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Abstract

Background: Given the role of spA as a pivotal virulence factor decisive for Staphylococcus aureus ability to escape
from innate and adaptive immune responses, one can consider it as an object subject to adaptive evolution and
that variations in spA may uncover pathogenicity variations.

Results: The population genetic structure was deduced from the extracellular domains of SpA gene sequence
(domains A-E and the X-region) and compared to the MLST-analysis of 41 genetically diverse methicillin-resistant
(MRSA) and methicillin-susceptible (MSSA) S. aureus strains. Incongruence between tree topologies was noticeable
and in the inferred spA tree most MSSA isolates were clustered in a distinct group. Conversely, the distribution of
strains according to their spA-type was not always congruent with the tree inferred from the complete spA gene
foreseeing that spA is a mosaic gene composed of different segments exhibiting different evolutionary histories.
Evidences of a network-like organization were identified through several conflicting phylogenetic signals and
indeed several intragenic recombination events (within subdomains of the gene) were detected within and
between CC’s of MRSA strains. The alignment of SpA sequences enabled the clustering of several isoforms as a
result of non-randomly distributed amino acid variations, located in two clusters of polymorphic sites in domains D
to B and Xr (a). Nevertheless, evidences of cluster specific structural arrangements were detected reflecting
alterations on specific residues with potential impact on S. aureus pathogenicity.

Conclusions: The detection of positive selection operating on spA combined with frequent non-synonymous
mutations, domain duplication and frequent intragenic recombination events represent important mechanisms
acting in the evolutionary adaptive mechanism promoting spA genetic plasticity. These findings argue that crucial
allelic forms correlated with pathogenicity can be identified by sequences analysis enabling the design of more
robust schemes.

Keywords: Staphylococcus aureus, Staphylococcal protein A, Recombination, Molecular evolution, spA typing,
Virulence factor

Background
Staphylococcus aureus is recognized both as a widespread
commensal organism on the human skin and anterior nose,
as well as a notorious human pathogen in community-
acquired and nosocomial infections, responsible for a wide
range of diseases. S. aureus can asymptomatically colonize

individuals, and indeed, approximately 30 % of humans are
asymptomatic nasal carriers of this bacterium. These carriers
are presumed to represent the initial mode of transmission
of S. aureus, usually by direct contact, nevertheless contact
with contaminated objects and surfaces has to be consid-
ered. Several host factors, like loss of the normal skin barrier,
and underlying diseases predispose to infection [1, 2].
The ability of S. aureus to acquire resistance to antibiotic

is widely known. In fact, the introduction of methicillin, a
penicillinase-resistant penicillin, in the sixties contributed
to the appearance of methicillin-resistance S. aureus
(MRSA) [3] compromising the efficiency of most β-lactam
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antibiotics. Today, infections caused by MRSA reached
epidemic proportions with significant human morbidity
posing a major health problem worldwide [4]. The early
MRSA clones were hospital-associated (HA-MRSA); how-
ever, during the last decade, community-associated MRSA
(CA-MRSA) clones are globally distributed, both in the
community and in healthcare facilities [5, 6]. Beyond the
reported increase on the prevalence and incidence of these
highly diverse CA-MRSA strains, they seem to be particu-
larly virulent given the presence of manifold virulence-
related factors [7, 8]. The abovementioned circumstances
are exacerbated by the absence of a protective vaccine and
by the fact that S. aureus infection in humans does not
induce protective immunity. This phenomenon involves
the unique immune globulin G-binding protein A, or
staphylococcal protein A (SpA), a critical virulence factor
that allows S. aureus to avoid innate and adaptive immune
responses [9–11].
SpA is a surface molecule that binds to Fcγ of human

and animal immunoglobulin (Ig), a defense mechanism
that hinders the capacity of antibodies with specific binding
activities for the S. aureus surface to enable Fc receptor-
mediated opsonophagocytosis and bacterial killing [12].
The SpA precursor has a N-terminal signal peptide (YSIRK
pfam 04650) and a sorting signal in the C-terminal for co-
valent anchoring to the cell wall (LysM pfam 01476) [13].
The mature SpA comprises in the N-terminal four to
five 56–61 residue Ig binding domains, A to E respect-
ively, that fold into triple helical packs linked by short
connectors [14, 15]. This Ig-binding region is followed by
the variable length region X, that comprises Xr, a variable
number (from 3 to 15) of tandemly repeated 24-bp units,
and Xc, a domain with a uncommon sequence that re-
stricts the cell wall anchor structure of SpA [16, 17]. The
Fcγ domain of IgG, as well as the Fab domain of VH3 class
IgG and IgM, are captured by the five immunoglobulin-
binding domains (IgBDs) of SpA preventing staphylococci
opsonophagocytic killing. Moreover, B cell superantigen
activity is triggered by SpA through cross-linking of VH3
type B cell receptors (surface IgM), resulting in supraclo-
nal expansion as well as apoptotic collapse of the activated
B cells, indicating that antibodies production and B cells
function have a fundamental role in S. aureus infections
[9–11, 14, 18–20].
Due to the significant human morbidity caused by this

bacterium different typing methods, particularly molecu-
lar techniques, have been developed for epidemiological
tracing and population genetic studies. Frénay and Col-
leagues [21] developed a fast, discriminatory and reliable
method for S. aureus epidemiological studies based on
the sequence variation of the polymorphic region X of
the spA locus [22]. This allows a rapidly characterization of
the isolates through comparison of SpA sequence with
Ridom SpaServer database [23] in which different strains

