ν)〉 for ν = 2, 3, . . . , n satisfies the relation

Ñ (n)|min(ν)〉 = Nν−1|min(ν)〉, (2.23)

S̃p(n)|min(ν)〉 = 0 (p = 1, 2, . . . , n − 1), (2.24a)

S̃q
p (n)|min(ν)〉 = 0 (p > q = 1, 2, . . . , n − 2), (2.24b)

S̃p
p (n)|min(ν)〉 =

{
(γν−1(p) − γν−1(0))|min(ν)〉 (p = 1, 2, . . . , ν − 1)), (2.25a)
−γν−1(0)|min(ν)〉 (p = ν, ν + 1, . . . , n − 1). (2.25b)
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The reason is very simple. Since any fermion does not occupy the single-particle levels p = ν, ν +
1, . . . , n − 1, we have

c̃p,m|min(ν)〉 = 0 (p = ν, ν + 1, . . . , n − 1). (2.26)

The relations (2.23)–(2.25) teach us that |min(ν)〉 as the solution of Eqs. (2.16)–(2.18) is also the
minimum weight state of the SU (n) Lipkin model. In the next section, we will discuss the SU (2)

algebra (�̃±,0(n)), which plays a central role for obtaining the state |min(ν)〉.

3. The SU (2) algebra auxiliary to the SU (n) Lipkin model

As mentioned in Sect. 1, an idea preliminary to the present one has already been shown in our recent
paper for the case of the SU (2) Lipkin model [7]. The basic idea is to introduce the SU (2) algebra
(�̃±,0(2)), which is characterized by the commutation relation[

any of �̃±,0(2), any of the SU (2) generators
(̃
S1(2), S̃1(2), S̃1

1 (2)
)] = 0. (3.1)

The explicit forms are as follows:

�̃+(2) =
∑

m

c̃∗
1,mc̃∗

0,m, �̃−(2) =
∑

m

c̃0,mc̃1,m, (3.2a)

�̃0(2) = 1

2

∑
m

(c̃∗
1,mc̃1,m + c̃∗

0,mc̃0,m) − �

(
= 1

2
Ñ (2) − �

)
. (3.2b)

It is easily verified that the expression (3.2) satisfies the condition (3.1) and obeys the SU (2) algebra:

[ �̃+(2), �̃−(2) ] = 2�̃0(2), [ �̃0(2), �̃±(2) ] = ±�̃±(2). (3.3)

In our idea, (�̃±,0(2)) plays a central role in deriving the minimum weight state with arbitrary
fermion number in the SU (2) Lipkin model. Conventionally, only the case of the fermion number
2� has been treated, i.e., the “closed-shell” system. In Sect. 4, to illustrate our idea, we will discuss
how (�̃±,0(2)) is used in our present problem including the case of the SU (3) Lipkin model. In the
form similar to the relation (3.2), we can give the SU (2) algebra (�̃±,0(n)) which is independent of
the SU (n) Lipkin model:[

any of �̃±,0(n), any of
(̃

Sp(n), S̃p(n), S̃p
q (n)

) ]
= 0. (3.4)

To construct (�̃±,0(n)), first, we must have a preliminary argument. We know that a system
composed of one kind of fermion is regarded as a single SU (2) spin system with the magnitude 1/2.
Through the following commutation relation, we can understand this point:

[ c̃∗, c̃ ] = 2
(

c̃∗c̃ − 1

2

)
,

[
c̃∗c̃ − 1

2
, c̃∗

]
= c̃∗, (c̃∗)2 = 0. (3.5)

Here, (c̃∗, c̃) denotes the fermion operator obeying the anti-commutation relation

{ c̃∗, c̃ } = 1, { c̃∗, c̃∗ } = 0. (3.6)

The anti-commutation relation (3.6) leads us to the relation (3.5). The fermion operators c̃∗ and c̃
play the roles of the raising and the lowering operators, respectively. However, the form (3.5) cannot
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be straightforwardly translated into the case of a many-fermion system, for example, the system
specified by p = 0 in this paper:

{ c̃∗
0,m, c̃0,μ } = δmμ, { c̃∗

0,m, c̃∗
0,μ } = 0, i.e. (c̃0,m)2 = 0. (3.7)

The first relation of (3.7) is rewritten to

[ c̃∗
0,m, c̃0,μ ] = 2

(
c̃∗

0,mc̃0,μ − 1

2
δmμ

)
. (3.8)

The form (3.8) suggests that it may be impossible to regard c̃∗
0,m as the raising operator of a SU (2)

spin system as it stands.
Let us discuss a possible idea for the above problem. Under this idea, the present many-fermion

system can be regarded as that composed of independent 2� SU (2) spins. Each is specified by m
and its magnitude is equal to 1/2. This idea is realized through introducing the Clifford numbers
em (m = −j, −j + 1, . . . , j − 1, j), which obey the condition

emeμ + eμem = 0 for m �= μ, (em)2 = 1, i.e., { em, eμ } = 2δmμ,

[ em, c̃∗
0,μ and c̃0,μ ] = 0. (3.9)

Of course, em commutes with the fermion operators. With the use of em, we define the following
operators:

d̃∗
0,m = emc̃∗

0,m, d̃0,m = emc̃0,m. (3.10)

With the aid of the anti-commutation relation (3.7) and the property of the Clifford number (3.9),
we can derive the following relation1 for (d̃∗

0,m, d̃0,m):

[ d̃∗
0,m, d̃∗

0,μ ] = 0, (d̃∗
0,m)2 = 0, (3.11a)

[ d̃∗
0,m, d̃0,μ ] = δmμ · 2

(
d̃∗

0,md̃0,m − 1

2

)
, (3.11b)[

d̃∗
0,md̃0,m − 1

2
, d̃∗

0,μ

]
= δmμ · d̃∗

0,μ. (3.11c)

In contrast to the form (3.8), we can see that the symbol δmμ is attached to both the terms on the
right-hand side of the relation (3.11b). Therefore, the relation (3.11) suggests that the present many-
fermion system consists of 2� SU (2) spins which are independent of one other, and the generators of

1 Equation (3.11b) can be derived through the following process:

[ d̃∗
0,m, d̃0,μ ] = emc̃∗

0,m · eμc̃0,μ − eμc̃0,μ · emc̃∗
0,m

= emeμ · c̃∗
0,mc̃0,μ − eμem · (δmμ − c̃∗

0,mc̃0,μ)

= { em, eμ } · c̃∗
0,mc̃0,μ − e2

m · δmμ = δmμ · 2
(
c̃∗

0,mc̃0,μ − 1
2

)
= δmμ · 2

(
d̃∗

0,md̃0,m − 1
2

)
.
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the mth spin are given by (d̃∗
0,m, d̃0,m, d̃∗

0,md̃0,m −1/2). The total spin of the present system, (�̃±,0(1)),
can be expressed in the form

