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Abstract

Photodynamic Therapy (PDT) relies on the use of non-toxic photosensitizers that are locally

and selectively activated by light to induce cell death or apoptosis through reactive oxygen

species generation. The conjugation of porphyrinoids with sugars that target cancer is

increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro

PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to

monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of

nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo con-

ditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-

116, MCF-7, UM-UC-3 and HeLa) with appropriate sizes for screening PDT agents. We

observed that detachment from monolayer culture and growth as tumor spheroids was

accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and

glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a por-

phyrin conjugated with four glucose molecules (PorGlu4) in monolayer and spheroid cul-

tures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus

spheroid model used and on the different levels of GLUT1 protein expressed by these in

vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spher-

oids afford a more rational platform for the screening of new glycosylated-photosensitizers

compared to monolayer cultures of these cancer cells.

Introduction

Photodynamic therapy (PDT) is growing as a non-invasive alternative to chemotherapy and

ionizing radiation to treat cancer [1–5]. PDT triggers cell death in cancer cells by formation of

reactive oxygen species (ROS) generated by a photosensitizer (PS) when irradiated by light
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[1–9]. PDT can offer double selectivity via selective light irradiation such that areas not irradi-

ated are unaffected [3], and the PS can be chemically modified to target specific tissues or envi-

ronments, such as specific ligands on cancer cells or the low pH surrounding the milieu of a

tumor [6]. Porphyrins are aromatic heterocyclic organic dyes that absorb intensely in the red

region of the visible spectrum that is able to furthest penetrate tissue and skin. This makes por-

phyrins practical for applications in biochemical tracking, diagnostic imaging, and therapies

such as PDT. Since the porphyrin core is not soluble in aqueous solutions, it is substituted

with solubilizing groups and/or targeting moieties such as polyethyleneglycol or carbohydrates

such as glucose and galactose [6, 10–12]. Our prior work demonstrated that glycosylated por-

phyrins with four glucose units (PorGlu4) can be rapidly and efficiently synthesized and targets

various cancer cell types [13, 14]. The glycosylated dye was shown to be selectively taken up by

several cancer lines and demonstrated PDT-induced toxicity, with subcellular localization in

the endoplasmic reticulum [15].

Most in vitro screening assays for PDT use two-dimensional monolayer cell cultures, and

after promising leads are identified, in vivo animal models can be used. Compared to two-

dimensional cell culture models, which has contributed to our knowledge of tumor biology

and treatment effects, cells grown in a three-dimensional spheroid model better resemble

many of the features found in tumors in vivo [16]. Since monolayers represent a highly artifi-

cial cellular environment and lack the three-dimensional aspects of a tumor [17–20], they are

less reliable in predicting effectiveness of treatments in vivo. Moreover, human solid tumors

are heterogeneously oxygenated and contain hypoxic regions that can lead to necrosis [21].

Hypoxia and necrosis in progressive solid tumors generate heterogeneities that result in popu-

lations of cancer cells more resistant to ROS-dependent radiation [22], and chemotherapy

[19]. Because PDT relies on an oxygen-dependent cytotoxicity, a monolayer model is not suffi-

cient to predict or understand what happens in vivo. To address this limitation, researchers

have turned to a more complex model using spheroids [1, 23, 24]. Spheroids can closely resem-

ble the properties of tumors because they are three-dimensional cell aggregates with a necrotic

core surrounded by a shell of viable cells. This is particularly important because it allows for

the formation of a gradient of nutrients, oxygen, and differential gene expression that can

influence PDT efficacy. Spheroids of cancer cells were used to study the effectiveness of zinc

sulfophthalocyanine [8, 25], aluminum-phthalocyanine chloride [9] and methylene blue [1];

however, these studies neither used dyes appended with cancer targeting motifs such as sugars,

nor probed specific metabolic alterations occurring during spheroid formation. PDT efficacy

with glycosylated PS (specifically those conjugated with glucose or galactose) is highly depen-

dent on metabolism of cancer cells, the redox state of the cell, and expression of proteins such

as galectin-1 and glucose transporter 1 (GLUT1). Thus, the present study develops an in vitro
three-dimensional spheroid model using human cancer cell lines from different origins for

evaluation of glycosylated PS. We demonstrate that spheroids display significant differences in

glucose metabolism, endogenous ROS levels, galectin-1 and GLUT1 protein levels, so give a

more accurate prediction of PDT efficacy compared with corresponding two-dimensional

monolayers cultured on flat and rigid substrates.