are assigned to distinct spA types according to the gener-
ated profile. Moreover, cluster analysis is then possible
through the algorithm based on repeat pattern (BURP) im-
plemented into StaphType [24]. Indeed, S. aureus strains
assigned as more virulent were found to have more than
seven repeat units within the X region. Such a correlation
presumes that the longer X region is, more precise and
stronger is the binding of encoded SpA to Fc fragment of
IgG, resulting in a more effective defense against host im-
munological system [25, 26].
The discriminatory power of spA typing is inferior to that

of Pulsed-field gel electrophoresis (PFGE), but the clusters
identified by spA typing and Multilocus sequence typing
(MLST) correlate well at the level of clonal complexes, so
that clonal assignment is reliable S. aureus surveillance is
nowadays mostly decentralized since spA typing is a highly
reproducible and portable method, replacing PFGE in many
reference laboratories [27, 28].
Given the role of SpA as critical virulence factor that

allows S. aureus to escape innate and adaptive immune
responses, it is foreseeable that host specialization and
clonal expansion through adaptive evolution may target
this gene product and that changes in spA may display
an increase in S. aureus pathogenicity. Our goal was to as-
sess the population genetic structure of S. aureus deduced
from spA gene and to determine the molecular mecha-
nisms driving the evolution of this virulence-related factor.
The study of the genetic diversity and distribution of MRSA
and MSSA isolates is important to assessment the popula-
tion genetic structure and inference of phylogenetic rela-
tionships. Likewise, an in depth comparison may help to
determine what percentage of emerging MRSA strains are
linked with single spA sequences, and, accordingly, may in-
deed be identified based on spA typing. For this purpose we
used the complete gene sequence from the extracellular do-
mains, and not just the hypervariable region X, since the Ig
binding domains also play a crucial role in S. aureus patho-
genicity [9–11], from 41 epidemiologically unrelated MRSA
and MSSA genetically diverse strains of S. aureus.
Our results argue that intragenic recombination is an

important strategy in the evolutionary adaptive process
fostering spA genetic plasticity. Furthermore, all MSSA
strains were clustered in a single discrete group reinfor-
cing the use of SpA as a discriminative gene.

Methods
spA and MLST allelic profiling, clustering and
phylogenetic analysis
The entire genome sequence of 41 Staphylococcus
aureus strains (Table 1) was used to retrieve the extra-
cellular domains of the virulence factor SpA responsible
for the ability of S. aureus to escape innate and adaptive
immune responses [9–11]. The YSIRK_signal (pfam
04650), LysM (pfam01476) and anchoring motifs were
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Table 1 S. aureus strains used in this study

Strain MLST spa type
(Ridom)