�̃+(1) =
∑

m

d̃∗
0,m

(
=
∑

m

emc̃∗
0,m

)
, �̃−(1) =

∑
m

d̃0,m

(
=
∑

m

emc̃0,m

)
, (3.12a)

�̃0(1) =
∑

m

(
d̃∗

0,md̃0,m − 1

2

) (
=
∑

m

c̃∗
0,mc̃0,m − � = Ñ (1) − �

)
(e2

m = 1). (3.12b)

Of course, they obey the SU (2) algebra:

[ �̃+(1), �̃−(1) ] = 2�̃0(1), [ �̃0(1), �̃±(1) ] = ±�̃±(1). (3.13)

We can treat the eigenvalue problem of (�̃±,0(1)), which will be discussed in Sect. 4 in reference
to the SU (2) and SU (3) Lipkin model. The SU (2) algebra (�̃±,0(2)) given in the relation (3.2) is
expressed as

�̃+(2) =
∑

m

d̃∗
1,md̃∗

0,m, �̃−(2) =
∑

m

d̃0,md̃1,m, (3.14a)

�̃0(2) = 1

2

∑
m

(d̃∗
1,md̃1,m + d̃∗

0,md̃0,m) − �. (3.14b)

Here, we used (em)2 = 1, and (d̃∗
0,m, d̃0,m) and (d̃∗

1,m, d̃1,m) are given through

d̃∗
p,m = emc̃∗

p,m, d̃p,m = emc̃p,m (p = 0, 1, . . . , n − 1). (3.15)

The properties of the above operators are summarized as follows:2

{ d̃∗
p,m, d̃∗

q,μ } = 0, { d̃p,m, d̃∗
q,μ } = δpq for m = μ, (3.15a)

[ d̃∗
p,m, d̃∗

q,μ ] = 0, [ d̃p,m, d̃∗
q,μ ] = 0 for m �= μ. (3.15b)

We are now able to give explicit forms for �̃±,0(n). First, we define the following operators:

d̃∗
m(n) = d̃∗

n−1,md̃∗
n−2,m · · · d̃∗

1,md̃∗
0,m, (3.16)

i.e.,

d̃∗
m(n) =

{
c̃∗

n−1,mc̃∗
n−2,m · · · c̃∗

1,mc̃∗
0,m for n even ((em)n = 1), (3.17a)

emc̃∗
n−1,mc̃∗

n−2,m · · · c̃∗
1,mc̃∗

0,m for n odd ((em)n = em). (3.17b)

Clearly, d̃∗
m(1) = d̃∗

0,m and d̃∗
m(2) = d̃∗

1,md̃∗
0,m, which were used in the expressions (3.12) and (3.14),

respectively. The operators (d̃∗
m(n), d̃m(n)) satisfy the relation

d̃∗
m(n) = d̃∗

m(n) · d̃m(n) · d̃∗
m(n), (3.18a)

(d̃∗
m(n))2 = 0. (3.18b)

2 The second of the relations in (3.15a) can be derived through the following process:

{ d̃p,m, d̃∗
q,m } = emc̃p,m · emc̃∗

q,m + emc̃∗
q,m · emc̃p,m

= (em)2{ c̃p,m, c̃∗
q,m } = δpq.
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The above two relations are compatible with each other. Further, we have

[ d̃∗
m(n), d̃∗

μ(n) ] = 0 for any combination of (m, μ), (3.19a)

[ d̃∗
m(n), d̃μ(n) ] = 0 for m �= μ. (3.19b)

Judging from the expressions (3.12) and (3.14), it may be natural to set up the following form for
(�̃±,0(n)):

�̃+(n) =
∑

m

d̃∗
m(n), �̃−(n) =

∑
m

d̃m(n), (3.20a)

�̃0(n) = 1

2

∑
m

[ d̃∗
m(n), d̃m(n) ]. (3.20b)

It should be noted that the SU (2) algebra (�̃±,0(n)) is extended from the fermion pair for p = 0
and 1 (�̃±,0(2)). With the use of the relations (3.18) and (3.19), we can show that �̃±,0(n) obey the
SU (2) algebra:

[ �̃+(n), �̃−(n) ] = 2�̃0(n), [ �̃0(n), �̃±(n) ] = ±�̃±(n). (3.21)

Next, we will give the proof of the commutation relation (3.4). For this, we express the SU (n)

generators (2.2) in the unified form

S̃ρ
σ (n) =

∑
m

(c̃∗
ρ,mc̃σ ,m − δρσ c̃∗

0,mc̃0,m) (ρ, σ = 0, 1, . . . , n − 2, n − 1). (3.22)

Of course, S̃0
0 (n) = 0. On the other hand, picking up c̃∗

ρ,mc̃σ ,m, �̃+(n) shown in the relation (3.20)
with (3.17) can be factorized as follows:

�̃+(n) =
∑

m

�̃(+)
m (n; ρσ) · c̃∗

ρ,mc̃∗
σ ,m. (3.23)

It should be noted that �̃
(+)
m (n; ρσ) does not contain c̃∗

ρ,mc̃∗
σ ,m. Then, for ρ �= σ , we have

[ �̃+(n), S̃ρ
σ (n) ] =

∑
m

�̃(+)
m (n; ρσ)[ c̃∗

ρ,mc̃∗
σ ,m, c̃∗

ρ,mc̃σ ,m ] = 0, (3.24a)

[ �̃−(n), S̃ρ
σ (n) ] = −[ �̃+(n), S̃σ

ρ (n) ]∗ = 0. (3.24b)

For the case ρ = σ , we have

[ �̃+(n), S̃ρ
ρ (n) ] =

∑
m

�̃(+)
m (n; ρσ = 0)[ c̃∗

ρ,mc̃∗
0,m, c̃∗

ρ,mc̃ρ,m − c̃∗
0,mc̃0,m ] = 0, (3.25a)

[ �̃−(n), S̃ρ
ρ (n) ] = −[ �̃+(n), S̃ρ

ρ (n) ]∗ = 0. (3.25b)

The relation �̃0(n) = [ �̃+(n), �̃−(n) ]/2 gives us

[ �̃0(n), S̃ρ
σ (n) ] = 0. (3.26)

In this way, we could show that the expression (3.20) satisfies the relation (3.4).
In the next section, the expressions of �̃±,0(2) shown in the relation (3.14) and �̃±,0(3) shown in

the following play a central role:

�̃+(3) =
∑

m

emc̃∗
2,mc̃∗

1,mc̃∗
0,m, �̃−(3) =

∑
m

emc̃0,mc̃1,mc̃2,m, (3.27a)
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�̃0(3) = 1

2

∑
m

(c̃∗
2,mc̃2,m + c̃∗

1,mc̃1,m + c̃∗
0,mc̃0,m)

− 1

2

∑
m

(c̃∗
2,mc̃2,m · c̃∗

1,mc̃1,m + c̃∗
1,mc̃1,m · c̃∗

0,mc̃0,m + c̃∗
0,mc̃0,m · c̃∗

2,mc̃2,m)

