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SUMMARY
Image-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotentmarkers, are commonmethods used

in the stem cell field to assess pluripotency. Although an increasednumber of image-analysis approacheshave been described, there is still

a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need,

we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large

low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm

with a supervisedmachine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the

automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented

in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing

image assessment bias.
INTRODUCTION

Embryonic stem cells (ESCs) are characterized by their self-

renewal and pluripotent capacities. Due to their properties,

ESCs serve as an important research model to study key

factors that maintain pluripotency, as well as factors that

trigger differentiation. ESCs are morphologically distinct

from differentiated cells, featuring a high nuclear-to-

cytoplasmic ratio and growth as 3D colonies. In the undif-

ferentiated state, ESCs are characterized by high levels of

pluripotency-related transcription factors, such as OCT

3/4, NANOG, and SOX2 (Avilion et al., 2003; Chambers

et al., 2003; Nichols et al., 1998; Hart et al., 2004; Hay

et al., 2004). In addition, the expression of enzyme alkaline

phosphatase (AP) is another hallmark of pluripotency

(Palmqvist et al., 2005). AP is an enzyme that catalyzes

the hydrolysis of phosphate esters (Stefková et al., 2015).

ESCs have high levels of AP, which decreases upon ESC dif-

ferentiation (Stefková et al., 2015; Palmqvist et al., 2005).

The expression specificity of AP and the transcription

factors described above makes them crucial proteins to

evaluate ESC pluripotency in vitro.

Image-basedassays are commonmethodsused instemcell

research to evaluate maintenance and loss of pluripotency.
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AP staining is commonly used to assess maintenance/loss

of pluripotency after different stimuli, such as drug treat-

ments, gene silencing, or overexpression (Martello and

Smith, 2014). Immunocytochemistry with antibodies spe-

cific to pluripotent markers is another image-based method

used to analyze stem cell fate (Martello and Smith, 2014).

Immunocytochemistry and AP assays are fast and easy to

perform. Contrary tomethods that require suspension cells,

such as flow cytometry, these image-based assays allow col-

ony morphological analysis as they maintain the spatial in-

formation of each cell in the colony. Therefore, the increase

of ESC-image acquisitions creates a demand for image-anal-

ysis programs suitable for ESC-image quantification.

Considering that ESC cultures are usually heterogeneous,

with varying degrees of pluripotency and irregular colony

sizes, several imaging quantification programs have been

developed specifically for ESC. Using phase-contrast im-

ages, different imaging analysis pipelines have been re-

ported to segment ESC colonies and automatically track

their growth and morphology over time (Jaccard et al.,

2014a, 2014b; Narkilahti et al., 2007; Scherf et al., 2012).

Despite their high ability to segment ESC in culture and

monitor ESC growth and confluency, these pipelines do

not provide any other pluripotency measurements. More
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Figure 1. AP Co-localizes with OCT-4 Expression
Cropped image of mESCs cultured for 4 days in pluripotent conditions and stained for AP assay and the pluripotent marker OCT-4. The yellow
arrow shows a portion of a colony differentiated, where no OCT-4 or AP staining is visible; the red arrow shows a pluripotent colony positive
to OCT-4 and AP staining. Scale bar, 100 mm. AP, alkaline phosphatase.
recently, phase-contrast images have been used to evaluate

induced pluripotent stem cells (iPSCs) quality (Tokunaga

et al., 2014; Joutsijoki et al., 2016; Maddah et al., 2014).

However, in all these studies,morphology is the key feature,

where iPSCs are classified as good- or bad-quality colonies,

but no other pluripotency measurement is obtained.

In addition to phase-contrast images, other studies have

been reported to segment ESC colonies using immunofluo-

rescence images (Chalfounet al., 2015;Gormanet al., 2014;

Lou et al., 2014; Paduano et al., 2013). Although these pipe-

lines allow the location analysis of labeled cells, which

makes them suitable for pluripotency quantification, the

pipelines developedby somegroups rely inhigh-magnifica-

tion images to evaluate pluripotency marker expression

(Gorman et al., 2014; Lou et al., 2014), whereas others,

despite analyzing labeled cells in low magnification, they

only determine the signal location of different markers in

a colony, constraining the automatic and global pluripo-

tency determination (Paduano et al., 2013).

Therefore, none of the current image-analysis pipelines

allow an easy and robust automatic quantification of

ESC pluripotency in an environment where different de-

grees of pluripotency occur, i.e., the presence of pluripo-

tent colonies, mixed colonies, and differentiated cells. For

instance, to even answer the simple question of whether or

not a treatment induces loss of pluripotency, stem cell

biologists rely onmanual scoring, or culture observations af-

ter AP staining. This manual quantification not only limits

reproducibility andobjectivity, but it is also timeconsuming.