Materials and methods

Glycosylated porphyrin

PorGlu4, 5,10,15,20-tetrakis-(4–1’-thio-glucosyl-2,3,5,6-tetrafluorophenyl)porphyrin was syn-

thesized as previously described [13] and a stock solution of PorGlu4 was prepared at a con-

centration of 2 mM in dimethyl sulfoxide (DMSO; Sigma-Aldrich, St Louis, MO, USA). Fresh
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working solutions of PorGlu4 2.25–9.0 μM were prepared in sterile phosphate-buffered saline

(PBS) keeping the concentration of DMSO less than 0.5% (v/v).

Monolayers cultures

HCT-116 colon cancer cells, MCF-7 and MDA-MB-231 breast cancer cells, UM-UC-3 bladder

cancer cells, and HeLa cervical cancer cells were obtained from the American Type Culture

Collection (ATCC1, Manassas, VA, USA). All batches of culture media were supplemented

with 10% (v/v) of fetal bovine serum (Life Technologies, Carlsbad, CA, USA), 100 U/mL peni-

cillin, 100 μg/mL streptomycin and 0.25 μg/mL amphotericin B (Sigma). HCT-116 colon can-

cer cells, MCF-7 and MDA-MB-231 breast cancer cells were cultured in Dulbecco´s Modified

Eagle´s Medium (DMEM, Sigma). UM-UC-3 bladder cancer cells were cultured in Eagle´s

Minimum Essential Medium (EMEM; Corning, NY, USA) with 1.5 g/L sodium bicarbonate,

non-essential amino acids, L-glutamine and sodium pyruvate. HeLa cervical cancer cells were

cultured in DMEM (Corning) with 4.5 g/L glucose, and L-glutamine without sodium pyruvate.

All cells were maintained at 37˚C in a 5% CO2 humidified atmosphere.

Spheroid cultures

Spheroids were generated by growing cancer cell suspensions in agarose-coated 96 well plates

[2, 18]. The agarose prevented the cells from attaching to the bottom of the wells. Briefly, 1.5%

(w/v in PBS) agarose solution (MP Biomedicals, Santa Ana, CA, USA) was added to the wells

of a 96-well microplate. Next, cells were seeded at densities ranging from 2,500 to 20,000 cells

per well and the microplate was then gently spun by hand. Clusters of cancer cells were

observed after 24 h of seeding. For HCT-116, MCF-7, UM-UC-3 and HeLa cancer cells, it took

nearly 48 h for these clusters to form spheroids (i.e. clusters which are not dislodged by pipett-

ing). MDA-MB-231 breast cancer cells did not form spheroids under these conditions for at

least 72 h after cell seeding. The spheroids formed under these conditions are a specific charac-

teristic of cancer cells, since a non-tumoral cell line, BJ-hTER primary fibroblasts, did not

form viable spheroids for at least 72 h after cell seeding (data not shown).