+
∑

m

c̃∗
2,mc̃2,m · c̃∗

1,mc̃1,m · c̃∗
0,mc̃0,m − �. (3.27b)

4. The minimum weight states of the SU (2) and SU (3) Lipkin model

In order to illustrate our idea, let us start with the SU (2) Lipkin model. We denote one of the states
in which only the single-particle level p = 0 is occupied by N0 fermions as |N0〉:

Ñ (1)|N0〉 = N0|N0〉, i.e., Ñ (2)|N0〉 = N0|N0〉. (4.1)

Here, we omitted any quantum number which does not connect with the algebras under consideration.
It is easily verified that |N0〉 is a possible candidate of the minimum weight states of the SU (2) Lipkin
model:

S̃1(2)|N0〉 = 0, S̃1
1 (2)|N0〉 = −N0|N0〉 (N0 ≥ 0). (4.2)

Comparison of the relations (4.1) and (4.2) with (2.24), (2.15a), and (2.26) gives us, for the case
(n = 2, ν = 1, p = 1):

|min(1)〉 = |N0〉, γ0(0) = N0. (4.3)

An example of |N0〉 is presented in the appendix.
The state |N0〉 is also the minimum weight state of the SU (2) algebra (�̃±,0(2)):

�̃−(2)|N0〉 = 0, (4.4a)

�̃0(2)|N0〉 = −λ(2)|N0〉, λ(2) = � − N0

2
. (4.4b)

Therefore, by operating �̃+(2) successively on |N0〉, we are able to obtain the states orthogonal to
|N0〉 in the form

|N1, N0〉 = (
�̃+(2)

)N1−N0
2 |N0〉 (0 ≤ N0 ≤ N1). (4.5)

The state |N1, N0〉 satisfies

Ñ (2)|N1, N0〉 = N1|N1, N0〉, (4.6)

S̃1(2)|N1, N0〉 = 0, S̃1
1 (2)|N1, N0〉 = −N0|N1, N0〉, (4.7)

�̃−(2)|N1, N0〉 �= 0, (4.8a)

�̃0(2)|N1, N0〉 = λ0(2)|N1, N0〉, λ0(2) = N1 − N0

2
− λ(2). (4.8b)

The state |N1, N0〉 is also the minimum weight state of the SU (2) Lipkin model with the same
property as that shown in the relation (4.2). But, it is not the minimum weight state of the SU (2)

algebra (�̃±,0(2)). For |min(2)〉 = |N1, N0〉, we obtain the following:

γ1(0) = N1 − N0

2
+ N0, γ1(1) = N1 − N0

2
. (4.9a)
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Inversely, we have

N0 = γ1(0) − γ1(1), N1 = γ1(0) + γ1(1). (4.9b)

The above relations lead us to the inequalities

0 ≤ N0 ≤ N1, 0 ≤ γ1(1) ≤ γ1(0). (4.10)

Since �̃±,0(2) obey the SU (2) algebra, the relations (4.4b) and (4.8b) give us the following
inequalities:

0 ≤ � − N0

2
, i.e., 0 ≤ N0 ≤ 2�, (4.11a)

−
(

� − N0

2

)
≤ −

(
� − N1

2

)
≤ � − N0

2
, i.e., 0 ≤ N0 ≤ N1 ≤ 4� − N0. (4.11b)

Fermion numbers in the single-particle levels p = 0 and p = 1 are given in the relation (4.10) and,
then, we have

0 ≤ γ1(1) ≤ γ1(0) ≤ 2�. (4.12)

Of course, if N1 = N0, γ0(1) = N0 and γ1(1) = 0. The above is an outline of the SU (2) Lipkin
model based on the present idea and, needless to say, it is consistent with the result shown in our
recent work. We were able to obtain the minimum weight states of the Lipkin model with any fermion
numbers governed by the condition (4.12).

Next, we consider the minimum weight states of the SU (3) Lipkin model. First, we pay attention
to the state |N1, N0〉 shown in the relation (4.5), which satisfies

Ñ (3)|N1, N0〉 = N1|N1, N0〉, (4.13)

S̃1(3)|N1, N0〉 = S̃2(3)|N1, N0〉 = S̃1
2 (3)|N1, N0〉 = 0, (4.14)

S̃1
1 (3)|N1, N0〉 = −N0|N1, N0〉, S̃2

2 (3)|N1, N0〉 = −1

2
(N1 + N0)|N1, N0〉. (4.15)

For the relation (4.14), we should note that S̃1(3) = S̃1(2) and, further, |N1, N0〉 does not contain any
fermion in the level p = 2, and S̃2(3) and S̃1

2 (3) contain the annihilation operator in p = 2. Although
|N1, N0〉 is not the minimum weight state of (�̃±,0(2)), it is the minimum weight state of (�̃±,0(3)):

�̃−(3)|N1, N0〉 = 0, (4.16a)

�̃0(3)|N1, N0〉 = −λ(3)|N1, N0〉, λ(3) = � − 1

2

(
N1 − N0

2
+ N0

)
. (4.16b)

If N1 = N0, |N0〉 (= |N1 = N0, N0〉) is also the minimum weight state of the SU (3) Lipkin model.
This may be clear from the relations (4.13)–(4.16). Then, we introduce the state |N2, N1, N0〉 in the
form

|N2, N1, N0〉 = (
�̃+(3)

)N2−N1
3 |N1, N0〉. (4.17)
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The state |N2, N1, N0〉 satisfies

Ñ (3)|N2, N1, N0〉 = N2|N2, N1, N0〉, (4.18)

S̃1(3)|N2, N1, N0〉 = S̃2(3)|N2, N1, N0〉 = S̃1
2 (3)|N2, N1, N0〉 = 0, (4.19)

S̃1
1 (3)|N2, N1, N0〉 = −N0|N2, N1, N0〉, S̃2

2 (3)|N2, N1, N0〉 = −1

2
(N1 + N0)|N2, N1, N0〉,

(4.20)

�̃−(3)|N2, N1, N0〉 �= 0, (4.21a)

�̃0(3)|N2, N1, N0〉 = λ0(3)|N2, N1, N0〉, λ0(3) = N2 − N1

3
− λ(3). (4.21b)

The state |N2, N1, N0〉 is also the minimum weight state of the SU (3) Lipkin model with the same
property as that shown in (4.14) and (4.15). But, it is not the minimum weight state of the SU (2)

algebra (�̃±,0(3)). For |min(3)〉 = |N2, N1, N0〉, we obtain the following:

γ2(0) = N2 − N1

3
+ N1 − N0

2
+ N0,

γ2(1) = N2 − N1

3
+ N1 − N0

2
,

γ2(2) = N2 − N1

3
. (4.22a)

Inversely, we have

N0 = γ2(0) − γ2(1), N1 = γ2(0) + γ2(1) − 2γ2(2), N2 = γ2(0) + γ2(1) + γ2(2). (4.22b)