Here, using mouse ESC (mESC) as a model we present an

accurate, open-source, and user-friendly software, Pluri-IQ,

which can automatically quantify the percentage of plurip-

otent, mixed, or differentiated cells through culture im-

ages. Pluri-IQ is able to analyze different low-magnification

image sizes, and through core cascade modules (segmenta-

tion, machine learning, validation, and automatic scoring)

accurately quantifies pluripotency through the analysis of
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the pluripotency markers present in the image. Segmenta-

tion provides the outline of each colony and is performed

automatically by Pluri-IQ. Classifiers are built through a

machine-learning interactive process. Manual validation

provides the user with the classifier accuracy, while auto-

matically updating the classifier, which guarantees high ac-

curacy of automatic score classification of each colony as

pluripotent, mixed, or differentiated, with low user input

required.
RESULTS

Image-Based Analysis Outline

To evaluate the performance of Pluri-IQ, we tested its

classification precision over a set of mESCs images. These

mESCs were cultured in different medium conditions that

promotemaintenance of pluripotency or inducemESC dif-

ferentiation. Cells were stainedwith AP. Subsequently, low-

magnification phase-contrast images and a fluorescence

channel for AP staining were acquired.

AP staining was selected as a method for pluripotency

assessment since it is a fast and common protocol to eval-

uate pluripotency (Martello and Smith, 2014). To confirm

that the AP assay utilized only stained pluripotent cells,

we performed the AP assay followed by immunostaining

against the pluripotent marker OCT-4 (Figure 1). Phase-

contrast images, as well as nuclear staining, were used to

provide a general outlook of all colonies. Then, OCT-4

expression was compared with AP staining, and colonies

positive for OCT-4 were also positive for AP (Figure 1, red

arrow), while the portions of colonies that fail to express

OCT-4 do not stain for AP (Figure 1, yellow arrow). These

results show that the AP assay utilized in these experiments

is specific for pluripotent cells.

One of the challenges in characterizing pluripotency

automatically is that the majority of image-based assays,



Figure 2. Pluri-IQ Approach to Quantify ESCs Pluripotency
Users provide a single image or a large image input, as shown. Upon selection of the ROI, Pluri-IQ segments both phase-contrast image
channel to get all colonies, and the pluripotent marker channel. After segmentation, training is required, through selection of what is
considered pluripotent, mixed, and differentiated colonies, in order to construct a random forest algorithm, which can be added to an
existing training system or to a new training system. Validation is performed by the user, and the accuracy of the Pluri-IQ is calculated. The
random forest algorithm is updated and colonies features are stored in both Excel and MATLAB files. After all these steps are completed,
and segmentation performed to all images, the automatic score is then available. Finally, automatic data comparison is available and
allows the comparison of different conditions automatically, providing figures with the percentage of colonies or area pluripotent, mixed
and differentiated, in addition to storage as Excel file the data comparisons. Scale bars, 100 mm (single image); 1,000 mm (large image).
Segmentation, training, validation, and automatic score example derived from the raw large image.
including AP staining, are specific for pluripotent cells,

which gives a positive signal when a colony is pluripotent.

However, differentiated colonies are only defined as

such when the positive signal is non-detectable (Figure 1).

In addition, pluripotent colonies acquire different mor-

phologies upon different treatments, and usually, during

ESC differentiation, pluripotent staining is firstly reduced

before it is completely lost. Therefore, mixed colonies,

whichwe consider amixture of pluripotent cells and differ-

entiated cells, are prevalent in most cultures and difficult

to impartially classify. Taking all these factors into consid-

eration, we developed an image-analysis approach that

incorporates three major steps in order to automatically

quantify pluripotency: a fast segmentation algorithm

capable of identifying different colony types in both large

phase-contrast and fluorescent images, an interactive

machine-learning algorithm to classify colonies as pluripo-

tent, mixed, or differentiated, and a validation algorithm

responsible for the measurement of classification accu-

racy to increase the trust on the automatic pluripotency

quantification and the comparison of different conditions

(Figure 2).

Image Properties and Colony Segmentation

A reliable pluripotency evaluation requires an overview

of the entire well plate. However, automatic image
acquisition often leads to colonies on the border of

the image and, consequently, loss of partial colony infor-

mation. Such colonies are thus, not suitable for quantifi-

cation. Therefore, we designed a pipeline that allows

the analysis of single or multiple TIFF images combined

(stitched together during or after single image acquisi-

tion) in order to fulfill the criteria described above

(Figure 1).

To detect and segment the colonies, we developed

a custom script written in MATLAB (MathWorks), FACT

(fast and accurate colony tracing), which does not require

user input (Figure 3). Colony detection and segmentation

is primarily performed in the phase-contrast image. The

image background is first calculated: fast Fourier trans-

form is applied to the raw image; the transformed image

obtained is filtered with a cutoff frequency of 0.2 in the

Fourier domain, followed by an inverse fast Fourier trans-

form, resulting in a reconstructed image with only low

frequency features. The background is removed from

the raw image through subtraction of the low frequency

image from the raw image, which isolates the high-fre-

quency information, cells, and colonies (Figure 3). Then,

the local contrast is highlighted using a 3 3 3 high-

frequency filter and binarized using Otsu thresholding,

which separates the foreground from the background.