Images of spheroids were obtained at 24, 48 and 72 h after cell seeding using the image anal-

ysis system consisting of Nikon Eclipse Ti fluorescent microscope and an Andor iXon

EMCCD camera. Volume and surface area were calculated using Optimas1 image analysis

software (Optimas, USA; version 5.0). The size of nearly 30 spheroids was calculated for each

cell line [22] by measuring two orthogonal diameters (d1 and d2) using the line morphometry

function. Volumes were calculated using the formula: volume = 4/3πr3, where r = 1/2
p

d1d2 is

the geometric mean radius. Spheroids with volume�0.05 mm3 were obtained 48 h after plat-

ing 5,000 HCT-116 cells per well, 15,000 MCF-7 cells per well, 20,000 UM-UC-3 cells per well

and 20,000 HeLa cells per well. These conditions were used to obtain spheroids for the deter-

mination of the doubling time, glucose utilization, lactate production, preparation of cells

extracts, ROS determination, uptake and PDT assays. Average cell number per spheroid was

determined at 24, 48 and 72 h after cell seeding by trypsinizing six different spheroids, mixing

the cell suspension with Trypan blue (Sigma) and counting the number of viable cells. The

total number of cells obtained was divided by the number of trypsinized spheroids.

The spheroid doubling times were determined by direct measurement of cell numbers, as

described above. The spheroids were harvested at 24, 48 and 72 h after seeding cells in aga-

rose-coated 96-well plate. Doubling times were determined using the formula: N/N0 = ekt [26],

where N is the cell number for a spheroid at a certain time (t) and N0 is the corresponding cell

number at time zero. The constant k was calculated for each spheroid by plotting ln(N/N0)
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versus t, between 24 and 72 h the period of time in which the cell growth rate was linear. The

doubling time was then determined using the above formula and N/N0 = 2.

Estimation of glucose utilization and lactate production

Glucose utilization in monolayer and spheroid cultures was determined using the glucose

uptake cell-based assay kit (Cayman Chemical, Ann Arbor, MI, USA). The spheroids were

obtained 48 h after plating cells in agarose-coated black, clear bottom 96-well plate. Monolayer

and spheroid cultures were incubated in PBS for 2 h. The cultures were then incubated with

100 μg/mL of fluorescently-tagged glucose derivative (2-deoxy-2-[(7-nitro-2,1,3-benzoxadia-

zol-4-yl)amino]-D-glucose, 2-NBDG) in PBS for 1 h. The supernatant was removed and cell

cultures were washed with cell-based assay buffer. After removal of supernatant, 100 μL of cell-

based assay buffer was added to each well and 2-NBDG taken up by cells was detected in a

Gemini EM Microplate Spectrofluorometer (Molecular Devices, Sunnyvale, CA, USA) with

the excitation and emission filters set at 485 nm and 535 nm, respectively.

Lactate production in monolayer and spheroid cultures was determined using the colori-

metric lactate assay kit (Sigma). The spheroids were obtained 48 h after plating cells in aga-

rose-coated 96-well plate. After incubation of monolayer and spheroid cultures with PBS for 2

h, 50 μL of supernatant was collected to a new plate and mixed with 50 μL of master reaction

mix (46 μL lactate assay buffer, 2 μL lactate enzyme mix, 2 μL lactate probe) during 30 min at

room temperature. The lactate produced was detected by measuring the absorbance at 570 nm

in a PowerWave HT Microplate Spectrophotometer (ThermoFisher Scientific, Waltham, MA,

USA).Cells were lysed in 1% (m/v) sodium dodecyl sulfate (SDS, Sigma) solution in PBS (pH

7.0) and the protein concentration was determined by bicinchoninic acid reagent (Pierce,

Rockford, IL, USA). Glucose consumed or lactate produced was normalized to protein

concentration.

Detection of intracellular reactive oxygen species (ROS) generation

Monolayer and spheroid cultures growing in black, clear bottom 96-well plate were washed

twice with PBS and incubated with 5 μM of 20,70-dichlorodihydrofluorescein diacetate

(H2DCFDA; Invitrogen Life Technologies, Carlsbad, CA, USA) for 1 h, at 37˚C, protected

from light. After incubation, cells were washed with PBS and DCF (oxidized H2DCFDA)

fluorescence was determined using a microtiter plate reader (Gemini EM Microplate Spectro-

fluorometer) with the excitation and emission filters set at 485±20 nm and 528±20 nm,

respectively. Cells were then lysed in 1% (m/v) SDS solution in PBS (pH 7.0) and protein con-

centration was determined using the Pierce1 BCA Protein Assay Kit. ROS production was

normalized to protein concentration.

