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The Adenosinergic System in Diabetic Retinopathy
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The neurodegenerative and inflammatory environment that is prevalent in the diabetic eye is a key player in the development and
progression of diabetic retinopathy. The adenosinergic system is widely regarded as a significant modulator of neurotransmission
and the inflammatory response, through the actions of the four types of adenosine receptors (A

1
R, A2AR, A2BR, and A

3
R), and

thus could be revealed as a potential player in the events unfolding in the early stages of diabetic retinopathy. Herein, we review
the studies that explore the impact of diabetic conditions on the retinal adenosinergic system, as well as the role of the said system
in ameliorating or exacerbating those conditions. The experimental results described suggest that this system is heavily affected
by diabetic conditions and that the modulation of its components could reveal potential therapeutic targets for the treatment of
diabetic retinopathy, particularly in the early stages of the disease.

1. Introduction

Diabetic retinopathy (DR) is the most common complication
of diabetes [1] and one of the leading causes of visual impair-
ment and preventable blindness in working age adults in the
world [2, 3]. In fact, DR is highly prevalent in both type 1 and
type 2 diabetic patients: nearly 77% of type 1 diabetic patients
present some degree of the disease [3], and over 60% of type 2
diabetic patients (T2DM) after 20 years with diabetes present
retinopathy to some degree [4]. The predominant view of
DR has been that diabetes primarily affected the retinal
microvasculature and this then caused secondary damage
and degeneration. However, over the years, this notion has
been contested, with several studies demonstrating that the
neural retina is also affected early in diabetes [5], and
vision impairments are detected earlier than the vascular
changes [6], suggesting that neural changes are a result of
diabetes and not a consequence of BRB breakdown [5].

In fact, DR shares many similarities with neurodegenerative
diseases, such alterations in glutamatergic system [7–11],
apoptosis [12–15], glial activation [6], and inflammation [16–
19]. Studies showed a correlation between the toxic levels
of extracellular glutamate and the increased damage and
higher apoptotic levels in retinal neurons observed in diabetic
conditions [20, 21]. The altered levels of several neurotrophic
factors in diabetic conditions can also exacerbate the damage
occurring in retinal neurons, affect glucose metabolism,
and contribute to an inflammatory environment [22–25].
This inflammatory environment has characteristics that are
usually associated with chronic inflammatory conditions
such as an increase in leukostasis, microglial cell activation,
activation of NF-𝜅B leading to the amplified production and
release of proinflammatory cytokines, chemokines, and other
inflammatory mediator proteins [6, 26, 27]. Cytokines such
as TNF, interleukin-1𝛽 (IL-1𝛽), and interleukin-6 (IL-6) are
increased in DR and connected to retinal leukostasis, BRB
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breakdown, and the higher levels of apoptosis present in DR
[16, 17, 19, 28].

2. The Retina

The retina is a part of the central nervous system (CNS) that
lines the inner, posterior surface of the eye, containing four
types of cells: neuronal cells, macroglial and microglial cells,
and blood vessel cells.There are several types of neuronal cells
in the retina: photoreceptors, bipolar, amacrine, horizontal,
and ganglion cells. Photoreceptors mediate phototransduc-
tion, while a complex signaling network existing between
the different neurons modulates and communicates nerve
impulses. These are then transmitted to the brain across
the axons of retinal ganglion cells that form the nerve fiber
layer and optic nerve. The two main types of macroglial cells
present in the retina are Müller cells and astrocytes, and they
are involved not only in retinal metabolism but also in the
modulation of the activity of both neurons and blood vessels.
Müller cells cross the width of the neural retina, forming a
connection between retinal neurons, the vitreous body, and
blood vessels, by being key regulators of neuronal function,
extracellular ionic balance, and glutamatemetabolism.Astro-
cytes are present in the nerve fiber layer and their processes
wrap blood vessels and retinal ganglion cells. Macroglial cells
are then vital in the communication between the vascular
and the neuronal parts of the retina. Microglial cells are
the resident immune cells of the central nervous system,
surveying the retinal parenchyma and being highly sensitive
to alterations in the homeostatic environment. The blood
vessels are composed of pericytes, involved in the regulation
of vascular flow, and endothelial cells, vital for hemostatic
functions and the formation of the blood-retinal barrier
(BRB).The activity of these cells and the interaction between
them are necessary for normal retinal function, and if their
normal functions are impaired, this can result in loss of visual
capacity [29, 30].