Spa repeat pattern MSSA/
MRSA

Genome

ST CC Accession

JH1 105 5 t002 26-23-17-34-17-20-17-12-17-16 MRSA NC_009632

JH9 105 5 t002 26-23-17-34-17-20-17-12-17-16 MRSA NC_009487

Mu3 5 5 t002 26-23-17-34-17-20-17-12-17-16 MRSA NC_009782

Mu50 5 5 t002 26-23-17-34-17-20-17-12-17-16 MRSA NC_002758

N315 5 5 t002 26-23-17-34-17-20-17-12-17-16 MRSA NC_002745

ECT-R2 5 5 t002 26-23-17-34-17-20-17-12-17-16 MSSA NC_017343

ED98 5 5 t002 26-23-17-34-17-20-17-12-17-16 MSSA NC_013450

04-02981 225 5 t003 26-17-20-17-12-17-17-16 MRSA NC_017340

COL 250 8 t008 11-19-12-21-17-34-24-34-22-25 MRSA CP000046.1

FPR3757 8 8 t008 11-19-12-21-17-34-24-34-22-25 MRSA NC_007793

Newman 8 8 t008 11-19-12-21-17-34-24-34-22-25 MSSA NC_009641

ST398 398 15 t011 8-16-2-25-34-24-25 MRSA NC_017333

MRSA252 36 30 t018 15-12-16-2-16-2-25-17-24-24-24 MRSA NC_002952

TCH60 NI NI t019 8-16-2-16-2-25-17-24 MSSA NC_017342

M1 8 8 t024 11-12-21-17-34-24-34-22-25 MRSA NC_021059

T0131 239 8 t030 15-12-16-2-24-24 MRSA NC_017347

08BA02176 398 15 t034 8-16-2-25-2-25-34-24-25 MRSA NC_018608

JKD6008 239 8 t037 15-12-16-2-25-17-24 MRSA NC_017341

TW20 239 8 t037 15-12-16-2-25-17-24 MRSA NC_017331

11819-97 80 80 t044 7-23-12-34-34-33-34 MRSA NC_017351

10388 228 5 t1003 26-17-20-17-34-17-20-17-12-17-16 MRSA HE579059.1

10497 228 5 t1003 26-17-20-17-34-17-20-17-12-17-16 MRSA HE579061.1

15532 228 5 t1003 26-17-20-17-34-17-20-17-12-17-16 MRSA HE579063.1

16035 228 5 t1003 26-17-20-17-34-17-20-17-12-17-16 MRSA HE579065.1

16125 228 5 t1003 26-17-20-17-34-17-20-17-12-17-16 MRSA HE579067.1

18341 228 5 t1003 26-17-20-17-34-17-20-17-12-17-16 MRSA HE579069.1

18412 228 5 t1003 26-17-20-17-34-17-20-17-12-17-16 MRSA HE579071.1

18583 228 5 t1003 26-17-20-17-34-17-20-17-12-17-16 MRSA HE579073.1

HO50960412 22 22 t1041 26-23-23-13-23-31-29-17-28 MRSA NC_017763

MW2 1 1 t128 7-23-23-21-16-34-33-13 MRSA NC_003923

JKD6159 93 93 t202 11-17-23-17-17-16-16-25 MRSA NC_017338

VC40 8 8 t211 11-19-12-12-21-17-34-24-34-22-25 MRSA NC_016912

NCTC8325 8 8 t211 11-19-12-12-21-17-34-24-34-22-25 MSSA NC_007795

133 842 97 t2678 3-16-12-21-17-23-13-17-17-17-23-24 MSSA NC_017337

M013 59 59 t437 4-20-17-20-17-25-34 MRSA NC_016928

RF122 151 705 t529 4-34 MSSA AJ938182.1

71193 398 15 t571 8-16-2-25-2-25-34-25 MSSA NC_017673

476 1 1 t607 7-16-23-21-16-34-33-13 MSSA NC_002953

TCH1516 8 8 t622 11-19-12-21-17-34-22-25 MSSA NC_010079

LGA251 425 425 t6300 14-44-12-17-23-18-110-17-17-23-24 MRSA NC_017349

MSHR1132 1850 75 NI 259-31-17-17-17-22-17-17-23-17-22 MRSA NC_016941

MLST multilocus sequence typing; ST sequence type; CC clonal complex; MRSA methicillin-resistance S. aureus; MSSA methicillin-susceptible S. aureus
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trimmed for each spA coding region, leaving the extra-
cellular portion of SpA, corresponding to protein
domains A-E plus the X region comprising the octapep-
tide repeat 2–1 to 2–10 domain, previously classified by
[14, 29] and available at UniprotKB with the entry
P38507.
The X region from spA alleles,, composed by a series

of repeats of 21 to 27 bp, was retrieved and submitted to
DNAGear - The Spa Typing software that identifies spA
alleles, detects new repeats and new spA types and syn-
chronizes automatically the results with the open access
databases [30]. spA types were clustered into spa-CCs
with the algorithm Based Upon Repeat Pattern (BURP)
[24] with a distance cost of ≤5; Only spA types with
more than four repeats were considered. Minimum
spanning trees (MSTs) for spA data were calculated
using Prim’s algorithm [31] with BURST clustering using
the PubMLST website (http://pubmlst.org/). Moreover,
entire genome sequence of the abovementioned S. aur-
eus strains (Table 1) were used to retrieve the sequences
from the 6 loci used for S. aureus Multi Locus Sequence
Type (MLST) typing, namely, arcc, aroe, glpf, gmk, pta,
tpi, yqil, using the Center for Genomic Epidemiology
(CGE) server [32]. Alleles assignment was performed in
accordance with the S. aureus MLST database and pre-
sented as an ordered numerical vector [33]. STs were
clustered into CCs with eBURST v3 [34]. The identified
CCs included two or more STs that differed in a single
locus (single-locus variants) or two loci (double locus
variants) and singletons were set as sequence types that
didn’t group into a CC [34, 35].

spA sequence analysis
The spA gene sequences from S. aureus strains (Table I)
were used for phylogenetic analyses with MEGA5 pack-
age [36]. Alignment was performed with CLUSTAL soft-
ware [37], included on MEGA5 package. The spA coding
locus alignment was performed with the amino acid
sequences with ClustalΩ [38], manually rectified if
required. MEGA5 package was used to derive the mul-
tiple alignments of nucleotide and positions of doubtful
homology were removed using Gblocks [39].
Maximum likelihood (ML) phylogenetic trees were

constructed with PhyML 3.0 [40] for spA locus with JC
model [41] determined by TOPALi V2.5 [42] and by
jModeltest [43], using Akaike Information Criterion
(AIC) [44, 45] and from amino acid alignment using
JTT +G + F model [44] assessed by ProtTest 2.4 [46].
Supports for the nodes were evaluated by bootstrapping
with 1000 pseudoreplicates.
For the SpA protein phylogeny, spA coding locus align-

ment was performed with the amino acid sequences using
ClustalΩ [38], manually corrected when necessary.

DnaSP software [47] was used to perform the genetic
variability analyses.
PSFIND and HAPPLOT written by Dr Thomas S.

Whittam and available at the STEC Center website (http://
www.shigatox.net/stec/cgi-bin/programs) were used to
determine and graphically display the location of variable
nucleotide positions

Molecular Evolution
Neighbor-net analysis was performed and converted to a
splits graph by SplitsTree4 software – version 4.6 [48, 49],
as previously described [50]. Intragenic recombination
was screened within the aligned sequences with GARD
method [51] available in Datamonkey server [52] as previ-
ously described [53]. GARD results were confirmed [54]
using a recombination cost “delta dirac” and mutation
cost “Hamming” implemented in the Recco program [55].
RDP3 program [56] was performed to validate the

obtained results [53] with the requirement that each
potential event had to be detected simultaneously by
three or more methods.

Neutrality tests and positive selection analysis of spA gene
Tajima’s D [57], Fu and Li’s D* and F* [58] statistics were
calculated [59] for testing the mutation neutrality hypo-
thesis [60], with the program DNASP4.0 [47]. Estimates of
the number of non-synonymous and synonymous substi-
tutions at each locus (dN/dS) were calculated using the
modified Nei–Gojobori method [61] with Jukes-Cantor
correction [41] implemented in MEGA5 package [36].
Selecton version 2.1 software [62] was used to estimate

the existence of positive and purifying selection at each
amino acid site as previously described [50] from nucleo-
tide sequences alignment constructed using the MEGA5
package [36]. A Likelihood Ratio Test (LRT) was run to
assess the significance of the results by comparing two
nested models: a null model that assumes no selection
(M8a) [63] and an alternative model that does (M8) [64].