Preparation of cell extracts and western blot

Scraped monolayer cells and spheroids cultured for 48 h were collected at 1,500 g for 5 min,

washed twice with ice-cold PBS and whole protein lysates were extracted using RIPA buffer

(150 mM NaCl, 50 mM Tris-HCl, pH 7.5, 5 mM ethyleneglycol tetra-acetic acid, 1% Triton X-

100, 0.5% sodium deoxycholate, 0.1% SDS, 2 mM phenylmethanesulfonyl, 2 mM iodoaceta-

mide, and 1x protease inhibitor cocktail (Roche, Indianapolis, IN, USA)). Cell extracts were

centrifuged at 16,000 g for 10 min at 4˚C. Supernatants were used for protein quantification

using the Pierce1 BCA Protein Assay Kit, followed by denaturation of the sample with

Laemmli buffer. For the Western Blot analysis, 60 μg proteins were loaded per lane on sodium

dodecyl sulphate-polyacrylamide gels (SDS-PAGE). Following electrophoresis and transfer to

polyvinylidene fluoride membranes (Bio-Rad, Hercules, CA, USA), the blots were incubated
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in 5% nonfat milk in TBS-T (20 mM Tris, 150 mM NaCl, Tween 0.2%, pH 7.6). Membranes

were then incubated with rabbit anti-Galectin1 1:5,000 (Thermo Fisher Scientific), rabbit anti-

GLUT1 1:1,000 (Thermo Fisher Scientific) and rabbit anti β-actin 1:1,000 (Thermo Fisher Sci-

entific) antibodies. After washing, the membranes were incubated with IRDye1 800CW anti-

Rabbit IgG 1:15,000 (LI-COR Biosciences, Lincoln, NE, USA) and imaged on the Odyssey

Infrared Imaging System (LI-COR Biosciences) followed by densitometric analysis.

Cellular uptake of PorGlu4

After incubation of monolayer or spheroid cultures with PorGlu4 in the dark, cells were imme-

diately washed with PBS buffer and mechanically scraped in 1% (m/v) SDS in PBS buffer at

pH 7.0. Spectrofluorometric determination of the intracellular concentration of PorGlu4 used

a microplate reader (Gemini EM Microplate Spectrofluorometer) with the excitation and

emission filters set at 410 nm and 702 nm, respectively, and the results were normalized for

protein concentration using the Pierce1 BCA Protein Assay Kit.

For microscopic evaluation, cells were grown on coated glass coverslips with poly-L-lysine

(Sigma). The cells were incubated with 9 μM PorGlu4 for 4 h, at 37˚C. After incubation, cells

were washed twice with PBS and fixed with 4% paraformaldehyde (PFA; Merck, Darmstadt,

Germany) for 10 min at room temperature. The samples were then rinsed in PBS, and

mounted in VectaSHIELD mounting medium containing 4´,6-diamidino-2-phenylindole

(DAPI; Vector Laboratories, CA, Burlingame) for visualization under a confocal microscope

(Nikon Eclipse Ti With Ultra High Speed Wavelength Source, Molecular Devices) equipped

with Andor iXon EMCCD camera. For DAPI detection, specimen was excited at 405 nm and

light emitted was collected with a 460/50 nm band pass filter. PorGlu4 fluorescence was

obtained using 640 nm excitation and a 685/40 nm emission band pass filter.

Photodynamic therapy (PDT) assay

Photodynamic irradiation was carried out after incubation of monolayer or spheroid cultures

with 9 μM of PorGlu4 for 4 h. Cells were covered with fresh culture medium and exposed to

light (420–700 nm) emitted by OLED Lumiblade Brite FL300 wm Level 4 (OLEDWorks,

Rochester, NY, USA) delivered at 0.44 mW/cm2during 30 min (0.792 J/cm2). Sham-irradiated

cells, used as controls, consisted in cells kept in the dark for the same durations and under the

same environmental conditions as the irradiated cells. In all treatments, triplicate wells were

established under each experimental condition, and each experiment was repeated at least

three times. Cytotoxicity was determined in monolayer and spheroid cultures 24 h after treat-

ment using the MTT and lactate dehydrogenase (LDH) assay, respectively.