3. The Adenosinergic System

Adenosine is a purine nucleoside essential to all living cells.
Beyond its role in metabolism and genetic transmission of
information, adenosine is also a messenger that regulates
numerous physiological processes in several tissues, partic-
ularly in the cardiovascular and nervous systems. Studies
have shown the importance of adenosine in both normal
and pathological situations, from regulation of sleep and
linking energy demands to cerebral blood flow to inflamma-
tory responses and in neuroprotection against ischemia and
epilepsy [31–33]. In the retina, most knowledge of adenosine
function is based on research in pathological contexts, but
nevertheless, a picture is forming of a signaling system
involved in neurotransmission modulation [34], vascular
processes [35], control of osmotic alterations [36], and
inflammatory response [37], as a background modulatory
system, or in transient responses to alterations to the home-
ostasis.

Several components are involved in this regulatory
system: the actions of adenosine are mediated via four

G protein-coupled receptors (GPCR), namely, the A
1
, A2A,

A2B, and A
3
adenosine receptors, although some G-protein-

independent effects have also been reported [38, 39]. The
adenosine receptors are abundant throughout the organism,
but particularly in the CNS where the receptors can be found
in all brain areas [32]. In the retina, most neuronal cells
express A

1
R and/or A2AR, with retinal ganglion cells also

expressingA
3
R [40–42];Müller cells have all but one receptor

type present, with no direct A
3
R detection so far [43], while

astrocytes and microglial cells express all four receptors [44–
47]; pericytes express A

1
R and A2AR and endothelial cells

express A2AR and A2BR [48, 49] while epithelial cells can
express all four receptors [40, 50, 51].

A
1
R and A2AR have generally opposing signaling effects:

A
1
R activation has a largely inhibitory action, especially in

neurons, where A
1
R signaling causes a decrease in the release

of neurotransmitters and overall excitability [32, 39]. A2AR
activation, on the other hand, has a more excitatory role in
neurons, being responsible for the potentiation of synaptic
transmitter release [32, 39]. In other systems, however, the
activation of A2AR can also have inhibitory actions [38].

A2BR and A
3
R, due to their more recent discovery and

characterization, have roles that are less understood. A2BR,
much like A2AR, has been linked to increased neurotrans-
mission in the central nervous system and anti-inflammatory
pathways, although some reports show a potential proinflam-
matory action in some circumstances [38, 39, 52].

A
3
R is probably the receptor that is less known, with sev-

eral studies showing a double nature in different pathophysio-
logical conditions, often going from protective to destructive
depending on the agonist concentration or experiment time-
frame [53].

The different adenosine receptors have distinct but fre-
quently overlapping distributions. The proximity of differ-
ent adenosine receptors means that adenosine can activate
multiple signaling pathways and create a self-modulating
environment in several cases, with A2AR and A2BR activating
adenylate cyclase and A

1
R and A

3
R inhibiting it. In the case

of A2AR and A2BR, the interactions may be synergistic, with
the lower affinity A2BR supporting the higher affinity A2AR,
which may suffer desensitization faster [39].

3.1. Management of Adenosine Levels. The intra- and extra-
cellular levels of adenosine are controlled by several enzymes
and transporters, allowing a regulation that is fine-tuned to
disturbances in homeostasis, as illustrated in Figure 1.

The release of adenine nucleotides and its posterior
extracellular conversion into adenosine is one of the mecha-
nisms that can lead to an increase in the extracellular levels
of adenosine. ATP is an important source of extracellular
adenosine, being released, not only in normal conditions,
but also in response to different forms of stress and during
necrosis or apoptosis [54]. Several extracellular enzymes
handle the conversion of released adenine nucleotides:
nucleoside triphosphate diphosphohydrolases (NTPDase),
ecto-nucleotide pyrophosphatase/phosphodiesterases (ecto-
NPP), and apyrases create a chain where adenine nucleotides
can be dephosphorylated to 5-AMP fairly quickly, which is
then dephosphorylated to adenosine by 5-ectonucleotidase
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Figure 1: Representation of the adenosinergic system, from adenosine formation and release to signaling and removal from the extracellular
space. ADA: adenosine deaminase; Ado: adenosine; AK: adenosine kinase; AMP: adenosine monophosphate; ATP: adenosine triphosphate;
e-5-NT: ecto-5-nucleotidase; Ino: inosine; NT: nucleoside transporter; NTPDase: nucleoside triphosphate diphosphohydrolase.