A sobel filter is applied to the subtracted background
Stem Cell Reports j Vol. 9 j 697–709 j August 8, 2017 699



Figure 3. Colony Detection and Segmen-
tation Pipeline
The raw image is processed by the difference
of erosion and dilation followed by Otsu
thresholding to create the first mask. The
raw image is also processed by removing
the background level through fast Fourier
transform, creating a background sub-
tracted image, from which we extract the
gradient and local contrast and produce two
more masks through Otsu thresholding. The
three masks are added together and if the
pixel value is greater than 1, the object
is incorporated into the final mask. The
outline and label of the final mask is added
to the raw image to show the outcome of the
segmentation. Scale bar, 500 mm.
image to obtain the image gradient. Raw images are also

processed by morphological operations erosion and dila-

tion, and the difference between these two processes is

used to obtain a binary mask. The binary mask from the

local contrast, gradient, and morphological operations

applied to the raw image is added together, and the final

mask is produced when the value of the cumulative

mask is greater than 1 (Figure 3). Given that ESCs grow

in colonies, we added two particular restrictions in the

algorithm: (1) the segmentation algorithm was adapted

to ignore single cells (however, single cells can be

included by manually adapting this segmentation algo-

rithm parameter); and (2) differentiated and mixed col-

onies tend to occupy a large area and, by eliminating all

colonies on the periphery of the region of interest (ROI),

biased results were obtained. Therefore, colonies in the

periphery are only discarded if their pixel size is below

7 3 104 pixels. After colony segmentation is completed,

all colonies detected are assigned with a specific number

(ID), with the colony ID derived from the phase-contrast

image applied to the pluripotent marker image (Figure 3).

After segmentation is performed, the results are saved as

new TIFF images, which allows for segmentation inspec-

tion. A similar procedure is applied for fluorescence im-

ages, with a small nuance: if there are saturated pixel in

the image, the software will automatically fill them in as

a positive hint for a colony.
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Segmentation Accuracy

To evaluate segmentation accuracy, large phase-con-

trast images (10,078 3 10,054 pixels), with different de-

grees of pluripotency, morphology, and confluency were

analyzed by FACT and compared with previously pub-

lished segmentation algorithms: Phantast (Jaccard et al.,.

2014b), and empirical gradient threshold (EGT) (Chalfoun

et al., 2015) (Figures 4A and S1). We selected Phantast

and EGT as they have both been shown to successfully

segment ESCs images. While Phantast requires user input

for accurate segmentation, EGT does not. Our results

show that both Phantast and FACT are able to segment

large images, whereas EGT fails to segment some image

fractions (Figures 4A and S1). We then decided to directly

compare FACT segmentation with Phantast segmentation,

and calculate FACT precision, recall, specificity, and dice

index (Figures 4B and 4C). Quantitatively, we achieved

an average precision of 94.24 ± 0.02; an average recall of

93.95 ± 0.02; an average specificity of 96.35 ± 0.03, and

an average dice index of 94.06 ± 0.01. These results

show that our segmentation method (FACT) can provide

accurate image segmentation on a wide range of cell

colony morphologies, from a large sheet of cells to indi-

vidualized colonies, without any additional user input.

Moreover, these results demonstrate that our segmenta-

tion algorithm, without tuning requirements, is as robust

and accurate as Phantast.



Figure 4. Comparison between FACT
Algorithm Segmentation and Phantast
and EGT Segmentation Algorithms
(A) FACT, Phantast, and EGT segmenta-
tion results. Binary images, where white
is representative of presence of a colony.
Scale bar, 500 mm.
(B) Direct comparison between FACT
and Phantast segmentation. White regions
represent segmentation overlap between
Phantast and FACT; purple regions represent
pixel only positively segmented by Phan-
tast; and green regions represent pixel
only positively segmented by FACT. Scale
bar, 500 mm.
(C) Precision, recall, specificity, and dice
index of FACT segmentation was compared
with Phantast segmentation. EGT, empirical
gradient threshold; FACT, fast and accurate
colony tracing.
See also Figure S1.
Machine-Learning Classification

Once segmentation is performed, automatic pluripotency

classification poses a further challenge. Pluripotent cells

in culture conditions have different colony height, area,

and circularity. To classify a colony as pluripotent, the in-

tensity of the pluripotent marker must be high, whereas a

differentiated colony has low or undetectable pluripotent

signal. Mixed colonies are described to (1) have a combina-

tion of high and low intensity pluripotency markers, or

(2) have a dim positive signal, above the positive staining

threshold. However, intensity signal is dependent on the

colony morphology, which makes automatic pluripotency

classification through image-based analysis a challenge. To

tackle this issue, we used a supervised colony classification

approach to differentiate between the three colony types.

We selected the random forest classifier (Breiman, 2001),

due to its robustness and computational simplicity. We de-

signed an interactive classification approach, where users

can build a classifier by interactively training and vali-

dating their own image sets (Figure 5A). During this cycle,

users are expected to after selecting the training set images,

to pick the best subset of colonies that fit the pluripotent,

mixed, and differentiated standard parameters from each

image. After selecting the colonies, the classifier is built tak-

ing into account different colony features fromboth phase-

contrast and pluripotent marker images (Table S1), and an
Excel file is created with each colony feature (Figure 5A).

Thus, when a new colony is presented to the program,

the software evaluates all the features of the new colony

and classifies this colony according to the classifier pool

where its features best fit. Since fluorescence intensity is

one of the features to characterize pluripotency, and inten-

sity is dependent onmicroscopy settings upon acquisition,

different training sets can be created and uploaded to atten-

uate the misclassification due to the difference between

independent experiments.