MTT and lactate dehydrogenase assays

Cell metabolic activity of cells growing in monolayers was determined by measuring the ability

of cells to reduce 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT,

Sigma), to a colored formazan using a microplate reader (PowerWave HT Microplate Spectro-

photometer). The data were expressed in percentage of control (i.e. optical density of formazan

from control cells).

Unlike other studies reporting the use of MTT to study spheroid viability, this assay could

not be applied to the evaluation of spheroids viability since the results were neither reproduc-

ible nor consistent (data not shown). Therefore, the CytoTox 961 Non-Radioactive Cytotoxic-

ity Assay (Promega, Madison, WI, USA) which measures lactate LDH was used to determine

cytotoxicity in spheroid cultures. Briefly, 50 μL of culture medium was collected from the

96-well plate containing cell spheroids and mixed with 50μL of the CytoTox 961 Reagent in
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dark for 30 min at room temperature. After incubation, 50 μL of stop solution was added to

each well and the absorbance was recorded at 490 nm using a microplate reader (PowerWave

HT Microplate Spectrophotometer). The average values of the culture medium background

were subtracted from all values of experimental wells. The protein concentration was deter-

mined by Pierce1 BCA Protein Assay Kit after scrapping spheroid cultures in 1% (m/v) SDS

solution in PBS (pH 7.0); and LDH activity was normalized to protein concentration. The

results were normalized to the maximal LDH release, which was determined by treating the

control wells for 60 min with 1% Triton X-100 to lyse all cells.

Statistical analysis

Statistical analyses were carried out using a statistics program (GraphPad Prism; GraphPad

Software). Student’s t-test was used to compare the treatment effects with that of control. P-

value was considered at the 5% level of significance to deduce inference of the significance of

the data. All graphs and statistics were prepared using the GraphPad Prism 5.0 software.

Results

Kinetics of spheroids growth

The culture of certain types of cells on surfaces that are unfavourable for cell attachment led to

enhancement of homotypic cell-cell interactions, resulting in formation of three-dimensional

structures (spheroids, Fig 1A) [20]. In our study, five different cell types were tested for spheroid

formation in agarose-coated wells of a 96-well plate (Table 1). The HCT-116 colon cancer cells,

MCF-7 and MDA-MB-231 breast cancer cells, UM-UC-3 bladder cancer cells and HeLa cervi-

cal cancer cells were cultured in suspension on agarose bed which forms a thin non-adherent

Fig 1. Spheroid size depends on cell seeding number. A spheroid plating scheme: one spheroid per well was formed in agarose-coated

96-well plates. B, C volume (mm3) and number of cells of HCT-116, MCF-7, UM-UC-3 and HeLa cancer cells at 48 h after plating with

seeding densities of 2,500–20,000 cells per well for HCT-116, UM-UC-3 and HeLa cancer cells and 5,000–20,000 cells per well for MCF-7

cancer cells. Data are mean ± S.D. of at least 30 spheroids. D representative bright field images of spheroids at 48 h after plating with

seeding densities of 2,500–20,000 cells per well for HCT-116, UM-UC-3 and HeLa cancer cells and 5,000–20,000 cells per well for MCF-7

cancer cells. Scale bars 100 μm.

https://doi.org/10.1371/journal.pone.0177737.g001
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film and prevents cell attachment. Agarose is an efficient substrate to prevent cell attachment to

the plate as reported in several studies describing spheroid cultures [2, 19, 27–29].