(5-eN) [31]. These enzymes are present in the CNS [31, 55],
including the retina [56, 57], whereMüller cells, in particular,
have this enzyme chain best characterized [36, 56].

Another mechanism by which extracellular adenosine
levels increase is the release of intracellular adenosine by
bidirectional nucleoside transporters: equilibrative nucleo-
side transporters (ENTs) and concentrative nucleoside trans-
porters (CNTs). The ENTs consist of four characterized
isoforms (ENT1–4) and mediate a facilitated bidirectional
diffusion of nucleosides through the plasma membrane,
transporting naturally occurring nucleosides with broad
selectivity. All of them are widely distributed, but ENT2
levels are higher in brain and skeletal muscle, while ENT4
has a more marked presence in heart, liver, and brain [58].
The CNTs, consisting of three isoforms (CNT1–3), perform
a secondary active transport function, where the inward
transport of a nucleoside is coupled with a transmembrane
sodium gradient. Of the three, only CNT2 is expressed
in brain [58]. As for the retina, studies have shown the
expression of ENT1-2 and CNT1-2 in whole retina extracts
from rats [59] and also a rat Müller cell line [60]. In a
rat retinal capillary endothelial cell line, the expression of
ENT1-2 and CNT2-3 was also detected [59]. Due to the
presence of ENTs, the transport of adenosine can be made
following concentration gradients [61], which means that
the concentration of intracellular adenosine can directly

affect the extracellular levels of this nucleoside, making
the regulation of the intracellular enzymes involved in the
adenosine cycle also an important step in the control of
extracellular adenosine levels.

Beyond nucleotide degradation and transporter release,
one group found evidence to support the existence of amech-
anism for the direct release of adenosine in the cerebellum of
mice, through adenosine-filled vesicles [62].

The nucleoside transporters are also involved in the reup-
take of adenosine by neurons andneighboring cells to prevent
unwanted receptor activation. Intracellularly, adenosine can
be either phosphorylated by adenosine kinase (AK) to form
AMP or degradated by adenosine deaminase (ADA). Both
enzymes are present in rat retina [63]. Due to its lower 𝐾

𝑚

(2 𝜇M for AK while ADA features a 𝐾
𝑚
of 17–45𝜇M, in rat

whole brain) it is probable that phosphorylation by AK is
the principal pathway of adenosine removal in physiolog-
ical conditions, while deamination may be more relevant
in pathological conditions (when adenosine concentrations
rise) [31, 55].

Apart from reuptake, extracellular adenosine can also be
removed by deamination to inosine by extracellular ADA,
although most of the extracellular adenosine is cleared by
reuptake in normal conditions [31]. During hypoxia and
ischemia ecto-ADA may gain a more prominent role in the
control of extracellular adenosine concentrations, since these
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situations raise the intracellular levels of adenosine, affecting
the gradient concentration and disrupting the inward flow of
nucleotides through the transporters [31].

4. Adenosine and Diabetic Retinopathy

Various forms of stress and pathological conditions, from
ischemia and hypoxia to epilepsy can affect the adenosinergic
system, hinting at a pattern of alterations to the density
and distribution of adenosine receptors that is induced by
such conditions [64]. Diabetes is no exception, with several
studies investigating the effect of diabetes and hyperglycemia
on adenosinergic system components in various tissues and
models [65–68]. However, only in recent years did some
studies reveal the extent of the effect that diabetic conditions
have on the adenosinergic system in the retina.

Changes in the retina have been reported in retinal
neural cells exposed to elevated glucose concentration and
in diabetic rats. Recently, studies revealed that the expression
and density of A

1
R suffer alterations in diabetic conditions in

the retina: both mRNA and protein levels of this receptor are
increased in rat retinal cell cultures subjected to high glucose
conditions, and the density of A

1
R is also increased in rat

retinas after 4 weeks of diabetes [63]; in that period the retinal
mRNA levels of A

1
R are not significantly different from the

control animals. However, when diabetes was sustained for a
longer period of time (12 weeks) a decrease in the expression
of this receptor was observed [69].

A2AR has become a focus of study in the diabetic
retina, mainly due to its potential role in the inflammatory
conditions in early diabetic retinopathy. In mouse, rat, and
pig, this receptor is shown to be upregulated in diabetic
conditions, both in retinal cell cultures and diabetic retinas
[63, 70, 71].

As for the A
3
R receptor, one study showed that the

expression and density of this receptor show a transient
increase in diabetic rat retinas, after one week of diabetes, and
a significant decrease after 4 weeks of diabetes [63].

