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Abstract We investigate some peculiarities in the calcu-
lation of the two-loop beta function of N = 1 supersym-
metric models which are intimately related to the so-called
“anomaly puzzle”. There is an apparent paradox when the
computation is performed in the framework of the covari-
ant derivative background field method. In this formalism,
there is obtained a finite two-loop effective action, although
a non-null coefficient for the beta function is achieved by
means of the renormalized two-point function in the back-
ground field. We show that if the standard background field
method is used, this two-point function has a divergent part
which allows for the calculation of the beta function via the
renormalization constants, as usual. Therefore, we conjecture
that this paradox has its origin in the covariant supergraph
formalism itself, possibly being an artifact of the rescaling
anomaly.

1 Introduction

In particle physics, symmetries have always been used as
guides in order to construct theories to describe nature, an
idea that culminated in the Standard Model (SM) itself.
Although it has passed many experimental tests, the SM must
be viewed as an effective theory since it does not incorpo-
rate all fundamental interactions. Therefore, extensions to it
have been proposed, supersymmetry being one of the most
appealing from the theoretical viewpoint. The reason lies on
the elegance of its construction since it is a natural extension
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of the Poincarè group. Many efforts have been dedicated to
the subject after it was first proposed in the 1970s [1–3].

The investigation of quantum corrections to supersym-
metric models has very interesting peculiarities. For example,
the choice of an adequate regularization technique is a highly
nontrivial subject. A model which incorporates supersymme-
try is dimension specific, the spacetime dimension playing
an important role in the matching between the bosonic and
fermionic degrees of freedom. This poses restrictions in the
use of methods based on the analytical continuation of the
spacetime dimension. Regardless the method of calculation,
the quantization of supersymmetric models presented some
delicate questions, such as the so-called “anomaly puzzle”,
which can be summarized as follows.

Since the works of Piguet and Ferrara [4–7], it is well
known that there exist two supermultiplets, one for classi-
cally conserved supercurrents and the other a chiral super-
multiplet for the scale anomalies. In the first multiplet are the
classically conserved currents associated to theU (1) chiralR
invariance, to supersymmetry and to translation invariance,
with the last two conserved at all orders, while the R current
is not. In the chiral supermultiplet are the scale anomalies
associated with the R current, the trace of the supersymme-
try current and the trace of the energy-momentum tensor.

At the core of the anomaly puzzle is that an unique axial
current operator only exists at tree level. At quantum level
the R current in the supermultiplet is broken with a coeffi-
cient which is proportional to the beta function of the scale
anomaly, which can have corrections to all orders. How-
ever, according to the Adler–Bardeen theorem [8], the chi-
ral anomaly is exhausted at one-loop order in perturbation
theory. Remarkably, its coefficient is given by the one-loop
value of the gauge beta function. Despite these differences
in the quantum realizations of the axial current, Piguet et al.
obtained a relation which links the beta function of the scale
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anomaly to the nonrenormalized coefficient of the axial cur-
rent anomaly [9,10]. Since the work of Novikov, Shifman,
Vainshtein and Zakharov (NSVZ) [11], which obtained an
exact expression for the beta function of N = 1 Super Yang–
Mills (SYM) theory, many other works [12–21] followed in
which different regularization methods were applied and in
all cases higher order corrections for the beta functions were
found.

This controversial result attracted great attention and dif-
ferent explanations were provided. According to Shifman
and Vainshtein [22], it is necessary to distinguish between
the Wilson effective action and the sum of vacuum loops in
the external fields. The first renormalizes only at one-loop
level whereas the second receives higher order contributions
due to infrared modes. On the other hand, Arkani-Hamed and
Murayama [23] argued that the solution to the problem can
be stated in a way independent of the infrared modes using
the distinction between the holomorphic gauge coupling and
the canonical gauge coupling. According to the authors, the
dilatation anomaly is in the same multiplet of the UR(1)

anomaly and is exact at one-loop order. However, due to
the anomaly, the vectorial multiplet does not possess canoni-
cal kinetic terms after the dilatation. In order to get canonical
kinetic terms in the vectorial multiplet an additional change in
the normalization is needed. Therefore, the anomaly coming
from the modified dilatation is not in the same multiplet of the
UR(1) anomaly and receives contributions beyond one-loop
order. This argument was criticized in some papers, since to
keep the low energy physics unchanged, it is necessary to
take into account the infrared modes in the derivation of the
anomaly. In this sense, it is somewhat equivalent to consider
the scale anomaly or to calculate the expectation value of
the Wilson effective action [13]. In [24], it was claimed that
since the definition of the gauge coupling of N = 1 SYM
may depend on the renormalization scheme, so does the beta
function. They showed that the trace anomaly is one-loop
exact in a certain scheme, the important point being to exam-
ine in which scheme the quantum action principle is valid.
To summarize, as observed in [25], although the R-current
and the stress tensor belong to the same classical supercur-
rent, in the quantum regime it bifurcates. It is not possible to
construct an unique quantum supermultiplet which contains
both the stress tensor and the R-current.