The above relations lead us to

0 ≤ N0 ≤ N1 ≤ N2, 0 ≤ γ2(2) ≤ γ2(1) ≤ γ2(0). (4.23)

The operators �̃±,0(3) obey the SU (2) algebra and, then, the relations (4.15) and (4.21b) lead us to
the following inequalities:

0 ≤ � − N1 + N0

4
, (4.24a)

−
(

� − N1 + N0

4

)
≤ −

(
� − N2 − N1

3
− N1 + N0

4

)
≤ � − N1 + N0

4
. (4.24b)

The relations (4.24a) and (4.24b), together with the inequality in the relation (4.23), are rewritten as

0 ≤ N1 ≤ 4� − N0, (4.25a)

0 ≤ N0 ≤ N1 ≤ N2 ≤ 6� − 1

2
(N1 + 3N0). (4.25b)

The relation (4.23) gives us

0 ≤ γ2(2) ≤ γ2(1) ≤ γ2(0) ≤ 2�. (4.26)

Needless to say, |N0〉 and |N1, N0〉 are also the minimum weight states of the SU (3) Lipkin model.
In the cases (N2 = N1 = N0) and (N2 = N1 > N0), |N2, N1, N0〉 are reduced to |N0〉 and |N1, N0〉,
respectively.
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5. The minimum weight states of the general case

In last section, we discussed the cases of the SU (2) and SU (3) Lipkin model.As given in the relations
(4.4) and (4.16), |N0〉 and |N1, N0〉 are the minimum weight states of (�̃±,0(n)) for n = 2 and 3,
respectively. The example of |N0〉 and the explicit form of |N1, N0〉 are shown in relations (A.7) and
(4.5), respectively. These two forms suggest the following form:

|Nn−2, Nn−3, . . . , N1, N0〉 = (
�̃+(n − 1)

)Nn−2−Nn−3
n−1 · (�̃+(n − 2)

)Nn−3−Nn−4
n−2 · · ·

× (
�̃+(2)

)N1−N0
2 |N0〉

=
n−1∏
ν=2

(
�̃+(ν)

)Nν−1−Nν−2
ν |N0〉 (n ≥ 3). (5.1a)

If we adopt the form (A.7), the state (5.1a) can be expressed as

|Nn−2, Nn−3, . . . , N1, N0〉 =
n−1∏
ν=1

(
�̃+(ν)

)Nν−1−Nν−2
ν |N 〉 for N−1 = N (n ≥ 2). (5.1b)

Hereafter, we will use only the form (5.1a). Therefore, our treatment is valid for n ≥ 3. If the form
(5.1) is accepted, the minimum weight state of the SU (n) Lipkin model may be given as

|Nn−1, Nn−2, Nn−3, . . . , N1, N0〉 = (
�̃+(n)

)Nn−1−Nn−2
n |Nn−2, Nn−3, . . . , N1, N0〉. (5.2)

First, let us prove the relation

�̃−(n)|Nn−2, Nn−3, . . . , N1, N0〉 = 0. (5.3)

For this, some preliminary argument is necessary. For the case ν < n, the operator d̃m(n) introduced
in the relation (3.15) can be factorized into the form

d̃m(n) = d̃m(ν) · δ̃m(n, ν), (5.4)

d̃m(ν) = d̃0,md̃1,m · · · d̃ν−1,m, (5.5a)

δ̃m(n, ν) = d̃ν,md̃ν+1,m · · · d̃n−1,m. (5.5b)

The operator (δ̃∗
m(n, ν), δ̃m(n, ν)) satisfies

[ δ̃∗
m(n, ν), d̃∗

μ(ν′) ] = 0, [ δ̃m(n, ν), d̃∗
μ(ν′) ] = 0 for ν′ ≤ ν. (5.6)

The relation (5.6) may be self-evident, because (δ̃∗
m(n, ν), δ̃m(n, ν)) and d̃∗

μ are composed from oper-
ators which are different from each other. This can be seen in the relation (5.5). The operator �̃−(n)

is expressed as

�̃−(n) =
∑

m

d̃m(n) =
∑

m

d̃m(ν) · δ̃m(n, ν). (5.7)

Then, using relations (3.19) and (5.6), we have

[ �̃−(n), �̃+(ν) ] =
∑

m

[ d̃m(ν), d̃∗
m(ν) ] · δ̃m(n, ν) for ν < n, (5.8a)
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[ δ̃∗
m(n, ν), �̃+(ν′) ] = 0, [ δ̃m(n, ν), �̃+(ν′) ] = 0 for ν′ ≤ ν. (5.8b)

Successive use of the relation (5.8) and the condition �̃−(n)|N0〉 = 0 lead us to the relation (5.3).
Next, we consider that the state |Nn−2, Nn−3, . . . , N1, N0〉 is the eigenstate of �̃0(n), and its eigen-

value should be obtained. The relations (3.20b), (5.4), and (5.6) lead us to �̃0(n) in the following
form:

�̃0(n) = −1

2

∑
m

d̃m(ν)d̃∗
m(ν)

+ 1

2

(∑
m

d̃∗
m(ν)d̃m(ν) · δ̃∗

m(n, ν)δ̃m(n, ν)

+ d̃m(ν)d̃∗
m(ν)(1 − δ̃m(n, ν)δ̃∗

m(n, ν))

)
, (5.9)

δ̃∗
m(n, ν)δ̃m(n, ν) = (c̃∗

n−1,mc̃n−1,m) · · · (c̃∗
ν,mc̃ν,m), (5.10a)

1 − δ̃m(n, ν)δ̃∗
m(n, ν) = 1 − (1 − c̃∗

n−1,mc̃n−1,m) · · · (1 − c̃∗
ν,mc̃ν,m). (5.10b)

In order to calculate [ �̃0(n), �̃+(ν) ], we must use the relation[∑
m

d̃m(ν)d̃∗
m(ν), �̃+(ν)

]
= −�̃+(ν). (5.11)

For the derivation of the relation (5.11), we used the relations (3.18) and (3.19). Using relations
(5.8b) and (5.11), we obtain the following:

[ �̃0(n), �̃+(ν) ] = 1

2
�̃+(ν)

+ 1

2

(∑
m

[ d̃∗
m(ν)d̃m(ν), �̃+(ν) ] · δ̃∗

m(n, ν)δ̃m(n, ν)

+
∑

m

[ d̃m(ν)d̃∗
m(ν), �̃+(ν) ] · (1 − δ̃m(n, ν)δ̃∗

m(n, ν))

)
. (5.12)

Successive use of the relation (5.12) gives us the relation

�̃0(n)|Nn−2, Nn−3, . . . , N1, N0〉 = −λ(n)|Nn−2, Nn−3, . . . , N1, N0〉,

λ(n) = � − 1

2

(
n−1∑
ν=2

Nν−1 − Nν−2

ν
+ N0

)