After seeding on the agarose-coated wells, cells started to cluster, and the first loose aggre-

gates were already observed after 2 h of incubation. During the first 24 h of incubation, the

cells formed aggregates which were easily dissociated by mechanical force. Most of the tumor

cells tested (HCT-116, MCF-7, UM-UC-3 and HeLa) gave rise to compact, rigid and spheri-

cally-shaped spheroids (Figs 1 and 2) by 48 h after cell plating. The increase in the compactness

of cancer cells from 24 h to 48 h after cell plating was accompanied by a decrease in the vol-

ume. When spheroid cultures were observed under phase contrast microscope, a multilayer

cell assembly was observed. The absence of necrotic core formation in the spheroids was evi-

dent at all time points examined, indicative of cell viability in the interior of the spherical struc-

tures. These cultures were resistant to gentle agitation or physical transfer and only enzymatic

digestion could separate these three-dimensional structures into single cells. MDA-MB-231

breast cancer cells remained as single suspended cells forming aggregates which were not sta-

ble enough for harvest and further experiments.

Table 1. Human cell lines tested for spheroids formation and their respective doubling times (h).

Cell line Origin Doubling time (h)

Monolayers (Reference) Spheroids

HCT-116 Colon Cancer 17 [30] 19

MCF-7 Breast Cancer 25 [30] 38

UM-UC-3 Bladder Cancer 20 [31] 23

HeLa Cervival Cancer 19 [30] 23

MDA-MB-231 Breast Cancer 42 [30] N.D.

https://doi.org/10.1371/journal.pone.0177737.t001

Fig 2. Spheroid size depends on time after cell seeding. A, B volume (mm3) and number of cells of HCT-116, MCF-7, UM-UC-

3 and HeLa cancer cells at 24, 48 and 72 h after plating with seeding densities of 5,000 HCT-116 cells per well, 15,000 MCF-7 cells

per well, 20,000 UM-UC-3 cells per well and 20,000 HeLa cells per well. Data are mean ± S.D. of at least 30 spheroids. C,

representative bright field images of spheroids at 24, 48 and 72 h after plating with seeding densities of 5,000 HCT-116 cells per

well, 15,000 MCF-7 cells per well, 20,000 UM-UC-3 cells per well and 20,000 HeLa cells per well. Scale bars 100 μm.

https://doi.org/10.1371/journal.pone.0177737.g002
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We analysed the kinetics of spheroid growth and the proliferation rate of HCT-116, MCF-

7, UM-UC-3 and HeLa cancer cells (Figs 1 and 2, S1–S4 Tables). Fig 1D shows representative

optical images of spheroids with different initial cell seeding density (2,500–20,000 cells per

well). A higher cell density in the initial suspension gave rise to spheroids with larger volumes

and number of cells per spheroid than lower cell densities (Fig 1B–1D). HCT-116, MCF-7,

UM-UC-3 and HeLa spheroids showed similar growth pattern, i.e. the volume decreased sig-

nificantly until 48 h in culture, then maintaining until 72 h with small fluctuations (Fig 2A and

2C). Between 48 to 72 h after cell plating, the border of the spheroids became ruffled, suggest-

ing cell proliferation at the spheroid periphery (Fig 2C). The number of viable cells per spher-

oid increased with time after cell seeding (Fig 2B) with greater doubling times compared with

monolayer cultures (Table 1).

In an attempt to use spheroids with similar volume in our studies to guarantee the homoge-

neity of our three-dimensional populations, we determined the cell seeding densities by which

spheroids of different cell lines can be obtained with similar size after 48 h in culture (S1–S4

Tables, Fig 2A). The culture of 5,000 HCT-116 cells per well, 15,000 MCF-7 cells per well,

20,000 UM-UC-3 cells per well, 20,000 HeLa cells per well gave rise to spheroids with volume

and average size of approximately 0.05 mm3and 443 μm, respectively.