This discussion above also appears in a perturbative anal-
ysis. Within the supergraph approach to supersymmetric
models, along with on-shell infrared divergences of Yang–
Mills theory, additional off-shell infrared divergences appear
which must be distinguished from ultraviolet ones before
renormalization is carried out. The mixing of these two types
of divergences is in the center of this debate. A consistent
approach should proportionate an unambiguous distinction
between the infinities involved and the arbitrary scales which
are byproducts of the subtractions. In dimension-type regu-

larizations [26,27] the two-loop correction to the beta func-
tion comes from a local evanescent operator, which would
be absent in the physical spacetime dimension. So, Grisaru,
Milewski and Zanon conjectured that no divergence should
occur beyond one loop. This is true, as we will see, depend-
ing on the approach adopted in the calculation. However,
even in the case where the divergences do not occur beyond
one-loop order, this does not mean the two-loop beta function
vanishes. Instead, the derivation of the renormalization group
functions needs some reinterpretation, which appears to be
related to the scaling anomaly [28]. In four spacetime dimen-
sions, differential renormalization was applied [13] in the
evaluation of the two-loop beta function. It was found that the
result depended on infrared modes, which play a passive role.
Moreover, within differential renormalization, it was found
that the scale referring to one-loop renormalization is the one
to give rise to the two-loop coefficient. Because differential
renormalization delivers finite renormalized amplitudes by
construction, it would be interesting to investigate how renor-
malization is effected within an invariant framework which
both operates in the physical dimension and displays explic-
itly the ultraviolet behavior in terms of the renormalization
constants. In [21], a four dimensional regularization frame-
work was used in the computation of the two-loop coefficient
of the SYM beta function with the use of the background field
method in the covariant derivative formalism [29]. Due to the
non-abelian character of SYM, the background field method
is urged to be applied, since it results in a huge simplifica-
tion in the number of diagrams. It was found that there is no
two-loop divergence which, in a first view, could indicate the
absence of higher-loop corrections to the beta function. How-
ever, the renormalized two-point Green function still depends
on the renormalization scale introduced at one-loop level,
allowing the computation of the two-loop coefficient for the
beta function, which was shown to be non-null. It is interest-
ing to explore such result also in view of the property that, if
the n+1-loop coefficient of the beta function of a supersym-
metric theory vanishes, then it is finite to n loops [13,27].

Finally, it is interesting to discuss the dependence of the
β functions in terms of the renormalization scheme applied
[24]. As discussed in [23], the holomorphic beta function is
one-loop exact whereas the canonical is given by the NSVZ
beta function. The canonical gauge coupling comes from the
canonical normalization of the holomorphic gauge super-
fields which is anomalous and is determined by the axial
anomaly. Therefore, while the holomorphic coupling defines
the Lagrangian (for notation see please next section)

Lh = 1

4g2
h

∫
d2θWa(Vh)W

a(Vh) + h.c. (1)

the canonical coupling defines Lc by replacing 1/g2
h with

1/g2 − iθYM/(8π2) as well as Vh → gVc which, however,
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are not equivalent. Because of such a rescaling anomaly the
(holomorphic and canonical) coupling constants turn out to
be related by a non-local relation.

In this context, several renormalization scheme depen-
dence issues may arise. For example, for N = 1 massless
supersymmetric QED (SQED) regularized by high covariant
derivatives [30] the NSVZ beta function is naturally obtained
for renormalization group functions defined in terms of the
bare coupling constant and do not depend on the renormaliza-
tion prescription. However, if defined in terms of the renor-
malized constant, the NSVZ beta function is only obtained
in a special subtraction scheme namely the NSVZ scheme.
Thus, for the exact beta function it is natural to ask in which
(precise) scheme its expression holds. For instance the beta
function in the minimal subtraction scheme of dimensional
reduction is not given by the NSVZ beta function beyond
two-loop level [31]. In any case, it should be noticed that
renormalization scheme dependence arises when comparing
different approaches (for a recent discussion on the subject
see Refs. [32–35]).

In this work, motivated by our results in [21], we use mass-
less SQED as a laboratory to investigate peculiarities in the
calculation of beta functions of supersymmetric theories up
to two-loop order. Particularly, we would like to understand
the apparent paradox found in [21] in the simplest context.
Therefore, in the present work we will use SQED as a probe.
For this purpose, we will compute the two-loop coefficient of
the SQED beta function using two different approaches: the
standard background field method [36] and the one based on
the covariant derivative formalism [29]. We will find that
in the first case there is a two-loop divergence, allowing
the computation of the beta-function coefficient by standard
renormalization constants. It is also possible to perform the
computation using the renormalized two-point Green func-
tion, furnishing the same result as before, as expected. In
the second case, we obtain the same result of [21]: there is
no two-loop divergence, even though the renormalized two-
point Green function depends on a renormalization scale,
furnishing a non-null value for the two-loop beta-function
coefficient. Therefore, we conjecture that the paradox found
in [21] has its origin in the covariant supergraph formalism
itself, possibly being an artifact of the rescaling anomaly, dis-
cussed in [22,23,28,37]. Indeed, a mechanism of corrections
to the one-loop result from one-loop anomalies is described
in [23], through the quantum breaking of holomorphy of the
coupling constant.