The enzymes involved in the regulation of adenosine
levels are also very sensitive to metabolic and homeostatic
alterations. Both nucleotide degrading (NTPDases, 5-eN)
and adenosine degrading (ADA, AK) enzymes were shown
to be affected by diabetes in several tissues [72–76].

A study performed in the retina of diabetic rats showed
that adenosine is heavily involved in the control of osmotic
glial swelling during diabetes and that diabetic conditions
prompt a differential expression of the nucleotide degrading
enzyme NTPDase1, which hydrolyzes both ATP and ADP
in equal measure, from being restricted to blood vessels
in control animals to being present in retinal glial cells in
diabetic animals [36]. The same study revealed an increase
in mRNA levels of NTPDase1 in diabetic retinas, while
NTPDase2 and 5-eN expression were the same.

Another factor that may affect extracellular adenosine
levels is the increase in ATP release. In fact, it was reported
in rat retinal neural cells cultured with elevated glucose
concentration that the depolarization-evoked release of ATP
increases. The same study demonstrated that ATP degrada-
tion is impaired in the same conditions [18].

In diabetic rat Müller cells, glutamate signaling can cause
an increase in the extracellular generation of adenosine,
through 5-eN [36], probably due to the alterations in
expression and distribution of NTPDase1, which drives an
increase in AMP availability for degradation by 5-eNT.

In diabetic rat retinas after 4 weeks ADA expression and
density are decreased, while in retinal cultures exposed to
high glucose the activity of this enzyme is severely decreased,
which could be responsible for the high levels of extracellular
adenosine found in those conditions [63]. On the other hand,
a study in human and pig retinas indicates that, while the
isoenzyme ADA1 remains unchanged in diabetic conditions,
the protein levels of the isoenzyme ADA2 are increased.
Furthermore, in porcine retinas, the activity of ADA2 is
increased [71].

Although AK expression and density levels were unal-
tered in rat retinal cultures exposed to high glucose and
in rat diabetic retinas at 1 week of diabetes, there was a
decrease observed at 4 weeks of diabetes [63]. Similarly, in
the diabetic retinas of mice, AK protein levels were decreased
after 8 weeks of diabetes, and this decrease is reduced by the
inhibition of AK itself [70].

In a study performed in T2DM patients with DR, an
increase in plasma levels of adenosine was observed, but
not in patients without DR, leading the authors to suggest
adenosine as a biomarker for the diagnosis of DR [77].

These alterations, as shown in Figure 2, occurring at
several levels of the adenosinergic system in the diabetic
retina may result in functional alterations to the processes
controlled or modulated by adenosine.

The osmotic swelling of glial cells present in diabetic
retinas is prevented by administration of adenosine (10 𝜇M)
in rats, but this prevention is suppressed by using DPCPX,
an A
1
R antagonist [36], while the blockade of A2AR had

no effect. This suggests that the action of adenosine is
mediated by activation of A

1
R, which opens potassium and

chloride channels in the outer membrane of glial cells.
The same study showed that the purinergic signaling that
prevents swelling under osmotic stress is inactive in diabetic
conditions, although the receptors involved are functional
and themechanismworks upon adenosine administration (as
mentioned above).

The potential anti-inflammatory action of adenosine
was evaluated in the retina: in retinal microglia cultures,
exposure to Amadori-glycated albumin (AGA) triggers the
inflammatory response seen in diabetic conditions, namely,
the increased expression and release of TNF, and this effect of
AGA was successfully blocked by activation of A2AR in mice
[78], rat [70], and pig [71] retinal microglial cells. In mice,
the activation of A2AR with CGS21680, a selective agonist,
also reduced TNF levels and decreased cell death in diabetic
retinas [78].

In a study performed in diabetic mice, treatment with
ABT-702, an AK inhibitor decreased ENT1 protein levels, cell
death, and the expression of Iba1 (a microglia/macrophage
marker that is upregulated upon activation), suggesting a
decrease in microglia reactivity [70]. The same study showed
that, in rat retinal microglial cell cultures, the inhibition of
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Figure 2: General representation of the alterations occurring to the adenosinergic system in diabetic conditions. ADA: adenosine deaminase;
Ado: adenosine; AK: adenosine kinase; AMP: adenosine monophosphate; ATP: adenosine triphosphate e-5-NT: ecto-5-nucleotidase; Ino:
inosine; NT: nucleoside transporter; NTPDase: nucleoside triphosphate diphosphohydrolase.