Computational comparison of biochemical properties of
different SpA isoforms
Representative sequences of each spA phylogenetic group
were translated with standard genetic code with MEGA5
package [36]. The Raptor X server was used to model the
corresponding translated sequences with the automated
mode with refinement of structure and secondary structure
prediction [65] which was used to FirstGlance viewing. The
pI, Mw and the main characteristics (instability index - II,
grand average of hydropathicity - GRAVY and aliphatic
index - AI) were inferred with Compute pI/Mw tool and
ProtParam tool, respectively, both available at SIB Bioinfor-
matics Resource Portal [66]. The Protein Variability Server
was used to determine the sequence variability within SpA
isoforms using several variability metrics, namely Shannon
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Entropy, Simpson Diversity Index and Wu-Kabat Variabil-
ity coefficient [67].

Results
Sequence analysis of spA gene
The extracellular domains of the virulence factor SpA re-
sponsible for the capability of S. aureus to escape innate and
adaptive immune responses [9–11] were studied from 41 S.
aureus strains (Table 1) in order to identify the mechanisms
operating on the evolution of this crucial gene. All the stud-
ied MRSA and MSSA strains encoded the spA gene. The
strains were selected since they represent the observed diver-
sity within the S. aureus genome-sequenced strains available
in NCBI (National Center for Biotechnology Information)
and KEGG (Kyoto Encyclopedia of Genes and Genomes).
After performing the alignment of the gene sequences

and the corresponding translation, several stop codons were
identified, namely in strains ED98 (MSSA), HO50960412
(MRSA) and RF122 (MSSA). In strain HO 50960412
(MRSA) the nonsense mutation was due to an insertion in
nucleotide number 664. Point mutations at nucleotides 499
and 943 in the SpA coding sequences from strains ED98
and RF122, respectively, lead to the insertion of translational
stop codons (GAA - >TAA). These truncations took place
upstream of the cell wall-binding recognition sequence
LPXTG, indicating that the protein would be unable to bind
to the cell wall, but instead secreted into the medium [17].
Additionally, the SpA-encoding sequence from ED98
(MSSA) and HO50960412 (MRSA) strains only displayed
three complete Ig-binding domains, with an incomplete B-
domain and an absent C- domain [14, 18]. The deletions of
these domains were in frame not affecting the repeat region.
SpA is highly conserved and isolates of S. aureus lacking this
virulence factor have been rarely identified. Nevertheless,
sporadically naturally occurring mutants have been observed
that secreted SpA into the extracellular environment fore-
seeing that SpA bond to the cell wall may not be essential
for the survival and virulence of S. aureus in the host [68].
Moreover, most of the Ig-binding region was intact in ED98
(MSSA) and HO50960412 (MRSA) strains, probably allow-
ing the binding of SpA to the Fc region of IgG and to the
Fab region of the VH3 subclass immunoglobulins, thus
resulting in B lymphocyte apoptosis. Indeed, S. aureus
strains with truncated SpA have been recently isolated from
bacteraemia, infection and among carriers [68]. These
strains were excluded from posterior analysis.

S. aureus phylogeny inferred from spA sequences
Sixteen different Sequence Type (STs) were identified
from the 38 S. aureus strains by comparison with the
MLST database, and a new MLST profile was identified
for the TCH60 strain (90-2-2-2-6-3-2) (Table 1). Most
strains belonged to ST228, comprising 21 % of all strains
(8 out of 38 strains); ST8 (15.8 %) and ST5 (10.5 %), all

well-known epidemic types [69–71]. The 16 STs were
split by eBURST into 2 main clonal complex (CC) (CC5
and −8), 2 minor CC’s (CC1 and −15), and 8 singletons
(S30, −59, −75, −80, −93, −97, −425 and the new ST
from strain MSHR1132) (Fig. 1a and Table 1). The major
CC’s, CC5 and −8, comprised 4 and 3 different STs that
included 15 and 10 S. aureus strains, respectively.
Twenty-two unique spA types were assigned based on

the X region using the default settings of DNAGear
(Table 1). We detected in strain MSHR1132 a combination
of repeats at spA region X (259-31-17-17-17-22-17-17-23-
17-22) not yet described in the SpA Ridom Server. The
dominant spA type was t103 (n = 8, 21 %), followed by spA
type t211 (n = 3, 8 %). spA types were clustered using the
BURP algorithm and the results were displayed as a MST
(Fig. 1b). Comparisons between the two MSTs revealed that
the clustering by spA typing was distinct from the clus-
tering by MLST. Indeed, spA types disrupted the
clonality determined by MLST, mostly evident for CC8
(Fig. 1b, highlighted in yellow).
In order to identify the mechanisms underlying spA

molecular gene evolution, ML phylogenetic trees were ob-
tained from the alignment of extracellular domains of spA
locus and, for comparison purposes, from the MLST-
concatenated alignment (Fig. 2). The MLST-concatenated
inferred ML tree was in accordance with previously ob-
tained eBURST analysis since each CC tends to cluster to-
gether (Fig. 2a). Conversely, the distribution of strains
according to their spA-type was not always congruent with
the topology of ML tree inferred from the spA sequences
(Fig. 2b). Namely, strains Mu50, N315 and Mu, and strains
ECTR2, JH1 and JH9, identified as spA-t002, were split into
distinct clusters, respectively. While the Ridom SpaServer
database [23] assigns spA sequences to distinct spA types ac-
cording to variation in the tandem repeat region X from
spA, the ML tree was inferred from complete extracellular
domains of spA sequence. All other S. aureus strains that
shared the same spA-type tend to cluster together and were
distinct from all other groups (Fig. 2b).
The incongruent topology inferred from MLST and spA

gene analysis (Fig. 2a and b, respectively) was evidenced
by different branch sorting between the two trees. While
in Fig. 2a most strains clustered in one group (97.56 %), in
Fig. 2b, S. aureus strains were splitted into three discrete
clusters supported by high bootstrap values. Furthermore,
strains were not evenly distributed in these clusters. This
incongruence’s are explained below in the context of re-
combination. When the spA sequence was analyzed, all
the MSSA strains were grouped in a single cluster, in ac-
cordance with previous reports [21].