= � − 1

2

(
n−1∑
ν=2

Nν−1

ν(ν + 1)
+
(

Nn−2

n
− N0

2

)
+ N0

)
. (5.13)

Here, we used the relation (5.8b) and

�̃0(n)|N0〉 = 1

2
(N0 − 2�)|N0〉,

δ̃∗
m(n, ν)δ̃m(n, ν)|N0〉 = 0, (1 − δ̃m(n, ν)δ̃∗

m(n, ν))|N0〉 = 0. (5.14)
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Thus, we have learned that |Nn−2, Nn−3, . . . , N1, N0〉 is the minimum weight state of (�̃±,0(n)). For
the [(Nn−1 − Nn−2)/n]th-time operation of �̃+(n) on this minimum weight state, we have the form
(5.2):

|Nn−1, Nn−2, Nn−3, . . . , N1, N0〉 = (
�̃+(n)

)Nn−1−Nn−2
n |Nn−2, Nn−3, . . . , N1, N0〉

=
n∏

ν=2

(
�̃+(ν)

)Nν−1−Nν−2
ν |N0〉, (5.15)

�̃0(n)|Nn−1, Nn−2, Nn−3, . . . , N1, N0〉
=
(

Nn−1 − Nn−2

n
− λ(n)

)
|Nn−1, Nn−2, Nn−3, . . . , N1, N0〉. (5.16)

Next, we will show that the state (5.15) is the minimum weight state of the SU (n) Lipkin model.
First, the following relations are derived from the relation (3.15):

[ S̃p(n), d̃∗
λ,m ] = δλpd̃∗

0,m (p = 1, 2, . . . , n − 1), (5.17a)

[ S̃q
p (n), d̃∗

λ,m ] = δλpd̃∗
q,m (q < p = 2, 3, . . . , n − 1), (5.17b)

[ S̃p
p (n), d̃∗

λ,m ] = (δλp − δλ0)d̃
∗
λ,m (p = 1, 2, . . . , n − 1). (5.17c)

With the use of the relation (5.17), we have

[ S̃p(n), �̃+(ν) ] = 0, [ S̃q
p (n), �̃+(ν) ] = 0, (5.18)

[ S̃p
p (n), �̃+(ν) ] =

{
0 (p ≤ ν − 1),
−�̃+(ν) (p > ν − 1).

(5.19)

Noting the relations S̃p(n)|N0〉 = 0, S̃q
p (n)|N0〉 = 0, and S̃p

p (n)|N0〉 = −N0|N0〉, we can show that
the state (5.15) is the minimum weight state of the SU (n) Lipkin model:

S̃p(n)|Nn−1, Nn−2, . . . , N1, N0〉 = 0, (5.20a)

S̃q
p (n)|Nn−1, Nn−2, . . . , N1, N0〉 = 0, (5.20b)

S̃p
p (n)|Nn−1, Nn−2, . . . , N1, N0〉

= −
( p∑

ν=1

Nν−1 − Nν−2

ν

)
|Nn−1, Nn−2, . . . , N1, N0〉 (N−1 = 0). (5.21)

Thus, we could find the minimum weight state for the general case.
In the relations (4.11), (4.12), (4.25), and (4.26), we showed the inequalities that the fermion

numbers Nν−1 and γν−1(p) in the cases of the SU (2) and the SU (3) Lipkin model should satisfy. As
the final remark of this section, we will give the inequalities for the general case. First, the relation
between Nn−1 and γn−1(p) for the SU (n) Lipkin model must be discussed. The minimum weight state
|min(n)〉 = |Nn−1, Nn−2, . . . , N1, N0〉 shown in the relation (5.16) gives us the following relation:

γn−1(0) = Nn−1 − Nn−2

n
+ Nn−2 − Nn−3

n − 1
+ · · · + N2 − N1

3
+ N1 − N0

2
+ N0, (5.22a)

γn−1(1) = Nn−1 − Nn−2

n
+ Nn−2 − Nn−3

n − 1
+ · · · + N2 − N1

3
+ N1 − N0

2
,
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...

γn−1(n − 2) = Nn−1 − Nn−2

n
+ Nn−2 − Nn−3

n − 1
,

γn−1(n − 1) = Nn−1 − Nn−2

n
. (5.22b)

The relation (5.22) is written compactly as

γn−1(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
ν=2

Nν−1 − Nν−2

ν
+ N0 (p = 0), (5.23a)

n∑
ν=p+1

Nν−1 − Nν−2

ν
(p = 1, 2, . . . , n − 1). (5.23b)

The relation (5.23) is inversely expressed as

Nν =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ν∑
p=0

γn−1(p) − (ν + 1)γn−1(ν + 1) (ν = 0, 1, . . . , n − 2), (5.24a)

n−1∑
p=0

γn−1(p) (ν = n − 1). (5.24b)

The form (5.24b) is nothing but the relation (2.20). We can rewrite (5.22) to the following:

γn−1(0) − γn−1(1) = N0 (p = 0), (5.25a)

γn−1(p) − γn−1(p + 1) = Np − Np−1

p + 1
(p = 1, 2, . . . , n − 2), (5.25b)

γn−1(n − 1) = Nn−1 − Nn−2

n
(p = n − 1). (5.25c)

The right-hand side of the relation (5.25) should be zero or positive, and then we have

0 ≤ N0 ≤ N1 ≤ · · · ≤ Nn−2 ≤ Nn−1, (5.26)

0 ≤ γn−1(n − 1) ≤ γn−1(n − 2) ≤ · · · ≤ γn−1(1) ≤ γn−1(0). (5.27)

At the present, the upper limit cannot be determined.
To determine the upper limit, we note that (�̃±,0(n)) obeys the SU (2) algebra, and the relations

(5.13) and (5.16) give us the following inequalities:

λ(n) ≥ 0,

i.e., � − 1

2

(
n−1∑
ν=2

Nν−1

ν(ν + 1)
+
(

Nn−2

n
− N0

2

)
+ N0

)
≥ 0, (5.28)

− λ(n) ≤ Nn−1 − Nn−2

n
− λ(n) ≤ λ(n), (5.29a)

i.e., Nn−2 ≤ Nn−1 ≤ n

(
2� −

n−1∑
ν=1

Nν−1

ν(ν + 1)

)
. (5.29b)
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The relation (5.28) combined with the relation (5.26) lead us to

N0 ≤ 2� (n = 2), (5.30a)

Nn−2 ≤ (n − 1)

(
2� −

n−2∑
ν=1

Nν−1

ν(ν + 1)

)
(n = 3, 4, . . .), (5.30b)

0 ≤ N0 ≤ N1 ≤ · · · ≤ Nn−1 ≤ n

(
2� −

n−1∑
ν=1

Nν−1

ν(ν + 1)

)
(n = 2, 3, . . .). (5.31)

The relations (5.29) and (5.30) for the cases n = 2 and 3 reduce to the relations (4.11) and (4.25),
respectively. The inequality (5.29a) leads us to the following:

γn−1(0) ≤ 2�. (5.32)

For the derivation, we used the relation (5.23). Then, we have

0 ≤ γn−1(n − 1) ≤ γn−1(n − 2) ≤ · · · ≤ γn−1(1) ≤ γn−1(0) ≤ 2�. (5.33)

Thus, we could present the minimum weight state of the general case. It should be noted that all the
relations given in this section are available for n ≥ 3.