The outline of this paper is as follows. In Sect. 2, we
present the supersymmetric QED and evaluate, in the frame-
work of the standard background field method, the two-loop
beta function, using both the renormalization constants and
the renormalized two-point function in the background field.
In Sect. 3, the formalism of covariant derivative background
field method is applied in the calculation of the two-loop beta

function of SQED. We present in Sect. 4 our conclusions and
perspectives and some results of integrals are displayed in the
appendix.

2 N = 1 SQED in the standard background field
method

In the superfield formalism, the classical action of the
massless N = 1 supersymmetric quantum electrodynamics
(SQED) is given by [38]

S =
∫

d4xd2θ W 2 +
∫

d4xd4θ Φ̄+egVΦ+

+
∫

d4xd4θ Φ̄−egVΦ−, (2)

where Φ is a chiral field that express the matter part of the
action and V is a real scalar superfield that contains the gauge
field Aμ of QED as one of its components (therefore, it is the
supersymmetric generalization to the gauge field). Finally,
W is the supersymmetric generalization to the stress tensor
of QED. In terms of the superfield V , one has
∫

d4xd2θ W 2 = 1

2

∫
d4xd4θ V Dβ D̄2DβV . (3)

The following step would be to perform the quantization of
the classical theory. However, since we want to use the back-
ground field method, we have to introduce this new field at
this point. For the abelian case, we will have a linear quantum-
background splitting as below [39]

V → V + B, (4)

where B is the background gauge field. We may now per-
form the quantization as usual, introducing a gauge-fixing
term for the quantum gauge field V , as well as sources [36].
The relevant fact to be noticed is that, by construction, the
action will be gauge invariant in the background gauge field.
This must remain valid even after renormalization. Thus, the
renormalization constant for the background field ZB will be
related to the one for the gauge coupling Zg as follows1:

ZgZ
1/2
B = 1. (5)

Thus, in order to obtain the beta function of the theory, we
need only to compute the two-point functions with back-
ground fields as external legs.

As stated in the introduction, we intend to compute the
two-loop corrections of the SQED beta function. The Feyn-
man rules can be derived from the action [39], and the relevant
ones for our computation are expressed in Fig. 1.

1 We are using the definitions g0 = Zgg and B0 = Z1/2
B B, where

g0, B0, and g, B are bare and renormalized functions, respectively.
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Fig. 1 Feynman rules needed
for the evaluation of two point
functions in the background
field up to two-loop order

V (θ ) V (θ)

− 1
k2

δ4(θ − θ′)

1
k2

δ4(θ − θ′)

Φ̄±(θ ) Φ±(θ)

k

k

g

B

Φ̄± Φ±

g2

B

Φ̄± Φ±

V

g

V

Φ̄± Φ±

Fig. 2 One-loop diagram

We start by the one-loop contribution, whose diagram,2

using the background field method, is depicted in Fig. 2,
furnishing the following effective action:

Λ(1) ≡ 2
g2

2

∫
p,θ

B(−p, θ)

×
∫
k

[
D2 D̄2 − kβα̇Dβ D̄α̇ − k2

k2(k + p)2

]
B(p, θ), (6)

where we have already performed the D-algebra manipu-

lations,
∫
k stands for

∫ d4k
(2π)4 ,

∫
p,θ for

∫ d4 p
(2π)4

∫
d4θ and

B(p, θ) is the background gauge field. The factor 2 accounts
contributions from chiral fields Φ with different signs.
Regarding supersymmetric definitions and conventions, we
are following the ones found in [39].

To proceed, we need to resort to some regularization tech-
nique. We will choose the Implicit Regularization (IReg) for-

2 We do not include a tadpole diagram since, as we are dealing with
a massless theory, it can be promptly set to zero in the Implicit Regu-
larization formalism. However, even if such diagram was included, it
would cancel out in the sum. Thus, in order to simplify the discussion,
we opt to omit hereafter all the tadpole diagrams.

malism [40,41], which, by not resorting to any kind of dimen-
sional extension can be promptly applied in supersymmetric
theories [21,42,43]. The method resorts recursively to the
mathematical identity

1

(pi + k)2 − m2 = 1

k2 − m2

− p2
i + 2pi · k

(k2 − m2)
[
(pi + k)2 − m2

] , (7)

in order to extract the external momenta, pi , from the diver-
gent integrals. In the case of massless models, a fictitious
mass, μ2, is used, which is eliminated from the result by
means of the limit μ2 → 0 and of scale relations. As a
byproduct, a mass scale λ2 is introduced, which is adequate
for the computation of the renormalization group functions.
A detailed account on IReg can be found in [43–45].