Manual Validation Algorithm

To evaluate the accuracy of colony classification, we devel-

oped an interactive validation algorithm that allows the

user to validate the classification of the selected training

set (Figure 5B). After the selection of different images,

a phase-contrast and fluorescent marker image derived

from a random selected colony is shown in addition

to its intensity pluripotent marker plot (Figure 5B1–5B6).

Manual validation is allowed through the selection of the

pluripotent, mixed, or differentiated button (Figure 5B7),

with the opportunity to go back to a previous colony and

overwrite the previous classification (back button), to skip

a colony (skip button), or to finalize the manual validation

process without the need to validate the entire image (out

button) (Figure 5B7). The classification results are exported
Stem Cell Reports j Vol. 9 j 697–709 j August 8, 2017 701



Figure 5. –Machine-Learning and Manual
Validation Overview
(A) Machine-learning overview. Upon se-
lection of the images to use as training
set, the user interactively selects first the
pluripotent colonies, then the mixed col-
onies and, finally, the differentiated col-
onies presented in the image. After this
procedure is complete for all the images in
the training set, the classifier is built, with
the possibility to add the training set to a
previous classifier, or create a new training
set. An Excel file with all the colony features
as well as the pluripotency score is created,
where score 1 is differentiated, 2 mixed, and
3 pluripotent colony. Green, pluripotent
marker AP; red, colony border obtained by
the phase-contrast segmentation image.
(B) Manual validation overview: (B1) image
overview. Purple arrow shows an example of
a pluripotent colony. Red arrow shows the
colony picked to validate the classifier pre-
diction. (B2) Phase-contrast image and
(B3) pluripotent marker image of the colony
picked to validate the classifier prediction.
(B4) Example of a pluripotent colony. (B5)
Classifier prediction and progress bar with
the total number of colonies present in the
image and the number of colonies already
validated. (B6) Normalized number of pixel
versus pluripotent marker intensity. (B7)
Graphical user interface used to validate
each colony as pluripotent, mixed, or
differentiated. (B8) After manual validation
completed, the manual accuracy is auto-
matic shown, and the random forest algo-
rithm is updated. Segmentation information
summary is saved as an Excel file.
See Table S1.
with each colony ID to Excel and MATLAB files. These files

provide a detailed summary of each colony feature, as well

as the classifier prediction and user manual validation

(Figure 5B8). In addition, the accuracy score is shown at

the end of each large image-analysis. Finally, in order to

increase precision, every time that manual validation is

completed, the classifier is updated.

Performance Evaluation

To evaluate our colony classification approach, we used six

large images derived from different mESCs cultures, with a

wide range of pluripotent percentages and colony shapes.

We started by creating a training set selecting 15 pluripo-

tent colonies, 15 mixed colonies, and 20 differentiated

colonies from one of the large images (Figure 6A1). Then,
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we ran the manual validation on the same image, evalu-

ating all the colonies, and we achieved an accuracy of

97.6%. Afterward, we ran the automatic score on the other

5 large images and manually evaluated 100 colonies from

each image to obtain the pluripotency classification accu-

racy (Figure 6A1). All images had an accuracy classification

above 90%. To test the number of colonies that should be

selected to train the classifier, we went back and selected

only five pluripotent, five mixed, and five differentiated

colonies, and created a new classification set (Figure 6A2).

The accuracy decreased to 59% when we manually vali-

dated 150 colonies from the same image. After the manual

validation classifier update, we ran the automatic score on

the five large images that we had previously ran, andmanu-

ally validated the results. All images had similar accuracy



Figure 6. Pluri-IQ Performance Evaluation in Different mESC Culture Conditions
(A1) The training set was built by selecting 15 pluripotent, 15 mixed, and 20 differentiated colonies. Manual validation showed that
accuracy of the classifier is � 97%. Classifier was updated after manual validation and automatic score was run in five different large
images. Manual validation performed afterward showed accuracy values all above 90%. Scale bar, 500 mm (in raw images).
(A2) After selection of a reduced number of colonies to train the classifier, the manual accuracy decreased to�59%. However, the update
of the classifier after the manual training leads to an increase of accuracy classification.

(legend continued on next page)
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values to the previous classifier set (Figure 6A2). These re-

sults demonstrate that our manual validation is important

and capable of maintaining high accuracy values, without

the need to tune the training system multiple times, since

manual validation updates the classifier.

To validate Pluri-IQ pipeline,mESCswere cultured inme-

dium with serum and leukemia inhibitory factor (LIF), and

seeded with different densities (6,000, 8,000, or 10,000

cells/cm2), in medium with serum but in absence of LIF

(referred as �LIF), in medium with serum and Antimycin

A (referred as AA), and in serum-free medium with

CHIR99021 and PD0325901 (referred as 2i). After valida-

tion and automatic score, automatic comparison between

different conditions was performed, with an Excel file as

output (Figure 6B1). Our results show that the highest

number of pluripotent colonies is obtained when mESCs

are cultured in 2i medium, whereas the absence of LIF in

medium with serum induces the highest differentiation.