6. Discussions

So far, we have developed a possible idea for how to give concrete expressions of the minimum
weight states for the SU (n) Lipkin model for arbitrary fermion number. In this section, we will treat
some simple examples of the minimum weight states from a viewpoint slightly different from that in
the last section. This argument is also in preparation for the next paper (II). Our discussion starts by
mentioning that the SU (n) Lipkin model contains SU (2) subalgebras, the number depending on the
number n. In this section, we will discuss the cases n = 2, 3, 4, and 5. The case n = 2 is the SU (2)

algebra itself and the case n = 3 has one SU (2) subalgebra. On the other hand, the cases n = 4 and
5 contain two SU (2) algebras. One by one, we will show this.

In the case n = 2, S̃1(= S̃+), S̃1(= S̃−), and S̃1
1/2(= S̃0) form the SU (2) algebra and �̃SU (2) is

given as

�̃SU (2) = S̃+S̃− + S̃0
(̃
S0 − 1

)
. (6.1)

The above is nothing but the original Lipkin model. The minimum weight state |min(2)〉 is specified
by two quantum numbers N and s, the eigenvalues of Ñ and −S̃0: |min(2)〉 = |N ; s〉. Of course,
these two are related to the algebra. Then, for the orthogonal set, we have

|N ; ss0〉 =
√

(s − s0)!
(2s)!(s + s0)!

(̃
S+
)s+s0 |N ; s〉. (6.2)

In this case, we obtain the relation

γ1(0) = N

2
+ s (≥ 0), γ1(1) = N

2
− s (≥ 0). (6.3)
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Fig. 2. The relation between s and N is shown in the inequality (6.4) in the case n = 2, namely, in the case of
the SU (2) Lipkin model.

Then, using the inequality (4.12), we can show that the relation (6.3) holds in the following domains:

(D1) 0 ≤ N ≤ 2�, 0 ≤ s ≤ N

2
, (6.4a)

(D2) 2� ≤ N ≤ 4�, 0 ≤ s ≤ 2� − N

2
. (6.4b)

The above domains are illustrated in Fig. 2. A “closed-shell” system appears in the case (N =
2�, s = �), where, in the absence of interactions, the level p = 0 is occupied fully by the fermions
and the level p = 1 is vacant. Point C in Fig. 2 corresponds to the “closed-shell” system. But, s can
decrease from s = � to s = 0, where the levels p = 0 and p = 1 are occupied in equal fermion
number �.

Next, we treat the case n = 3. The operators S̃2
1 (= S̃+), S̃1

2 (= S̃−), and (̃S2
2 − S̃1

1 )/2(= S̃0) form
the SU (2) subalgebra and, further, we have the scalar R̃0 with respect to (̃S±,0) in the form

R̃0 = 1

2

(̃
S2

2 + S̃1
1

) ( [
S̃±,0, R̃0

] = 0
)
. (6.5)

The Casimir operator �̃SU (3) is expressed as

�̃SU (3) = (̃
S2S̃2 + S̃1S̃1

)+ (̃
S+S̃− + S̃0

(̃
S0 − 1

))+ 1

3
R̃0
(̃
R0 − 3

)
. (6.6)

In addition to N , |min(3)〉 can be specified by the eigenvalues of S̃0 and R̃0, −σ and −ρ, respectively:
|min(3)〉 = |N ; ρ, σ 〉. Then, we have

|N ; ρ, σσ0〉 =
√

(σ − σ0)!
(2σ)!(σ + σ0)!

(̃
S+
)σ+σ0 |N ; ρ, σ 〉. (6.7)
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Fig. 3. The domains depicted in (6.9) are illustrated in the case n = 3, namely, in the case of the SU (3) Lipkin
model.

Therefore, for constructing the orthogonal sets, we, further, must take account of (̃S2, S̃1); this will
be discussed in (II). For now, we have the relation

γ2(0) = N

3
+ 2ρ

3
, γ2(1) = N

3
− ρ

3
+ σ , γ2(2) = N

3
− ρ

3
− σ . (6.8)

The inequality (4.23) leads us to the following domains for the relation (6.8):

(i) 0 ≤ N ≤ 2�

(D1) 0 ≤ ρ ≤ N

4
, 0 ≤ σ ≤ ρ, (D2)

N

4
≤ ρ ≤ N , 0 ≤ σ ≤ N

3
− ρ

3
, (6.9a)

(ii) 2� ≤ N ≤ 4�

(D3) 0 ≤ ρ ≤ N

4
, 0 ≤ σ ≤ ρ, (D4)

N

4
≤ ρ ≤ 3� − N

2
, 0 ≤ σ ≤ N

3
− ρ

3
,

(6.9b)

(iii) 4� ≤ N ≤ 6�

(D5) 0 ≤ ρ ≤ 3� − N

2
, 0 ≤ σ ≤ ρ. (6.9c)

The above domains are illustrated in Fig. 3. The present case contains two “closed-shell” systems.
The first appears at the point C1 in Fig. 3 (N = 2�, ρ = 2�, σ = 0). Only level p = 0 is occupied.
The second appears at the point C2 in Fig. 3 (N = 4�, ρ = �, σ = �). In this case, the levels
p = 0 and 1 are fully occupied. However, by changing the values of ρ and σ , we can produce various
fermion number distributions.

Third, we have the case n = 4, where there exist two SU (2) subalgebras: S̃3
2 (= S̃+(1)), S̃2

3 (=
S̃−(1)), (̃S3

3 − S̃2
2 )/2(= S̃0(1)) and S̃1(= S̃+(2)), S̃1(= S̃−(2)), S̃1

1/2(= S̃0(2)). Further, we denote
the addition of the above two as

S̃±,0 = S̃±,0(1) + S̃±,0(2). (6.10)

This case gives us one scalar with respect to (̃S±,0):

R̃0 = 1

2

(̃
S3

3 + S̃2
2 − S̃1

1

)
. (6.11)
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The Casimir operator �̃SU (4) is written as

�̃SU (4) = (̃
S3S̃3 + S̃2S̃2 + S̃3

1 S̃1
3 + S̃2

1 S̃1
2

)
+
∑
i=1,2

(̃
S+(i)̃S−(i) + S̃0(i)

(̃
S0(i) − 1

))+ 1

2
R̃0
(̃
R0 − 4

)
. (6.12)

The minimum weight state |min(4)〉 can be expressed as |N ; ρ, σ 1, σ 2〉. Here, of course, ρ, σ 1,
and σ 2 denote the eigenvalues of −R̃0, −S̃0(1), and −S̃0(2), respectively. Then, we have the
following state:

|N ; ρ, σ 1, σ 2, σσ0〉 =
∑
σ 1

0 ,σ 2
0

〈σ 1σ 1
0 , σ 2σ 2

0 |σσ0〉
√

(σ 1 − σ 1
0 )!