After some D-algebra manipulation the final result is

Λ(1) = (−i)
g2

2

∫
p,θ

B(−p, θ)Dβ D̄2DβB(p, θ)

×
[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 2b

]

+ (+i)
g2

2

∫
p,θ

B(−p, θ)
[
pβα̇Dβ D̄α̇ + 2k2

]

× Γ
(1,2)

0 B(p, θ), (8)

with b = i/(4π)2,

I (l)
log(μ

2) ≡
∫
k

1

(k2 − μ2)2 lnl−1
(

−k2 − μ2

λ2

)
, (9)
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Fig. 3 Two-loop diagrams

c

a1 a2

b1 b2

d

b3 b4

and

gμ1···μ j Γ
(l, j)
i ≡

∫
k

∂

∂kμ1

kμ2 · · · kμ j

(k2−μ2)
2+ j−i

2

lnl−1
(

−k2−μ2

λ2

)
,

(10)

where gμ1···μ j ≡ gμ1μ2 · · · gμ j−1μ j + symmetric combina-
tions and the index i indicates the superficial degree of diver-
gence of the surface term. In Ilog(λ

2), we omitted the upper
index for l = 1.

Some comments are in order: notice that, apart from the
surface term Γ

(1,2)
0 , we have a gauge invariant result. This

was expected, since, as we are working with the background
field method, gauge invariance is explicitly maintained being
broken just by regularization dependent terms. Thus we ver-
ify that the condition to preserve gauge invariance, even in
supersymmetric theories, is to set surface terms to zero, as
discussed in [43]. From now on, we will not display the one-
loop or higher order surface terms, which will all be set to
zero. Another aspect to be mentioned is the appearance of

a divergent integral parametrized as a Ilog(λ
2). Such a term

must be renormalized as usual and it will contribute to the
renormalization constant ZB , as we are going to show in the
end of this section. Notice also the appearance of the renor-
malization scale λ2 in the finite part as well.

We proceed now to the two-loop contributions, which are
depicted in Fig. 3. The first diagram furnishes,

Λ(2)
a1

= 2
g4

2

∫
p,θ

B(−p, θ)

∫
k

[
D̄2D2 + kα̇β D̄α̇Dβ − k2

k2(k − p)2

]
(ib)

×
[

ln

(
− p2

λ2

)
− 2

]
B(p, θ)

+2
g4

2

∫
p,θ

B(−p, θ)

∫
k

[
D̄2D2 + kα̇β D̄α̇Dβ − k2

k2(k − p)2

]

×(−i)Ilog(λ
2)B(p, θ), (11)

where the second line is a subdivergence which is be to can-
celed out by a one-loop counterterm according to the subtrac-
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tions stated by the Bogoliubov’s recursion formula. Instead
of evaluating the first line, we proceed to the next diagram
(the reason will be apparent shortly), which has the result

Λ(2)
a2

= 2
g4

2

∫
p,θ

B(−p, θ)

∫
k

[
D2 D̄2 − kβα̇Dβ D̄α̇ − k2

k2(k + p)2

]

×(ib)

[
ln

(
− p2

λ2

)
− 2

]
B(p, θ)

+2
g4

2

∫
p,θ

B(−p, θ)

∫
k

[
D2 D̄2 − kβα̇Dβ D̄α̇ − k2

k2(k + p)2

]

×(−i)Ilog(λ
2)B(p, θ). (12)

Once again, the last line will be subtracted by applying
Bogoliubov’s recursion formula.

The reason why we have not performed the computation of
the integral in k will become apparent now. After performing
the D-algebra on the diagrams b1 · · · b4 we see that they all
can be expressed in terms of Λ

(2)
a1 and Λ

(2)
a2 as below

Λ
(2)
b1

= Λ
(2)
b2

= −Λ(2)
a1

, Λ
(2)
b3

= Λ
(2)
b4

= −Λ(2)
a2

. (13)

We proceed to diagram c, which is given by

Λ(2)
c = −2

g4

2

∫
p,θ

B(−p, θ)

∫
k,l

1

k2l2(l − k − p)2 B(p, θ).

(14)

No further analysis is needed, since the last diagram, d,
can be written in terms of Λ

(2)
a1 , Λ

(2)
a2 , and Λ

(2)
c

Λ(2)
c = Λ(2)

a1
+ Λ(2)

a2
− Λ(2)

c − 2
g4

2

∫
p,θ
B(−p, θ)p2

×
[
(Ilog(λ

2) + b)Γ (1,2)
0 − bΓ (2,2)

0

]
B(p, θ)

− 2
g4

2

∫
p,θ

B(−p, θ)
[
pβα̇ D̄α̇Dβ(−bΓ (2,2)

0 + 2bΓ (1,2)
0 )

]

× B(p, θ) − 2
g4

2

∫
p,θ

B(−p, θ)Dβ D̄2DβB(p, θ)b

×
[
Ilog(λ

2) − b ln

(
− p2

λ2

)
− Γ

(1,2)
0

]
B(p, θ). (15)

Therefore, the final two-loop correction for the effective
action, after discarding the surface terms, is given by

Λ(2) = −g4
∫
p,θ

B(−p, θ)Dβ D̄2DβB(p, θ)b

×
[
Ilog(λ

2) − b ln

(
− p2

λ2

)]
B(p, θ). (16)

A curious fact is that, although we are working at two-loop
level, we have a divergent result parametrized by Ilog(λ

2),
which is a typical basic divergent integral (BDI) of one-loop

order. Our next task is to perform the renormalization of the
theory, whose bare action is

S0 =
∫

d4xd4θ

[
1

2
B0D

β D̄2DβB0 + Φ̄0+eg0B0Φ0+Φ0−
]

+ Φ̄0−eg0B0 +gauge-fixing terms+terms on V0.