AK had a more substantial effect than ADA inhibition in
decreasing TNF release.

These results point out to a protective, anti-inflammatory
effect of adenosine and A2AR activation in particular. This
protective effect, however, is contentious, with at least one
other study showing conflicting results: the treatment of
rMC-1, a rat Müller cell line, incubated in hyperglycemic-
like conditions with either ATP or adenosine scavengers
reduced the proinflammatory caspase-1 activation [79]. A
nonselective adenosine receptor antagonist (DPCPX at a
concentration of 10𝜇M) also reduced caspase-1 activation,
which was mimicked with an A2BR selective antagonist
(MRS1754). Taken together, the existing data on the role of
adenosine in the retina during diabetes remains controversial
and the effects of the modulation of this system most likely
will depend on the target receptors and/or cell types and be
influenced by the experimental approach. However, a picture
of dysregulation is already apparent, one that may impact on
excitotoxicity, osmotic regulation, and inflammation, all of
which can impair cell survival and visual function in diabetic
conditions.

5. Conclusions

In this review we covered the numerous alterations that
occur to the adenosinergic system in the diabetic retina, from

receptor expression and enzyme distribution and activity to
adenosine levels. Suchmodifications to a system that is highly
sensible to disruptions of homeostasis will necessarily have
repercussions, especially in inflammatory and excitotoxic
situations. The potential protection or damage that these
alterations may cause is contentious, but the modulation of
this system seems to be a promising path to combating the
inflammatory and excitotoxic environment and reducing cell
death in early DR.
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[47] B. Koscsó, B. Csóka, Z. Selmeczy et al., “Adenosine augments
IL-10 production by microglial cells through an A2B adenosine
receptor-mediated process,” The Journal of Immunology, vol.
188, no. 1, pp. 445–453, 2012.

[48] M. B. Grant, R. W. Tarnuzzer, S. Caballero et al., “Adenosine
receptor activation induces vascular endothelial growth factor
in human retinal endothelial cells,”Circulation Research, vol. 85,
no. 8, pp. 699–706, 1999.

[49] G. A. Lutty and D. S. McLeod, “Retinal vascular development
and oxygen-induced retinopathy: a role for adenosine,” Progress
in Retinal and Eye Research, vol. 22, no. 1, pp. 95–111, 2003.

[50] A. Kvanta, S. Seregard, S. Sejersen, B. Kull, and B. B. Fredholm,
“Localization of adenosine receptor messenger RNAs in the rat
eye,” Experimental Eye Research, vol. 65, no. 5, pp. 595–602, 1997.

[51] W.-J. Wan, D.-M. Cui, X. Yang et al., “Expression of adenosine
receptors in human retinal pigment epithelium cells in vitro,”
Chinese Medical Journal, vol. 124, no. 8, pp. 1139–1144, 2011.

[52] L. M. Kreckler, T. C. Wan, Z.-D. Ge, and J. A. Auchampach,
“Adenosine inhibits tumor necrosis factor-alpha release from
mouse peritonealmacrophages via A2A andA2B but not theA3
adenosine receptor,” Journal of Pharmacology and Experimental
Therapeutics, vol. 317, no. 1, pp. 172–180, 2006.

[53] S. Gessi, S. Merighi, K. Varani, E. Leung, S. Mac Lennan, and
P. A. Borea, “The A

3
adenosine receptor: an enigmatic player in

cell biology,” Pharmacology and Therapeutics, vol. 117, no. 1, pp.
123–140, 2008.

[54] M. R. Elliott, F. B. Chekeni, P. C. Trampont et al., “Nucleotides
released by apoptotic cells act as a find-me signal to promote
phagocytic clearance,” Nature, vol. 461, no. 7261, pp. 282–286,
2009.

[55] S. Latini and F. Pedata, “Adenosine in the central nervous
system: release mechanisms and extracellular concentrations,”
Journal of Neurochemistry, vol. 79, no. 3, pp. 463–484, 2001.

[56] I. Iandiev, A. Wurm, T. Pannicke et al., “Ectonucleotidases in
Müller glial cells of the rodent retina: involvement in inhibition
of osmotic cell swelling,” Purinergic Signalling, vol. 3, no. 4, pp.
423–433, 2007.

[57] M. J. Ricatti, L. D. Alfie, É. G. Lavoie, J. Sévigny, P. J.
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