In addition, the increase in mESC density induces a

decrease in the percentage of pluripotent colonies and an

increase in differentiated colonies. Finally, when mESCs

are cultured in the absence of LIF but in the presence of a

complex III mitochondria inhibitor, AA, mESC differentia-

tion is decreased (Figure 6B2). To confirm the cell fate in

different conditions, we performed qRT-PCR analysis in

mESC cultured in the presence of LIF (6,000 cells/cm2),

2i, AA, and in the absence of LIF, conditions known to

affect pluripotency (Figure 6C). To evaluate mESC fate,

we selected four pluripotent genes (Klf4, Dppa3, Esrrb,

and Oct4) and two early differentiation genes (Fgf5 and T)

and compared the relative mRNA expression of the

different conditions with +LIF condition. Cells cultured

in the absence of LIF had a low expression of pluripotent

markers (Klf4, Dppa3, and Esrrb) and an increased expres-

sion of differentiated markers (Fgf5 and T) (Figure 6C),

which suggests that this cell culture condition had a high

percentage of differentiated colonies and low percentage

of pluripotent colonies, in agreement with the results ob-

tained by Pluri-IQ software (Figure 6B2). Cells cultured in

the presence of 2i had a significant increase of the pluripo-

tent marker Klf4, and low expression of the differentiated

markers Fgf5 and T (Figure 6C). This result suggests that

these cells have a higher percentage of pluripotent colonies

than mESC cultured in the presence of LIF, which is in

accordance with the results obtained by Pluri-IQ (Fig-

ure 6B2). Finally, when cells were cultured in the presence
(B1) Excel sheet output derived from the automatic data comparison
(B2) Percentage of pluripotent, mixed, and differentiated colonies (le
was analyzed per condition. Color code: green, pluripotent colonies;
(C) Normalized mRNA expression fold change (determined by RT-qPCR)
AA or in the absence of LIF. All samples were analyzed in two technic
Antimycin A; LIF, leukemia inhibitory factor; 2i, serum-free medium
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of AA they had low expression of Klf4, when compared

with cells cultured in the presence of LIF (Figure 6C), which

suggests that AA culture conditions promotes a decrease

of pluripotent colonies when compared with mESC

cultured in the presence of LIF. Thus, through qRT-PCR,

we also verify that mESC cultured in the presence of 2i me-

dium have the highest pluripotency levels, whereas mESC

cultured in the absence of LIF promote colony differentia-

tion. These results are also in agreement with the literature

(Ying et al., 2008; Pereira et al., 2013; Palmqvist et al.,

2005), which demonstrates that our pipeline is able to

accurately classify colony pluripotency even in the pres-

ence of different colony densities and morphologies.

We decided to use the same rationale, and evaluate Pluri-

IQ accuracy in fluorescence images (Figure 7). We utilized

images from mESC cultured in serum with LIF (pluripo-

tency medium) or in a neuronal differentiation medium

(referred as N2B27). Cells were stained for the pluripotent

marker OCT-4. After uploading the images and their seg-

mentation performed, the classifier was created utilizing

16 pluripotent colonies, 14 mixed colonies, and 10 differ-

entiated colonies selected from two large images (Figure 7C,

upper panel). Manual validation was performed on the

same images, and an accuracy of 87% was achieved. We

then used the training set to automatic score two new

images (Figure 7C, bottom panel). The mESC classification

accuracy was approximately 90%. After comparing both

conditions, we saw that, in agreement with the literature,

mESCs cultured in the presence of neuronal differentiation

medium have more differentiated and mixed colonies

than cells cultured in the presence of LIF (Figure 7D).

In addition, when we measured colony parameters such

as nuclear cytoplasmic ratio, the results obtained were in

agreement with previous studies: nuclear/cytoplasm ratio

decreased with colony differentiation (Figure S2). These re-

sults demonstrate that our pipeline also accurately classifies

pluripotency in fluorescence images.

Graphical User Interface

We created a simple and straightforward graphical user

interface, which confers an easy comprehension of the pro-

cessing pipeline (Figures 7A and 7B). Users are first required

to select their type of image staining, AP or immunofluores-

cence, and upload two images: a single channel image of

phase-contrast (or fluorescence cytoplasmic) image, and a

single channel pluripotent marker image. In addition to
.
ft) and area (right) of each condition. A minimum of 100 colonies
blue, mixed colonies; red, differentiated colonies.
of mESC cultured for 4 days in the presence of 2i medium, LIF, 50 nM
al replicates. All data are presented as means ± SEM. *p < 0.01. AA,
with CHIR99021, PD0325901, and LIF.