(17)

Performing a multiplicative renormalization defined by
B0 = Z1/2

B B, g0 = Zgg, and Φ0± = ZΦ±Φ±, one can
easily find that the counterterm for the two-point function
in the background field is given by A ≡ ZB − 1. As
already mentioned, in the background field method, the rela-
tion ZgZ

1/2
B = 1 holds. Therefore, the beta function can be

calculated through the two-point function renormalization
constant as follows:

β ≡ λ
∂

∂λ
g = −gλ

∂

∂λ
ln Zg = −gλ

∂

∂λ
ln Z−1/2

B . (18)

Supposing that both the countertem A and the beta function
have expansions in the coupling constant g, we arrive at the
expressions

β1 = 1

2
λ

∂

∂λ
A1 (19)

and

β2 = A1β1 + 1

2
λ

∂

∂λ

(
A2 − A2

1

2

)
, (20)

where βi is the i-loop coefficient of the beta function, Ai

is the i-loop two-point function counterterm and λ is the
renormalization group scale. Using the one- and two-loop
corrections obtained in Eqs. (8) and (16), respectively, and
adopting a minimal subtraction scheme (which in the IReg
framework amounts to the subtraction of BDI’s only), we
have

A1 = i Ilog(λ
2) and A2 = 2bIlog(λ

2). (21)

Finally, by using

λ
∂

∂λ
Ilog(λ

2) = 2λ2 ∂

∂λ2 Ilog(λ
2) = −2b, (22)

with b = i
(4π)2 , we obtain the contributions for the beta

function of SQED up to two-loop level in the IReg formalism,

β = 1

(4π)2 g
3 + 1

8(4π2)2 g
5 + O(g7), (23)

which agrees with previous ones found in the literature [11,
46–48].3

3 To obtain the results of the last three references, it should be taken
into account that our definition for the coupling constant [39] differs
from the usual one by a factor

√
2.
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It should be emphasized that we performed the above
computation using only the renormalization constant for
the background field, ZB . Alternatively, the computation
can be performed using the renormalization group equation,
in which only the renormalized effective action is consid-
ered. As a consistency check, we also compute the two-
loop SQED beta function using the renormalized effective
action.

As can be found, for example, in [49], the renormalization
group equation reads

[
λ

∂

∂λ
+ β

∂

∂g
− γ

]
G(2)

ren(g, λ) = 0, (24)

where

β ≡ λ
∂

∂λ
g = −gλ

∂

∂λ
ln Zg and γ ≡ λ

∂

∂λ
ln ZB . (25)

Since in the background field method ZgZ
1/2
B = 1, we find

that γ = 2β
g . Thus,

[
λ

∂

∂λ
+ β

(
∂

∂g
− 2

g

)]
G(2)

ren(g, λ) = 0. (26)

From Eqs. (8) and (16), we obtain the renormalized two-point
function:

G(2)
ren(g, λ) = 1

2

∫
p,θ

B(−p, θ)Dβ D̄2DβB(p, θ)

×
{

1 + ib

[
ln

(
− p2

λ2

)
− 2

]
g2

+2b2 ln

(
− p2

λ2

)
g4

}
. (27)

Replacing the expression above in Eq. (24), we finally obtain
the same expression as in Eq. (23).

We finish this section with some comments. In [27], the
authors conjectured that no divergence should occur beyond
one loop in N = 1 SYM theory if the calculation is performed
in the physical dimension of the model. Here, we performed
the two-loop calculation of the two-point function with the
use of the standard background field method for SQED and
found a divergent result. It should be observed, however, that
the divergence found is typical of a one-loop calculation. In
the next section, we will adopt an alternative approach, which
is the background field method in the covariant supergraph
formalism. It is just what was done in [21] for SYM. In this
case we will see that the result will match with the conjec-
ture of [27], although this does not imply the two-loop beta
function is null.

3 The SQED beta function in the covariant supergraph
formalism

We now perform the whole calculation again, by using a dif-
ferent approach: the background field method based on the
covariant supergraph formalism [29]. The reason is the fol-
lowing: in [21], in which the aforementioned formalism was
applied, the Super Yang–Mills theory was studied and, par-
ticularly, the beta-function coefficients were computed up to
two-loop order. It was found there that no two-loop diver-
gence appeared,which could be taken as an indication of a
null two-loop coefficient. However, the renormalized effec-
tive action at two-loop order still carried a dependence on the
renormalization scale λ, allowing the computation of the beta
function from the renormalization group equation, furnish-
ing a non-null result for the two-loop coefficient. Therefore,
it seems that there is an inconsistency, since both approaches
should be equivalent. It was conjectured there that this dif-
ference should have its origin in the rescaling anomaly, as
suggested by [28], in which the author discusses that in a
framework that uses the canonical coupling (as ours), a mod-
ification of the usual multiplicative renormalization program
should be necessary. Therefore we will in the following use
SQED as a probe to study if the same behavior occurs in this
case.