Genetic variability of spA gene
Standard genetic diversity parameters, not dependent on
sample size, were estimated based on spA and MLST-
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related loci to determine nucleotide diversity (Table 2).
The average number of pairwise nucleotide differences
(k), the overall haplotype diversity (Hd) and nucleotide
diversity (π) for the 38 spA sequences were 44.570,
0.939 ± 0.025 and 0.0370 ± 0.0044, respectively. A par-
ticular analysis of π, with a sliding window plot (window
length 100 bp, step size 25 bp), revealed diversity ranged
from 0.003 to 0.034. Nucleotide diversity was higher be-
tween nucleotide 350–470 (within domain D), 680–810
(last portion of domain A and the entire domain B) and
960–1080 (domain Xr (a)), whereas the most conserved
region was identified between nucleotide 840–960 (the
entire domain C) (Additional file 1: Figure S1). These
variable regions are discussed below in the context of
amino acid substitutions.

Analysis and comparison of spA at the nucleotide
level showed mutations at 184 positions among S.
aureus strains. One hundred and thirty three of those
mutations were synonymous while 51 were nonsynon-
ymous. The ratio between rate of non-synonymous
substitutions (dN) to rate of synonymous substitutions
(dS) was determined as an indicator of selective pres-
sure acting on a protein-coding gene. The low dN/dS
ratio obtained denoted that purifying (negative) selec-
tion has operated on theses alleles (Table 2), once varia-
tions are allowed providing that they do not result on
significant disadvantage on any surviving variant. Tests
to detect departure from neutrality, like D, D* and F*
values, were non-significant suggesting that the null hy-
pothesis of neutrality could not be rejected (Table 2).

Fig. 1 Population snapshot of S. aureus strains after a MLST BURTS clustering and b spA BURP grouping. The MLST minimum-spanning tree was
obtained with BURST clustering.. spA types were clustered into spA-CCs with the algorithm BURP. Strains are represented by circles highlighted
according to their MLST-based clonal complexes, CC8 (yellow circles), CC15 (green circles), CC1 (purple circles) and CC5 (blue circles). Black circles
represent singletons
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Therefore the pattern of variability observed in spA gene
can be explained by the neutral process [57, 58, 72].
SpA had an average length of 361 amino acids with a

standard deviation of 29 amino acids and a molecular
weight average of 39.92 kDa with a standard deviation of
3.25 kDa. SpA revealed high polymorphism at amino acid
level, transversally to all strains (Additional file 2: Fig-
ure S2). Among the 78 polymorphic sites, 74 were
monomorphic mutations and 5 were dimorphic mutation
[137 (A/N), 270 (A/D), 323 (A/G), 324 (Q/N), 387 (G/D)].
Nineteen different haplotypes were identified based on the
amino acid sequences, with haplotype containing spA type
t1003 having the highest frequency (8/38).
Phylogenetic tree analysis evidenced that most spA nu-

cleotide polymorphisms resulted in amino acid changes
since clusters inferred from deduced amino acid sequences

of spA were consistent with the previously obtained
nucleotide-based subgroups (Additional file 3: Figure S3).
Indeed, we found 21 haplotypes which translate to 19 dif-
ferent protein sequences. Similar diversity parameters were
found between spA and MLST loci (Table 2).
In order to find evidences for the existence of recombin-

ation events, namely the presence of mosaic patterns
within spA sequences, the Happlot program was used to
visualize relative position between alleles and a guiding se-
quence. The previously defined spA clusters matched the
readily identified clusters of polymorphic sites, as shown
in Fig. 3. Sequences resembled within clusters and were
different from those found in other clusters, clearly indi-
cating the existence of SpA isoforms. Indeed, spA-II clus-
ter denoted a remarkable degree of both nucleotide and
amino acid polymorphism.

Fig. 2 Molecular phylogenetic analysis by maximum likelihood method of S. aureus strains from a MLST concatenated genes and b spA gene.
Bootstrap support values (1,000 replicates) for nodes higher than 50 % are indicated next to the corresponding node. Scale bar, 1 inferred amino
acid substitutions per 100 nucleotides. CC’s and spA clusters are indicated next to corresponding strain. MSSA strains are boxed

Santos-Júnior et al. BMC Microbiology  (2016) 16:143 Page 7 of 16



Reticulate evolutionary events inferred from spA sequences
In order to determine the effect of recombination and
horizontal gene transfer events into the phylogenetic rela-
tionships of S. aureus strains a Neighbor-Net analysis
(Fig. 4) has been constructed. Evidences of a network-like
evolution were clear, indicating lack of tree-like relation-
ship between spA sequences. Nevertheless, it is still pos-
sible to reconstruct the previously defined groups from the
ML phylogenetic analysis (Fig. 2b). The clusters previously
identified were quite robust, presenting a complex diversi-
fying history. Moreover, the divergence of clusters spA-I
and spA-III from cluster spA-II, only group with MSSA
strains, was noticeable (Fig. 4).