(2σ 1)!(σ 1 + σ 1
0 )!

√
(σ 2 − σ 2

0 )!
(2σ 2)!(σ 2 + σ 2

0 )!

× (̃
S+(1)

)σ 1+σ 1
0
(̃
S+(2)

)σ 2+σ 2
0 |N ; ρ, σ 1, σ 2〉. (6.13)

Then, the role of S̃3, S̃2, S̃3
1 , and S̃2

1 becomes interesting for constructing the orthogonal sets. In the
present case, we can derive the relation

γ4(0) = N

4
+ ρ

2
+ σ 2, γ4(1) = N

4
+ ρ

2
− σ 2,

γ4(2) = N

4
− ρ

2
+ σ 1, γ4(3) = N

4
− ρ

2
− σ 1. (6.14)

The inequality (5.33) gives the following 12 domains:

(i) 0 ≤ N ≤ 2�

(D1) 0 ≤ ρ ≤ N

6
, (D2)

N

6
≤ ρ ≤ N

2
, (6.15a)

(ii) 2� ≤ N ≤ 4�

(D3) 0 ≤ ρ ≤ N

6
, (D4)

N

6
≤ ρ ≤ 4�

3
− N

6
,

(D5)
4�

3
− N

6
≤ ρ ≤ �, (D6) � ≤ ρ ≤ N

2
, (6.15b)

(iii) 4� ≤ N ≤ 6�

(D7) 0 ≤ ρ ≤ 4�

3
− N

6
, (D8)

4�

3
− N

6
≤ ρ ≤ N

6
,

(D9)
N

6
≤ ρ ≤ �, (D10) � ≤ ρ ≤ 4� − N

2
, (6.15c)

(iv) 6� ≤ N ≤ 8�

(D11) 0 ≤ ρ ≤ 4� − N

2
, (D12)

4�

3
− N

6
≤ ρ ≤ 4� − N

2
. (6.15d)

These are illustrated in the complicated Fig. 4. Three “closed-shell” systems appear in this case: C1

(N = 2�, ρ = �, σ 1 = 0, σ 2 = 0), C2 (N = 4�, ρ = 2�, σ 1 = 0, σ 2 = 0), and C3 (N = 6�,
ρ = �, σ 1 = �, σ 2 = 0). By changing the values of ρ, σ 1, and σ 2, we can produce various fermion
number distributions.

Finally, we will treat the case n = 5. In this case, we also have two SU (2) subalgebras: S̃4
3 (= S̃+(1)),

S̃3
4 (= S̃−(1)), (̃S4

4 − S̃3
3 )/2(= S̃0(1)) and S̃2

1 (= S̃+(2)), S̃1
2 (= S̃−(2)), (̃S2

2 − S̃1
1 )/2(= S̃0(2)). For

21/26

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2016/8/083D

03/2594885 by U
N

IV.C
O

IM
BR

A/FAC
.PSIC

O
LO

G
IA E user on 21 Septem

ber 2023



PTEP 2016, 083D03 Y. Tsue et al.

Fig. 4. The domains depicted in (6.15) are illustrated in the case n = 4, namely, in the case of the SU (4)

Lipkin model.

these two, we also use S̃±,0 given in the relation (6.10). However, the present case contains two
scalars with respect to (̃S±,0):

R̃0(1) = 1

2

(̃
S4

4 + S̃3
3 − S̃2

2 − S̃1
1

)
, R̃0(2) = 1

2

(̃
S4

4 + S̃3
3 + S̃2

2 + S̃1
1

)
. (6.16)

The Casimir operator �̃SU (5) can be expressed as

�̃SU (5) = (̃
S4S̃4 + S̃3S̃3 + S̃2S̃2 + S̃1S̃1 + S̃4

1 S̃1
4 + S̃3

1 S̃1
3 + S̃4

2 S̃2
4 + S̃3

2 S̃2
3

)
+
∑
i=1,2

(̃
S+(i)̃S−(i) + S̃0(i)

(̃
S0(i) − 1

))
+ 1

2
R̃0(1)

(̃
R0(1) − 4

)+ 1

10
R̃0(2)

(̃
R0(2) − 10

)
. (6.17)

The minimum weight state is specified by ρ1, ρ2, σ 1, and σ 2, which are the eigenvalues of −R̃0(1),
−R̃0(2), −S̃0(1), and −S̃0(2), respectively: |min(5)〉 = |N ; ρ1, ρ2, σ 1, σ 2〉. Then, we have

|N ; ρ1, ρ2, σ 1, σ 2, σσ0〉 =
∑
σ 1

0 ,σ 2
0

〈σ 1σ 1
0 σ 2σ 2

0 |σσ0〉
√

(σ 1 − σ 1
0 )!

(2σ 1)!(σ 1 + σ 1
0 )!

√
(σ 2 − σ 2

0 )!
(2σ 2)!(σ 2 + σ 2

0 )!

× (̃
S+(1)

)σ 1+σ 1
0
(̃
S+(2)

)σ 2+σ 2
0 |N ; ρ1, ρ2, σ 1, σ 2〉. (6.18)

Of course, the roles of S̃4, S̃3, S̃2, S̃1, S̃4
1 , S̃3

1 , S̃4
2 , and S̃3

2 must be investigated. In the case n = 5, we
have the following relation:

γ5(0) = N

5
+ 2

5
ρ2,

γ5(1) = N

5
+ 1

2
ρ1 − 1

10
ρ2 + σ 2, γ5(2) = N

5
+ 1

2
ρ1 − 1

10
ρ2 − σ 2,

γ5(3) = N

5
− 1

2
ρ1 − 1

10
ρ2 + σ 1, γ5(4) = N

5
− 1

2
ρ1 − 1

10
ρ2 − σ 1. (6.19)
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Fig. 5. The domains depicted in (6.20) are illustrated in the case n = 5, namely, in the case of the SU (5)

Lipkin model.