A complete description of the background field method
based on the covariant supergraph formalism can be found
in [29,39]. The main idea is to take a step backward and
work, from the beginning, with an action that depends only
on background covariant derivatives. This way, all depen-
dence on the background field will only appear implicitly.
The main gain on this approach is the reduction in the num-
ber of diagrams. For instance, the two-loop correction we are
going to compute requires considering only three diagrams,
instead of eight, as in the previous formalism. Explicitly, the
quadratic part of the action in the gauge fields we are going
to work with is given by

S = −
∫

d4xd4θ∇α∇̄2∇α, (28)

where ∇ is a covariant derivative in the unsplit gauge field
(V + B). The splitting can be carried out, in the quantum-
chiral but background-vector representation, as

∇α = e−V∇αe
V , ∇̄α̇ = ∇̄α̇, (29)

∇ being the background covariant derivatives. The quantiza-
tion procedure should be carried out from this point, adding
gauge-fixing and source terms, as usual. Chiral fields should
also be included to define SQED properly (this fields must
also be written in the background covariant representation).
After all these considerations, we obtain the covariant Feyn-
man rules [39] which, applied to our case, furnish the fol-
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Fig. 4 Two-loop diagrams in
the background covariant
approach

(a) (b) (c)

lowing one-loop effective action (the diagram depicted is the
same of Fig. 2):

A(1) = (−ig2)

∫
p,θ

Wα(p)Γα(−p)
∫
k

1

k2

1

(k + p)2 . (30)

Notice that our result has no explicit dependence on the
background field B. It appears only through the field strength
Wα and the spinor connection Γα . This is a feature of the
method, since background covariance, by construction, is
always maintained. We obtain

A(1) = (−ig2)

∫
p,θ

Wα(p)Γα(−p)

×
[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 2b

]
. (31)

To conclude the one-loop calculation, we write our result
in terms of an explicit background gauge field. For this pur-
pose, we recur to the definitions of Wα and Γα found in [26],

Γα = i Dα

B

2
and Wα = i D̄2DαB, (32)

such that our final one-loop result reads

A(1) = (−i)
g2

2

∫
p,θ

B(−p, θ)Dβ D̄2DβB(p, θ)

×
[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 2b

]
. (33)

Comparing with our previous expression, Eq. (8), we
notice that there is no dependence on a surface term this
time. We conjecture that this feature may be a consequence
of the method which, by maintaining background covariance
from the beginning, have automatically canceled all gauge-
breaking terms that could occur. We also remark that this is
the only difference between the two results.

We proceed now to the two-loop contribution whose dia-
grams are depicted in Fig. 4.

As in the one-loop case, the effective action will have
only an implicit dependence on the background gauge field,
through the field strength Wα and the vector connection Γ a ,
as the expressions for the diagrams above reveal,

A(2)
a = 4g4

∫
p,θ

[
2Wα(−p, θ)W̄α̇(p, θ) (I1)αα̇

+1

2
∇αWα(−p, θ)∇βWβ(p, θ)I2

−1

2
Γ a(−p, θ)Γ b(p, θ) (I3)ab

]
, (34)

A(2)
b = 4g4

∫
p,θ

[
1

2
Γ a(−p, θ)Γa(p, θ)I4

]
, (35)

and

A(2)
c = 4g4

∫
p,θ

[
1

4
Γ a(−p, θ)Γ b(p, θ) (I5)ab

+1

4
∇αWα(−p, θ)∇βWβ(p, θ)I6

]
, (36)

where Ii are the following integrals:

(I1)αα̇ ≡ σ
μ
αα̇ (I1)μ = σ

μ
αα̇(−i)2

×
∫
q,k

(p − k)μ
q2(q + k)2k4(k − p)2 , (37)

I2 ≡ (−i)2
∫
q,k

1

q2(q + k)2k4(k − p)2 , (38)

(I3)ab ≡ σ
μ
αα̇σ ν

ββ̇
(I3)μν = σ

μ
αα̇σ ν

ββ̇
(−i)2

×
∫
q,k

4kμkν − 2pμkν − 2kμ pν + pμ pν

q2(q + k)2k4(k − p)2 , (39)

I4 ≡ (−i)2
∫
q,k

1

q2(q + k)2k4 , (40)

(I5)ab ≡ σ
μ
αα̇σ ν

ββ̇
(I5)μν = σ

μ
αα̇σ ν

ββ̇
(−i)2

×
∫
q,k

4kμqν − 2kμ pν + 2pμqν − pμ pν

q2(q + k)2k2(k + p)2(q − p)2 , (41)

I6 ≡ (−i)2
∫
q,k

1

q2(q + k)2k2(k + p)2(q − p)2 . (42)

Since now we have some integrals with off-shell infrared
divergences, we will explain in some detail the treatment of
the first integral. Within the IReg procedures, we have
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(I1)μ = (−i)2
∫
k

(p − k)μ
(k2 − μ2)2[(k − p)2 − μ2]

×
[
Ilog(λ

2) − b ln

(
− (k2 − μ2)

λ2

)
+ 2b

]
, (43)

where we have to notice the inclusion of the fictitious mass
μ2, which must be added in order to regularize the infrared
divergence. There is also an UV divergence parametrized
as a Ilog(λ