Determining the influence of recombination in spA
molecular evolution
The abovementioned results corroborate the occurrence
of recombination events between and within distinct
spA clusters. Indeed, evidences of individual recombin-
ation events were detected by two distinct approaches.
Namely, GARD found evidences with statistical signifi-
cance (p < 0.001, KH test) for at least 5 breaking-points,
corroborated by Recco analysis from 1000 bootstraps.
RDP analysis showed the same breaking-points with at
least three different algorithms that were mapped into

the corresponding ML phylogenetic tree (Fig. 5 and
Additional file 4: Table S1).
This approach clarified the origin of several conflicting

phylogenetic signals previously observed both in the ML
and Neighbor-Net analysis since they were the result of
Potential Recombination Events (PREs) (Fig. 2b and Fig. 4).
The identified PREs were limited to MRSA strains with
only one exception, the MSSA strain ECTR2, resolv-
ing the abovementioned complex evolutionary history of
spA (Fig. 5). Namely, PRE1 involving eight of the strains
clustered in spA-I and cluster spA-II with the ancestor
MSHR1132 as minor parent, responsible for the bifurcation
denoted in the ML and Neighbor-Net analysis (Fig. 2a and
Fig. 4). Moreover, it was possible to identify PREs involving
strains ECTR2, JH1 and JH9 with the ancestor 04–02981
as minor parent; and MSHR1132 that reconstructs previ-
ously assigned conflicting signals in the network, namely
PRE’s number 3, 4 and 5 respectively (Fig. 5 and Additional
file 4: Table S1).

Forces operating in SpA evolution
Several neutrality testes previously described in Table 2
were employed to avoid the influence of positive selection
on the accurate detection of recombination events [73]. In
fact, variations on spA gene could be solely explained by
the neutral hypothesis of evolution [57, 60, 58].
To further confirm this assumption the Selecton pack-

age [62] was used to screen the spA alignment for evi-
dences of positive selection through a codon based ML
method. The LRT strongly rejected the null hypothesis
(p < 0.001) indicating that positive selection may have taken
place (Additional file 5: Table S2). To restrict the effect that
recombination could have on those tests by generating mis-
leading results, the previously identified breakpoints by
GARD were used to create the corresponding partitions
that were subsequently individually submitted to Selecton.
The LRT strongly rejected the null hypothesis revealing that
positive selection may be operating within in the partition
of SpA comprising the X region (partition 4). Then again
no evidences of positive selection in partitions 1 to 3 were
sought by the LRT test (Additional file 5: Table S2).
Since the previously performed LRTs indicated the

presence of positive selection in spA, an empirical
Bayesian analysis was performed to determine the
posterior probability for each codon site to be under
positive selection. For that, each partition was indi-
vidually submitted to Selecton to identify the codons
under positive selection. The Ka/Ks ratio was used to
estimate both positive and purifying selection at each
amino-acid site [74, 75]. The result for each codon
was translated into a color scale graphically depicted
on Fig. 6. Analyzing the obtained results one can deter-
mine that not a single residue was found to be under posi-
tive selection within the SpA Ig binding domains and

Table 2 Summary of genetic diversity parameters for spA
sequences and concatenate MLST loci from S. aureus strains

spA MLST

Sequence, n 38 38

Sequence length, L 1575 3186

Haplotypes, h 21 19

Haplotype diversity, Hd (standard deviation) 0.939 0.926

(0.025) (0.022)

Nucleotide diversity, π (standard deviation) 0.0370 0.0110

(0.0044) (0.0043)

Polymorphic sites, S (%) 191 (12.13) 381 (11.96)

θ (from S) (standard deviation) 0.03779 0.02796

(0.01126) (0.00143)

Pairwise differences, k 44.570 35.090

Total number of mutations, η 184 286

Synonymous mutations (%) 133 (72.28) 297 (76.74)

Non-synonymous mutations (%) 51 (27.72) 90 (23.26)

dN/dS 0.1348 0.0970

D (Tajima) −0.40 (p > 0.1) -

D* −1.34 (p > 0.1) -

F* −1.12 (p > 0.1) -

Bold text was used to emphasize the higher value obtained between spA and
MLST data
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signal sequence, anticipating that these SpA domains are
under a strong negative constraint. However, several red
and pink-colored sites were present in the partitions of
SpA comprising the X region, representing positively se-
lected codons with high statistical significance (Fig. 6).

Biochemical comparison of SpA isoforms
The characteristics of SpA isoforms were evaluated and the
distribution of Instability Index (II), Grand Average of Hy-
dropathy (GRAVY) and Aliphatic Index (AI) followed the
normal distribution (PKS test > 0.05) (Table 3). The II mea-
sures provide an estimate of the protein stability, and II

values smaller than 40 are predicted as stable [76]. Despite
all the calculated values being higher than 40, this index
presented a significant positive correlation with SpA clus-
ters (r = 0.752, p = 7.89x10−8). The cluster with the lowest II
was SpA-I (56.63 ± 0.13), while all the other clusters present
an average under 59. These values estimate a potential in-
stability for SpA proteins, common to all clusters, possibly
explained by the existence of a membrane-dependent fold-
ing process in which final SpA conformations is achieved
through hydrophobic interactions with phospholipids heads
like previously described by Dowan and Bogdanov [77].
The AI of a protein is defined as the relative volume

Fig. 3 Graphical display of the location of polymorphic sites (SPNs and INDELs) of spA from S. aureus strains using the program HAPPLOT when
aligned with S. aureus strain 18583. Polymorphic nucleotide sites based upon pairwise comparisons are represented by vertical lines
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occupied by aliphatic side chains [78]. The AI was posi-
tively correlated with statistical significance with SpA
clusters (r = 0.748, p = 1.03x10−7). The cluster SpA-I
had an AI of 48.098 ± 0.56 while the others started at 53,
showing an increasing of thermo-stability. The GRAVY
[79] values were positively correlated with SpA clusters
(r = 0.734, p = 7.89x10−8), similarly to II and AI. The
higher values were obtained for SpA-III (−1.346 ±
0.018), demonstrating that some clusters presented
protein products more hydrophobic than others, and
that the stability could be compromised by this factor, as
the thermo-stability decreased (see II and AI values). Des-
pite the fact that SpA-I cluster is a rather homogeneous
group, with only two isoforms, the observed increase on
hydrophobicity and instability of its isoforms could be ex-
plained by the previously identified PRE (Fig. 5) that altered
the protein characteristics by generating novel variations.