(legend on next page)
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these two images, nuclear staining can also be uploaded in

order to calculate the nucleus to cytoplasmic ratio. After

successfully uploading the images and selecting the ROI,

segmentation is performed and the results are saved as

new TIFF images, which allows for segmentation inspec-

tion (Figure 7C). To proceed to the automatic pluripotency

quantification, the interface requires the uploading of a

training classifier set and selection of each condition folder

(Figure 7B). The colony quantification results are exported

as color-coded images and Excel files. Finally, data compar-

ison interface automatically quantifies the colony pluripo-

tency percentage, pluripotency colony area percentage,

pluripotency mean area and circularity, and nuclear/cyto-

plasm ratio, exporting these results to an Excel file.
DISCUSSION

Considering the widespread practice in stem cell labora-

tories to quantify pluripotency through image-based

assays, we sought to develop a software that allows the

automatic quantification of pluripotency, with a low

requirement of user input. Here, we report the develop-

ment of an efficient, accurate, open-source, and user-

friendly pipeline for pluripotency quantification of low-

magnification images, Pluri-IQ. This software segments

colonies from large images with high precision, without

the requirement of user input. Subsequently, through a

machine-learning process, it automatically and accurately

classifies pluripotent, mixed, and differentiated colonies.

In parallel, we implemented a manual validation algo-

rithm, which allows for the validation of the program

by the user, through visualization of each colony and its

corresponding pluripotent marker expression. The storage

of each colony features, as well as its pluripotency score

in Excel file, enables post-data treatment result analysis.

Importantly, we developed a user-friendly software that

is accurate and efficient, with low user input requirements.

Pluri-IQ uses as input large images, and presents relevant

advantages compared with others since it does not require
Figure 7. Pluri-IQ Application Pipeline and Its Performance Evalu
(A) The main graphical user interface (GUI) of Pluri-IQ.
(B) GUI used to select different folders containing the images to per
(C) Pluri-IQ pipeline: two different images with different degrees of p
(upper panel). After each channel segmentation and colony identificat
After the classifier automatic update, two new images were scored a
(bottom panel). Scale bar, 500 mm (in raw images). Color code on t
prediction: green, pluripotent colonies (Plur); blue, mixed colonies (
(D) Percentage of pluripotent, mixed, and differentiated colonies in
automatic data comparison in Pluri-IQ. Results derived from two repl
medium.
See also Figure S2.
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segmentation parameters to be refined in order to discharge

background or detect and segment colonies, as in ilastik

(http://ilastik.org/), and does not require users to create a

specific pipeline of analysis as in CelProfiler (http://

cellprofiler.org/). Although training data is required, the

software interactivity allows the user to quickly select

the best colonies of each classification, without requiring

the selection of the best features to tune machine learning,

as in ilastik. After machine learning is complete, manual

validation promotes the evaluation of the classifier accu-

racy at the same time that the classifier is updated. Finally,

after high accuracy is achieved, it is possible to run a

fast automatic score, followed by data comparison. Pluri-

IQ was already tested in two independent laboratories,

and high precision classification of mESC colonies was

achieved. Although mESC were used as a model in this

study, the procedure should be easily extendable to other

types of pluripotent cells (hESC, iPSCs, etc). Nevertheless,

it is important to take into account that Pluri-IQ relies on

image quality and user experience of pluripotency classifi-

cation. Moreover, for certain experimental protocols that

involve pluripotency assessment it may be deemed neces-

sary to extend image analysis to include also qRT-PCR or

western blot.

Different approaches to characterize cell fate have

been developed in order to increase data consistency and

reproducibility (French et al., 2015). Although Pluri-IQ is

specifically designed to measure pluripotency percentage

in images, image-based assays to evaluate pluripotency

are routinely performed. The necessity to infer if a different

medium, small hairpin RNA, or other stimulimaintain plu-

ripotency or induces differentiation makes quantification

of pluripotency a common and required practice in stem

cell laboratories (French et al., 2015). Usually, fast and

easy assays, such as image-based-assays, are performed to

quantify pluripotency; however, this quantification is still

evaluated manually. We have presented a robust method

to evaluate the pluripotency of colonies through a fast

Fourier transform-based segmentation, which works in

both phase-contrast as well as in fluorescence images.
ation in Immunofluorescence Images

form manual validation, autoscoring or data comparison.
luripotency were used to create the machine-learning training set
ion, a fluorescence training set was created and manually validated.
utomatically by Pluri-IQ and classification accuracy was evaluated
he raw images: green, actin; red, OCT4. Color code on the images
Mix); red, differentiated colonies (Dif).
the two different experimental conditions. Data derived from the
icates. LIF, pluripotency medium; N2B27, neuronal differentiation

http://ilastik.org/
http://cellprofiler.org/
http://cellprofiler.org/


Using the information produced by the segmentation,

we can very efficiently classify the colonies as pluripotent,

mixed or differentiated without using time-consuming

methodologies that are currently employed. Based on our

case study, we can conclude that Pluri-IQ is applicable in

both large phase-contrast and fluorescence low-magnifica-

tion images. Moreover, Pluri-IQ is able to analyze condi-

tions that promote or destabilize pluripotency, allowing

result collection in a faster and more impartial manner,

thus increasing unbiased reproducibility.
EXPERIMENTAL PROCEDURES

Recall, Precision, Specificity, and Dice Index

Calculations
To compare FACTand Phantast segmentation we calculated recall,

precision, specificity, and dice index values defined in Equations

1–4, as described previously (Intawong et al., 2013; Zou et al.,

2004). In brief, TP (true positives) represents the number of

segmented colonies in FACT that were also segmented in Phantast;

FN (false negatives) represent the number of colonies not

segmented in FACT but segmented in Phantast; FP (false positives)

represent the number of colonies segmented in FACT and not

segmented in Phantast; TN (true negatives) represent the number

of pixel that are not considered a colony in both FACT and

Phantast; X represents FACT segmentation regions and Y repre-

sents the Phantast segmentation regions.