2) which is just an one-loop subdivergence that
is going to be canceled by the application of Bogoliubov’s
recursion formula. After the subtraction of the subdivergence
one obtains

(I1)μ = (−i)2
[
pμF + bU (2)

μ − 2bUμ

]
, (44)

with

Uμ ≡
∫
k

kμ

k4(k − p)2 , (45)

U (2)
μ ≡

∫
k

kμ

k4(k − p)2 ln

(
− k2

λ2

)
(46)

and

F ≡ lim
μ2→0

∫
k

1

(k2 − μ2)2[(k − p)2 − μ2]
×

[
−b ln

(
− (k2 − μ2)

λ2

)
+ 2b

]
. (47)

As we can see, the infrared divergence is concentrated in the
F integral. To proper treat the IR divergence, one could, for
example, resort to the IReg generalization presented in [50].
However, in the present case the integral F will cancel out
with other contributions, not requiring any further treatment.
For the other integrals, we obtain

I2 = (−i)2F, (48)

(I3)μν = (−i)2 ×
[
pμ pνF + 2b(pμU

(2)
ν − 2pμUν

+ pνU
(2)
μ − 2pνUμ − 2U (2)

μν + 4Uμν)

]
, (49)

I4 = (−i)2 ×
[

− bI (2)
log (λ2) + 2bIlog(λ2) + b2

2
ln2

(
− p2

λ2

)

− b2 ln

(
− p2

λ2

)
+ p2F

]
, (50)

(I5)μν = (−i)2
[
4IO2

μν − 2pν I
O
μ + 2pμ ĪOν − pμ pν I

O]
, (51)

I6 I
O, (52)

where we defined

Uμν ≡
∫
k

kμkν

k4(k − p)2 , (53)

U (2)
μν ≡

∫
k

kμkν

k4(k − p)2 ln

(
− k2

λ2

)
, (54)

IO ≡
∫
q,k

1

q2(q + k)2k2(k + p)2(q − p)2 , (55)

IOμ ≡
∫
q,k

kμ

q2(q + k)2k2(k + p)2(q − p)2 , (56)

ĪOν ≡
∫
q,k

qν

q2(q + k)2k2(k + p)2(q − p)2 , (57)

IO2
μν ≡

∫
q,k

kμqν

q2(q + k)2k2(k + p)2(q − p)2 . (58)

The results of the integrals can be found in the appendix.
We now proceed noticing that, in the effective actions A(2)

i ,
we have different structures in terms of the field strength and
vector connection. For reasons that are going to be apparent
soon, we choose to group all the contributions proportional
to the vector connection, obtaining

A(2)
Γ = 4g4

∫
p,θ

Γ a(−p, θ)Γ b(p, θ)

×
[
−1

2
(I3)ab + 1

2

(
gab I4

) + 1

4
(I5)ab

]
. (59)

Replacing the values of the integrals found in the
appendix, we have, after discarding the surface terms,

A(2)
Γ = 4g4

∫
p,θ

Γ a(−p, θ)Γ b(p, θ)

(
pa pb
p2 − gab

)

×
[
b2 ln

(
− p2

λ2

)
+ b2π2

36
+ b2ζ(3)

2
− 8b2

3
+ Fp2

2

]
.

(60)

Notice that, although we have dealt with ultraviolet and
infrared divergent integrals, the net result is finite and gauge
invariant, and obeys the following relation:

∫
d4θΓ a(−p, θ)Γ b(p, θ)

(
pa pb
p2 − gab

)

= 3

2

∫
d2θWαWα. (61)

Since we also have the relations

∫
d4θWα(−p, θ)pαα̇W̄α̇(p, θ)

= 1

2

∫
d2θWα(−p, θ)Wα(p, θ), (62)
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∫
d4θ∇αWα(−p, θ)∇βWβ(p, θ)

= −1

2

∫
d2θWα(−p, θ)Wα(p, θ), (63)

and (I1)αα̇ ∝ pαα̇ , we finally obtain the two-loop effective
action,

A(2) = 4g4
∫
p

d2θWα(−p, θ)Wα(p, θ)b2

×
[

1

2
ln

(
− p2

λ2

)
+ π2

24
+ 3ζ(3)

2
− 2

]
, (64)

which, written in terms of the background field by means of
Eq. (32), is given by

A(2) = g4

2

∫
p,θ

B(−p, θ)Dβ D̄2DβB(p, θ)b2

×
[

2 ln

(
− p2

λ2

)
+ π2

6
+ 6ζ(3) − 8

]
. (65)

Some comments are in order. One should compare the
result above with the one expressed by Eq. (16) which was
obtained using the standard background field method. A
notorious difference is the disappearance of the UV diver-
gent integral. This means that there is not a two-loop contri-
bution for the renormalization constant ZB , which, at a first
view, could lead one to think that the two-loop coefficient
of the SQED beta function is null. However, one could also
compute the beta function using the renormalization group
equation. For this purpose, the following renormalized two-
point function is needed:

G(2)
ren(g, λ) = 1

2

∫
p,θ

B(−p, θ)Dβ D̄2DβB(p, θ)

×
{

1 + ib

[
ln

(
− p2

λ2

)
− 2

]
g2

+2b2
[

ln

(
− p2

λ2

)
+ π2

12
+ 3ζ(3) − 4

]
g4

}
.