Discussion
Given the role of SpA as crucial virulence-related ef-
fector enabling S. aureus to escape innate and adaptive
immune responses, one can consider it a target for host
specialization and clonal expansion through adaptive
evolution. Indeed, S. aureus pathogenicity could be influ-
enced by variations on spA. The observed incongruence
between ML phylogenetic trees obtained from alignment
of extracellular domains of spA locus and from MLST-
concatenated alignment analysis (Fig. 2) was supported by
mosaic gene patterns found in spA in which different gene
segments exhibitting different evolutionary histories (Fig. 3).
The influence of recombination and horizontal gene trans-
fer events in the phylogenetic relationships among S. aur-
eus strains were determined by a Neighbor-Net analysis.
Several conflicting phylogenetic signals were observed
throughout the network (Fig. 4), namely in cluster spA-II,

Fig. 4 Neighbor-net phylogenetic network showing the relationships among S. aureus strains. The split graph was estimated with SplitsTree4
from p-distances of the spA sequence alignment based on the Jukes–Cantor method. Strains highlighted according to their MLST-based CC’s
(Table 1 and Fig. 1), Color code: CC8 (yellow circles), CC15 (green circles), CC1 (purple circles) and CC5 (blue circles). The relations between and
within strains are illustrated by weighted splits with different colors representing simultaneously both grouping in the data and evolutionary distances
between taxa, highlighting conflicting signals or alternative phylogenetic histories (recombination or gene transfer) in spA molecular evolution. MSSA
strains are boxed
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suggesting that niche-specific selection pressures have been
operating on this gene. In fact, it lead us to speculate that
observed allelic diversity in spA could mirror fitness varia-
tions into virulence of those strains. Of the 38 S. aureus an-
alyzed strains, 17 had at least one recombinant region and
one of them presented two (Fig. 5). These findings reveal
that the exchange of genetic material is apparently com-
mon in S. aureus and is in agreement with the report of
the existence of hotspots in the core genome of this mostly
clonal bacterium [80]. Our analysis revealed that PREs
were not equally distributed through spA gene since pre-
dicted C domain was involved in all PREs and predicted B
domain and Xr (a) region were implicated in four PREs,
suggesting that these domains could represent recombin-
ation hotspots. These recombination events lead to the for-
mation of mosaic genes potentially implicated on the
generation of new biological properties. Another relevant
result was the identification of PRE’s within and between
CC’s, highlighting the importance of this mechanism on
the generation of diversity, and concomitantly, on evolu-
tion of highly clonal S. aureus. Two different studies sug-
gested that recombination in S. aureus was more likely to
occur between closely related strains (i.e. within CCs) than
between phylogenetic distant lineages (i.e. between CCs)
[81, 82]. This would ultimately favor a divergence evolution
between CC given limited gene flow observed between
them. This model regards CCs as panmictic units (sexual
species) rather than groups of clones as envisioned by the
clonal model [83]. Surprisingly, our results did not confirm
the pattern of higher recombination rate within CCs.
The low dN/dS ratios confirmed that purifying

(negative) selection is operating in spA alleles and
that variation are limited to those that do not cause a
significant disadvantage. In tests used to detect
departure from neutrality, values were non-significant
suggesting that the null hypothesis of neutrality could
not be rejected (Table 2). Therefore the pattern of
variability observed in spA gene can be explained by
the neutral process [57, 58, 72].
Our results confirm that most spA nucleotide poly-

morphisms resulted in amino acid changes. These data
are not in accordance with other studies focused on the
diversity of other S. aureus genes, namely, highly vari-
able core adhesion (ADH) genes [84] and aur gene [85],
where gene’s diversity was several-fold higher than that
presented by MLST loci. Nevertheless, the abovemen-
tioned genes were under strong purifying selection when
compared to the MLST genes [84, 85].
Pathogen fate could be drastically affected by amino

acid substitutions on key virulence-factors. Indeed,
amino acid variations were not randomly distributed
in SpA and two groups of polymorphic sites were
detected (Fig. 6), one encoding the immunoglobulin-
binding domains D to C, and other the Xr (a)

Fig. 5 Unique recombination events detected on spA alignment. Each
sequence is represented by a color and the recombination is evidenced
by donor and is mapped onto the corresponding breaking point
positions in the alignment. All analyses were evaluated with RDP and
the most significant P value to support the findings are shown at
Additional file 4: Table S1
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domain, as previously observed (Additional file 2:
Figure S2). The abovementioned Ig domains of SpA
(E-C) binds the Fcγ domain of immunoglobulin (Ig)
and cross-links the Fab domain of VH3-type B cell
receptors (IgM), playing an essential role in S. aureus
escape from host immune system [9, 10, 14, 18, 19].
Accordingly, previous studies determined that amino
acid substitutions in SpA at four key residues in each
of the five Ig-binding promoted adaptive responses
that protect hosts against recurrent infection [10].
Thus, the evolution of spA via frequent non-
synonymous mutations could provide some S. aureus
strains with increased fitness, reinforcing the import-
ance of those domains.
From our analysis we have determined that not a

single residue under positive selection was identified
in SpA Ig binding domains and signal sequence, indi-
cating that these SpA domains are under a strong
negative constraint. However, several red and pink-
colored sites were present in the partitions of SpA
comprising the X region, representing positively se-
lected codons with high statistical significance (Fig. 6).