Recall=
TP

TP + FN
(Equation 1)

Precision =
TP

TP+ FP
(Equation 2)

Specificity =
TN

TN + FP
(Equation 3)

Dice Index=
2jXXYj
jXj+ jYj (Equation 4)

Classification Accuracy
Classification accuracy was measured by comparing the colony

prediction of the classifier with the classification given by the

user through manual validation. The number of positive hits was

then divided by the total number of colonies evaluated in order

to obtain the accuracy percentage.

Data Comparison
The percentage of pluripotent, mixed, and differentiated colonies,

as well as the percentage of pluripotent, mixed, and differentiated

colony area are calculated for each large image. In addition, mean

area, circularity, and nuclear/cytoplasm ratio, as well as SEM, are

provided. The percentage of pluripotent,mixed, and differentiated

colonies in an image is measured by calculating the number of col-

onies in each classification and dividing it by the total number of

colonies present in the image. The pluripotent, mixed, and differ-

entiated area of each image is measured by the summation of each
classifier area, followed by ratio between each sum of classifier area

and the total area occupied by colonies.Mean area andmean circu-

larity are calculated by averaging the pluripotent, mixed, and

differentiated area and circularity in each image, respectively. Nu-

clear/cytoplasm ratio of each large image is calculated using colony

average area derived fromDNA staining image, and colony average

area derived from cytoplasm image.
Software Availability
Pluri-IQ was implemented using MATLAB on a 64-bit Windows

OS laptop with intel i7 processor with 8 GB of RAM memory.

The software will be hosted at the CNC website (http://www.

cnbc.pt/equipment/microscopyUnit.asp#divImageAnalysis) both

as a compiled MATLAB standalone application (requires installa-

tion of 64 bit MATLAB runtime, available for free at www.

mathworks.com/products/compiler/mcr.html) and MATLAB.m

files. In our application, we made use of Custom GINPUT by Jiro

Doke, Nov 07, 2012 (https://www.mathworks.com/matlabcentral/

fileexchange/38703-custom-ginput/content/ginputc.m, retrieved

June 2016) anduipickfiles: uigetfile on steroids byDouglas Schwarz,

Apr 25, 2006 (https://www.mathworks.com/matlabcentral/

fileexchange/10867-uipickfiles–uigetfile-on-steroids, retrieved May

2016).
Cell Culture
Mouse embryonic cell line (E14Tg2a.4, derived from 129P2/

OlaHsd, RRID:MMRRC_015890-UCD) was cultured at 37�C, 5%
CO2 and two different culture media were used for ESC mainte-

nance and propagation: (1) medium with serum (KODMEM),

consisting in KnockOut-DMEM (Thermo Fisher Scientific) sup-

plemented with 15% fetal bovine serum, ESC-qualified, USDA-

approved regions (Thermo Fisher Scientific), 2 mM L-glutamine

(Thermo Fisher Scientific), 1% non-essential amino acids (Sigma-

Aldrich), 100 U/mL penicillin/streptomycin (Thermo Fisher Scien-

tific), 0.1 mM 2-mercapthoethanol (Thermo Fisher Scientific) and

1,000 U/mL of ESGRO LIF (Merck Millipore); and (2) serum-free

medium (2i), consisting of 1:1 mix of DMEM/F12 (Thermo Fisher

Scientific) and Neurobasal medium (Thermo Fisher Scientific),

N2 (Clontech), and B27 (Thermo Fisher Scientific) supplements,

100 U/mL penicillin/streptomycin, 0.1 mM 2-mercapthoethanol,

2 mM L-glutamine, and 1,0003 dilution of the supplements LIF

and MEK/GSK3 inhibitors (Merck Millipore). To induce sponta-

neous differentiation, mESCs were maintained in KODMEM in

the absence of LIF for 4 days. AA (50 nM, Sigma-Aldrich) was

used to block complex III mitochondria respiratory chain. AA

was added to cells cultured in KODMEM medium in the absence

of LIF.

To induce neuronal differentiation, 10,000 cells/cm2 mESC

were seeded on 0.1% gelatin-coated plates and cultured in N2B27

serum-free medium for 5 days. Medium was replaced every 2 days.

N2B27 isa1:1mixofNeurobasalmedium(ThermoFisherScientific),

1:2 mix of minimum essential medium (Thermo Fisher Scientific)

and 1:2 mix of Ham’s F12 Nutrient Mix (Thermo Fisher Scien-

tific), supplemented with 1 mM L-glutamine, 100 U/mL penicillin/

streptomycin, 0.1 mM 2-mercapthoethanol, 1.5 g/L D-glucose,

1.5 g/L AlbuMAX I Lipid-Rich BSA (Thermo Fisher Scientific),
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7.5 mM HEPES (Thermo Fisher Scientific), B27 (Thermo Fisher

Scientific), and N2 (Thermo Fisher Scientific).