(66)

By comparison with Eq. (27), one notices that in both meth-
ods (the standard and the covariant derivative background
field method) the dependence of the renormalized two-point
function in the renormalization scale λ is the same. Since this
is the only relevant part for the computation of the SQED
beta function, we find that in both cases there is a non-null
two-loop beta function coefficient, given by

β2 = 1

8(4π2)2 g
5. (67)

4 Discussion of the results and perspectives

In this paper we have studied massless SQED up to two-loop
order. Our purpose was to study the intriguing fact that dif-
ferent approaches in the use of the background field method
result in the existence or not of a divergent part in two-loop
calculations in N = 1 supersymmetric theories, even though
the corresponding beta function coefficient is the same. We
used the implicit regularization framework, since it operates
in the physical dimension of the theory (respecting supersym-
metry) as well as displays in a clear way UV and IR diver-
gences and regularization dependent surface terms. The use
of the background field method simplifies considerably the
calculations by reducing the computation of the beta function
to the knowledge of two-point functions in the background
field. The two approaches used were the following: the stan-
dard [36] and the covariant derivative [29] background field
method. In the first case, we obtained the result that the one-
and two-loop effective action contained a divergence. There-
fore, the beta function could be computed in the usual way, by
defining a renormalization constant in the background field.
On the other hand, by using the covariant derivative back-
ground field method, we obtained the result that the two-
loop effective action had no divergence. This could imply
that the beta function would not receive higher order cor-
rections. However, the renormalized two-point function still
depended on the mass scale λ, which allowed us to obtain the
two-loop beta function coefficient. Both approaches yielded
the same result,

β = 1

(4π)2 g
3 + 1

8(4π2)2 g
5 + O(g7), (68)

coinciding with the one obtained before in the literature
[11,46–48]. It should be noticed that even in the case of the
standard background method the beta function could be com-
puted by using the renormalization group equation, which
yielded the same result as before.

We emphasize that our main point is to see if the computa-
tion via the standard or covariant derivative background field
method could, respectively, give rise or not to the explicit
divergent behavior at two-loop order, yet there is no doubt
about the value of the two-loop correction to the beta function
as they agree (computing via the renormalization constants
or via RG equation). In other words, there is no doubt about
the renormalization scheme in our analysis, since the value
of the beta function obtained in both methods coincide with
each other, corroborating the universality of the two-loop
coefficients of the beta function. The question would be in
which method the multiplicative renormalization program is
still applicable, since the divergent behavior of the effective
action in both methods is not the same.

This particularity for the calculation with the covariant
derivative background field method was already obtained in
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the context of SYM theory [21]. Therefore, we found with
our computation that the above behavior is not characteris-
tic of the SYM theory, being shared by the SQED theory as
well. This allows us to conjecture that the reason may lie on
the rescaling anomaly and the usual multiplicative renormal-
ization program should be modified as suggested by [28],
being inherent to the definition of the covariant derivative
background field method itself.

As perspectives we should include the study of how
exactly the rescaling anomaly manifests itself in the covari-
ant derivative background field method. Thus, one expects
to be able to introduce some modifications in the usual mul-
tiplicative renormalization in order to solve this controversy
in the computation of the beta function.
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Appendix A: List of integrals used in this work

For the integrals needed in Sect. 3, we have the following
results:

Uμ ≡
∫
k

kμ

k4(k − p)2 = b
pμ

p2 , (A.1)

U (2)
μ ≡

∫
k

kμ

k4(k − p)2 ln

(
− k2

λ2

)
= b

pμ

p2 ln

(
− p2

λ2

)
, (A.2)

Uμν ≡
∫
k

kμkν

k4(k − p)2 = gμν

4

{
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 2b

}

+ b

2

pμ pν

p2 , (A.3)

U (2)
μν ≡

∫
k

kμkν

k4(k − p)2 ln

(
− k2

λ2

)

= gμν

8

{
2I (2)

log (λ2) + Ilog(λ
2) − b ln2

(
− p2

λ2

)

+b ln

(
− p2

λ2

)
+ b

}
+ pμ pν

p2

{
b

4
+ b

2
ln

(
− p2

λ2

)}
,

(A.4)

IO ≡
∫
q,k

1

q2(q + k)2k2(k + p)2(q − p)2 = 6ζ(3)b2

p2 ,

(A.5)

IOμ ≡
∫
q,k

kμ

q2(q + k)2k2(k + p)2(q − p)2 = − pμ

2
IO,

(A.6)

ĪOν ≡
∫
q,k

qν

q2(q + k)2k2(k + p)2(q − p)2 = pμ

2
IO, (A.7)

IO2
μν ≡

∫
q,k

kμqν

q2(q + k)2k2(k + p)2(q − p)2

= −gμν

{
b

4
Ilog(λ

2) − b2

4
ln

(
− p2

λ2

)

− p2

12
IO + 11

12
b2 − π2

36
b2

}

− pμ pν

p2

{
p2

3
IO − 1

6
b2 + π2

36
b2

}
. (A.8)
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