In this case, we also use the inequality (5.33). But, different from the case n = 4, we cannot give
the relations between N and ρ1 also between N and ρ2, respectively. We give the relation between
ρ1 and ρ2 by regarding N as a parameter. Inequality (5.33), except for γ5(0) ≤ 2�, leads us to the
following:

(DI) ρ1 ≥ 2N

15
− ρ2

15
, ρ1 ≥ ρ2

3
, ρ1 ≥ N

10
+ ρ2

5
, (6.20a)

(DII) ρ1 ≥ 2N

15
− ρ2

15
, ρ1 ≥ ρ2

3
, ρ1 ≤ N

10
+ ρ2

5
, (6.20b)

(DIII) ρ1 ≥ 2N

15
− ρ2

15
, ρ1 ≤ ρ2

3
, (6.20c)

(DIV) ρ1 ≤ 2N

15
− ρ2

15
, ρ1 ≥ ρ2

3
, (6.20d)

(DV) ρ1 ≤ 2N

15
− ρ2

15
, ρ1 ≤ ρ2

3
. (6.20e)

The relation (6.20) is illustrated in Fig. 5. In each domain, σ 1 and σ 2 obey the inequalities

(DI) 0 ≤ σ 1 ≤ N

5
− ρ2

10
− ρ1

2
, 0 ≤ σ 2 ≤ ρ2

2
− ρ1

2
, (6.21a)
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Fig. 6. The relation (6.21) is applied to the domains surrounded by short oblique lines in the case n = 5,
namely, in the case of the SU (5) Lipkin model.

(DII) 0 ≤ σ 1 ≤ 3ρ1

2
− ρ2

2
, 0 ≤ σ 2 ≤ ρ2

2
− ρ1

2
,

or
3ρ1

2
− ρ2

2
≤ σ 1 ≤ N

5
− ρ2

10
− ρ1

2
, 0 ≤ σ 2 ≤ ρ1 − σ 1, (6.21b)

(DIII) 0 ≤ σ 1 ≤ N

5
− ρ2

10
− ρ1

2
, 0 ≤ σ 2 ≤ ρ1 − σ 1, (6.21c)

(DIV) 0 ≤ σ 1 ≤ 3ρ1

2
− ρ2

2
, 0 ≤ σ 2 ≤ ρ2

2
− ρ1

2
,

or
3ρ1

2
− ρ2

2
≤ σ 1 ≤ ρ1, 0 ≤ σ 2 ≤ ρ1 − σ 1, (6.21d)

(DV) 0 ≤ σ 1 ≤ ρ1, 0 ≤ σ 2 ≤ ρ1 − σ 1. (6.21e)

The inequality γ5(0) ≤ 2� gives us the relation

ρ2 ≤ 5� − N

2
(= ρ). (6.22)

The relation (6.22) does not depend on ρ1, σ 1, or σ 2.
Combining ρ defined in the relation (6.22) with the regions (i)–(v) in the ρ2-axis of Fig. 5, we have

(v) 0 ≤ ρ ≤ N

8
, (iv)

N

8
≤ ρ ≤ N

3
, (iii)

N

3
≤ ρ ≤ 3N

4
,

(ii)
3N

4
≤ ρ ≤ 2N , (i) 2N ≤ ρ. (6.23a)

The relation (6.23a) is reduced to

(i) 0 ≤ N ≤ 2�, (ii) 2� ≤ N ≤ 4�, (iii) 4� ≤ N ≤ 6�,

(iv) 6� ≤ N ≤ 8�, (v) 8� ≤ N ≤ 10�. (6.23b)

The relation (6.23b) is arranged in the inverted order. It does not necessarily follow that each region
covers the whole domains shown in Fig. 5 (	OAB in Fig. 6). We show this feature in Fig. 6.
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The relation (6.21) should be applied to the domains surrounded by short oblique lines in Fig. 6. Four
“closed-shell” systems appear in the present case: C1 (N = 2�, ρ2 = 4�, ρ1 = 0, σ 2 = σ 1 = 0),
C2 (N = 4�, ρ2 = 3�, ρ1 = �, σ 2 = �, σ 1 = 0), C3 (N = 6�, ρ2 = 2�, ρ1 = 0, σ 2 = σ 1 =
0), and C4 (N = 8�, ρ2 = �, ρ1 = �, σ 2 = 0, σ 1 = �). By changing the values of ρ2, ρ1, σ 2,
and σ 1, we can produce various fermion number distributions.

In this section, we have presented the structure of the minimum weight states for the cases n = 2–5
in a form slightly different from that given in Sect. 5. The basic idea comes from the introduction
of the SU (2) subalgebras and the scalar operators defined in the relations (6.5), (6.18), and (6.16).
In (II), we will discuss the cases with arbitrary values of n. Of course, the scalar operators are
generalized.
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Appendix. A possible example of the state |N0〉 introduced in the relation (4.1)

In this appendix, the state |N0〉 is presented through the eigenvalue problem of (�̃±,0(1)) defined in the
relation (3.12). The level p = 0 consists of 2� single-particle states m = −j, −j+1, . . . , j−1, j (2� =
2j +1). These states can be divided into two groups. One consists of (m1, m2, . . . , m�), and the other
(m̄1, m̄2, . . . , m̄�). We regard the state m̄i as the partner of mi (i = 1, 2, . . . , �). The choice is
arbitrary and, for example, all of the mi and m̄i are positive and negative, respectively. Under the
above classification, we define the state

|mv, mv−1, . . . , m2, m1〉〉 = c̃∗
mv

c̃∗
mv−1

· · · c̃∗
m2

c̃∗
m1

|0〉. (A.1)

Here, the index p = 0 was omitted and we fix the ordering of mi appropriately, for example,
mv > mv−1 > · · · > m2 > m1. It may be self-evident that the state (A.1) is not the minimum weight
state of (�̃±,0(1)). Then, by replacing c̃∗

m with D̃∗
m, we introduce the following state:

|mv, mv−1, . . . , m2, m1〉 = D̃∗
mv

D̃∗
mv−1

· · · D̃∗
m2

D̃∗
m1

|0〉, (A.2)

D̃∗
m = 1√

2
(d̃∗

m − d̃ ∗̄
m) = 1√

2
(emc̃∗

m − em̄c̃∗̄
m). (A.3)

The operator D̃∗
m satisfies

[ �̃−(1), D̃∗
m ] = −√

2(c̃∗
mc̃m − c̃∗̄

mc̃m̄). (A.4)

Therefore, we have

�̃−(1)|mv, mv−1, . . . , m2, m1〉 = 0, (A.5)

0 ≤ v ≤ �. (A.6)

Next, we consider the state

|N0; mv, mv−1, . . . , m2, m1〉 = (
�̃+(1)

)N0−v |mv, mv−1, . . . , m2, m1〉. (A.7)
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The relation (A.7) satisfies

�̃0(1)|N0; mv, mv−1, . . . , m2, m1〉 = −(� − N0)|N0; mv, mv−1, . . . , m2, m1〉 , (A.8)

i.e.,

Ñ (1)|N0; mv, mv−1, . . . , m2, m1〉 = N0|N0; mv, mv−1, . . . , m2, m1〉. (A.9)

The above is nothing but the relation (4.1). The present eigenvalue problem gives us

− (� − v) ≤ N0 − � ≤ � − v. (A.10)

Combining with the inequality (A.6), we have the inequality

0 ≤ v ≤ �, v ≤ N0 ≤ 2� − v. (A.11)

The above is a possible example of |N0〉.
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