AP Staining
mESCs were fixed with 4% paraformaldehyde (Electron Micro-

scopy Sciences) at room temperature (RT) and stained with Vector

Red AP vector kit (no. SK5100, Vector Laboratories) as described in

the manufacturer’s instructions. In brief, after mESC were fixed,

cells were washed twice with PBS and incubated with substrate

working solution (2 drops of reagents 1, 2, and 3 diluted in 5 mL

of Tris-HCl 150 mM, pH 8.5, buffer containing 0.1% Tween

[Sigma-Aldrich]) for 30 min on the dark. After incubation, cells

were washed once with 150mMTris-HCl and then PBS was added.

Fluorescence as well as phase-contrast images were taken.

Immunocytochemistry
mESCs were fixed with 4% paraformaldehyde for 15 min at RT.

Cells were then washed 3 times with PBS, permeabilized with

0.1% Triton X-100 (Sigma-Aldrich) in PBS for 10 min, and blocked

for non-specific binding with 1% BSA (Sigma-Aldrich) in PBS for

1 hr at RT, followed by incubation overnight at 4�C primary anti-

body: rabbit anti-OCT-4 (no. 2840, Cell Signaling Technology) at

1:100 dilution. Cells were then washed with PBS for 3 times and

incubated for 1 hr at RTwith a solution containing secondary anti-

body: anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific) at

1:200 dilution; Hoechst 33342 (Sigma-Aldrich) at 1:50 dilution

and phalloidin Alexa Fluor 647 (no. A22287, Thermo Fisher Scien-

tific) at a dilution 1:40 dilution. Cells were then washed 3 times

with PBS and images were taken.

Imaging Acquisition
All images were collected with a Nikon DS-QiMc camera installed

on a customized Nikon TE300 epifluorescent microscope (Nikon,

Melville, NY), equipped with a motorized stage and motorized

excitation and emission filters (Prior Scientific, Rockland, MA)

controlled by Nikon NIS Elements. Images were acquired with a

103 Plan Fluor lens (N.A. 0.3, Nikon, Melville, NY) and different

grid numbers with a 20% overlap were acquired in order to ensure

that the entire well was imaged. Image size from the camera was

1,2803 1,280 pixels, and the pixel size 0.57 mm. For immunofluo-

rescence images, three fluorescence channels for Hoechst 33342,

Alexa Fluor 488 and Alexa Fluor 647 were recorded, while for AP

staining the fluorescence channel Alexa Fluor 568 and phase-

contrast channel were recorded.

RNA Extraction and Purification
RNAwas extracted of each condition by incubating cells with trizol

(Life Technologies) for 1min at RT. The solutionwas then collected

to eppendorf tubes and mechanical disrupted by vortex each sam-

ple for 30 s. Then, RNA extraction was performed according to

manufacturer’s instructions (Direct-zol RNA MiniPrep, Zymo).

cDNA Synthesis and Quantitative Real-Time PCR
One microgram of total RNA was used to synthesize first-strand

DNA through the iScriptTM cDNA Synthesis Kit (Bio-Rad), accord-

ing to manufacturer’s instructions.
708 Stem Cell Reports j Vol. 9 j 697–709 j August 8, 2017
qPCR was performed using mouse-specific primers and iTaq

Universal SYBR Green master mix (Bio-Rad). Primer sequences,

which were obtained in the PrimerBank database (Spandidos

et al., 2008, 2010; Wang and Seed, 2003) are described in the

Table S2. All samples were analyzed in technical duplicates. The

expression of each target mRNA was calculated based on the

threshold cycle (Ct) as 2�D(DCT), where DCt = Cttarget – Ct Rplp0

and –D(DCT) = DCttest – DCtcontrol. Control condition refers to

mESC cultured in the presence of LIF. All data are presented as

mean ± SEM. qPCR data analysis was performed using the Bio-

Rad CFX manager software 3.1, and gene expression was consid-

ered significantly different to the control when regulation

threshold was higher than 2.0 and p value threshold was lower

than 0.05.
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Pereira, S.L., Grãos, M., Rodrigues, A.S., Anjo, S.I., Carvalho, R.A.,

Oliveira, P.J., Arenas, E., and Ramalho-Santos, J. (2013). Inhibition

of mitochondrial complex III blocks neuronal differentiation and

maintains embryonic stem cell pluripotency. PLoS One 8, 1–16.

Scherf, N., Herberg, M., Thierbach, K., Zerjatke, T., Kalkan, T.,

Humphreys, P., Smith, A., Glauche, I., and Roeder, I. (2012). Imag-

ing, quantification and visualization of spatio-temporal patterning

in mESC colonies under different culture conditions. Bioinformat-

ics 28, i556–i561.

Spandidos, A., Wang, X., Wang, H., Dragnev, S., Thurber, T., and

Seed, B. (2008). A comprehensive collection of experimentally

validated primers for polymerase chain reaction quantitation of

murine transcript abundance. BMC Genomics 9, 633.

Spandidos, A., Wang, X., Wang, H., and Seed, B. (2010).

PrimerBank: a resource of human and mouse PCR primer pairs

for gene expression detection and quantification. Nucleic Acids

Res. 38 (Database issue), D792–D799.
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