This domain is known to be related with SpA anchor-
ing [86] so it is conceivable that evolution could act,
namely by selecting duplications in this region, once
a longer X region results in a better exposition of the
Fc-binding region of protein A, or by altering the
binding properties of the domain, in order to allow
SpA a more easy access to the Fc of IgG [25, 26]. In
sum, a selective advantage of those strains is expected
by providing an increase on their fitness thereby fa-
cilitating colonization and/or contributing to the epi-
demic phenotype.

Conclusion
Given the key role of SpA in S. aureus virulence we
studied the mechanisms operating on its molecular evo-
lution. The detection of positive selection operating on
spA evolution was clear. Intragenic recombination, non-
synonymous mutations and duplication events are im-
portant strategies in the evolutionary adaptive process
contributing to spA genetic plasticity. These events led to
the formation of a mosaic gene composed by different seg-
ments with distinct evolutionary histories fostering novel

Fig. 6 Estimates of both positive and purifying selection at each amino acid site of SpA calculated from the ratio of non-synonymous (Ka)
to synonymous substitutions (Ks) [62]. Graphical display of selecton results with FirstGlance in Jmol where the Ka/Ks scores are colored-
coded. Significant positive and purifying sites (P-value < 0.05) are colored in orange (color number 1) and magenta (color number 4),
respectively
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biological properties. This could provide S. aureus strains
with increased fitness, namely in the colonization of
host surfaces or in Ig binding affinity, contributing to
the epidemic phenotype by generating novel varia-
tions of SpA domains. Moreover, saving such allelic
diversity/plasticity in nature imply that they represent
selected adaptations.

Additional files

Additional file 1: Figure S1. Nucleotide polymorphism in spA of
S.aureus. Sliding window plot of number of polymorphic sites (S) along
spA, generated by using DnaSP. (PDF 248 kb)

Additional file 2: Figure S2. Amino acid sequence polymorphism in
SpA. Polymorphic amino acid residues are listed for each haplotype.

Table 3 Main characteristics of SpA alleles from S. aureus strain. Strains were sorted by Instability Index (II)

Strain Length (aa) pI MW (Da) Instability Index (II) GRAVY Aliphatic index (AI)

Mu50 330 5.01 36292.34 56.44 −1.48 48.91

Mu3 330 5.01 36292.34 56.44 −1.48 48.91

N315 330 5.01 36292.34 56.44 −1.48 48.91

10388 338 5.03 37162.27 56.71 −1.507 47.75

15532 338 5.03 37162.27 56.71 −1.507 47.75

16035 338 5.03 37162.27 56.71 −1.507 47.75

18341 338 5.03 37162.27 56.71 −1.507 47.75

10497 338 5.03 37162.27 56.71 −1.507 47.75

16125 338 5.03 37162.27 56.71 −1.507 47.75

18583 338 5.03 37162.27 56.71 −1.507 47.75

MSHR1132 338 4.96 36977.97 57.64 −1.478 49.2

133 404 4.89 44514.17 58.49 −1.466 50.12

ECTR2 388 5.03 42859.59 58.71 −1.416 52.45

JH1 388 5.03 42859.59 58.71 −1.416 52.45

JH9 388 5.03 42859.59 58.71 −1.416 52.45

NCTC8325 396 5.04 43856.62 58.84 −1.464 51.39

VC40 396 5.04 43856.62 58.84 −1.464 51.39

LGA251 395 4.92 43582.29 59.02 −1.437 52.51

JKD6159 372 4.9 41008.54 59.13 −1.339 54.7

FPR3757 388 5.03 42973.69 59.15 −1.432 52.45

COL 388 5.03 42973.69 59.15 −1.432 52.45

Newman 388 5.03 42973.69 59.15 −1.432 52.45

M1 380 5.01 42090.76 59.48 −1.4 53.55

08BA02176 380 5.02 42103.84 59.48 −1.4 53.82

04-02981 372 4.95 41136.71 59.59 −1.357 54.7

476 372 4.95 41193.76 59.82 −1.365 54.7

MW2 372 4.95 41193.76 59.82 −1.365 54.7

M013 364 5.03 40357.93 59.88 −1.338 55.91

252 396 5.05 43741.57 59.99 −1.448 51.39

TCH1516 372 4.95 41250.81 60.04 −1.373 54.7

71193 372 5.01 41277.97 60.46 −1.374 54.97

11819-97 364 5.09 40453.12 60.64 −1.35 55.91

JKD6008 306 5.08 33801.83 60.65 −1.358 55.33

ST398 364 4.94 40380.97 60.83 −1.337 56.18

TW20 306 5.01 33773.77 60.90 −1.355 55.33

T0131 298 5.06 32975.95 61.40 −1.325 56.81

TCH60 372 5.01 41206.89 61.50 −1.366 54.7
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Multiple sequence alignment of SpA was performed with ClustalW and
visualized with Jalview. (PDF 362 kb)

Additional file 3: Figure S3. Maximum likelihood phylogenetic trees of
S. aureus strains (Table 1) from deduced amino acid sequences. Bootstrap
support values (1,000 replicates) for nodes higher than 50 % are
indicated next to the corresponding node. (PDF 96 kb)

Additional file 4: Table S1. Potential recombinant events (PRE)
identified with RDP3 from the alignment of spA from 38 S. aureus
strains. The minimum number of independent recombination events
(IREs) within each identified PRE was inferred by a minimum of three
methods. (PDF 246 kb)

Additional file 5: Table S2. Likelihood ratio tests of positive selection.
(PDF 205 kb)
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