Spheroid cells are viable with altered patterns of metabolism

To assess cellular viability of spheroid cultures, the MTT cell metabolic activity assay was per-

formed on intact or dissociated spheroids [21, 32], but this assay did not result in reproducible

and consistent results (data not shown). Determination of cell death via measurement of mole-

cules released from membrane-defective cells into the extracellular medium demonstrated to

be preferable to evaluate spheroids viability. Samples of the media from monolayer or spheroid

cultures were used to estimate the amount of lactate LDH release by cells that have damaged

membranes due to necrosis or apoptosis [32]. The amounts of LDH released by spheroids at

48 and 72 h were similar to those at 24 h after cell plating (Fig 3A) and to monolayer cultures

(Fig 3B), thereby demonstrating that the spheroids are viable structures for at least 72 h after

cell plating.

Spheroids are high cell-density, closely packed three-dimensional structures that more

closely simulate conditions existing in under-perfused solid tumors where hypoxia and

related alterations in cellular metabolism occur due to increasing distances from the nourish-

ing blood capillaries. Since the diffusion of molecules such as glucose and oxygen can be lim-

ited, there are lower concentrations in the inner regions of spheroids [22, 33]. The glycolytic

flux of cells can be determined by measuring glucose consumption and lactate production

[34]. To determine the glucose consumption, we incubated the cells with the fluorescent glu-

cose analog 2-NBDG for 1 h and the intracellular accumulation was measured by fluores-

cence spectroscopy. The glucose utilization (nmol per mg of protein) in monolayer cultures

decreased in the following order HeLa > HCT-116 > UM-UC-3 > MCF-7 (S1 Fig). The glu-

cose consumption by MCF-7 and UM-UC-3 spheroids was greater than the corresponding

cells growing in monolayers (Fig 3C). Conversely, spheroids of HCT-116 and HeLa demon-

strated lower glucose consumption than corresponding monolayer cultures. Lactate produc-

tion (nmol/mg of protein) was determined in the culture medium using a commercially

available colorimetric kit. The lactate production in monolayer cultures decreased in the

following order: HeLa > HCT-116�MCF-7 >UM-UC-3 (S2 Fig). A significant increase in

lactate production was observed from UM-UC-3 and HeLa spheroids (Fig 3D), but no

alterations in lactate production were observed during HCT-116 and MCF-7 spheroid

development.
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Protein levels of galectin-1 and GLUT1 proteins are altered in spheroids

There is growing interest in the development of porphyrinoids conjugated with sugars such as

glucose and galactose as new PSs for the PDT of cancer [6, 10, 11, 13, 35, 36]. Galectin-1 and

GLUT1 are glyco-binding proteins overexpressed in cancer cells [37, 38] that play a key role in

the uptake and photo-toxicity of with galactose- and glucose- porphyrin conjugates [11, 39,

40]. We evaluated the expression levels of these proteins in monolayers of HCT-116, MCF-7,

UM-UC-3 and HeLa cancer cells, by Western blots (Fig 4A and 4D). To determine whether

the expression of these proteins is altered during spheroids development, we compared these

results to cellular extracts of spheroid cultures (Fig 4C and 4D). Both galectin-1 and GLUT1

expression was higher in MCF-7 spheroids compared to monolayer cultures. Whereas no

alterations in galectin-1 expression was observed during growth of HeLa and UM-UC-3 spher-

oids, the expression was lower in spheroids of HCT-116. GLUT1 protein levels were lower in

spheroids of HCT-116 and HeLa. The galectin-1 protein levels in spheroids decreased in the

following order: UM-UC-3 > HeLa> MCF-7 > HCT116 (S3 Fig). GLUT1 protein levels in

spheroids decreased in the following order: MCF-7 > UM-UC-3 > HeLa�HCT-116

(S4 Fig).

PorGlu4 accumulates in both monolayer and spheroid cultures and is

non-toxic

Resistance of cancer cells to PDT agents arises from decreased PS photoactivity in vivo, PS

delivery barriers, and the kinetics of tumor penetration by the PS. Since the three-dimensional

Fig 3. Spheroid cells are viable and have altered metabolism. A, B spheroids viability at 24, 48 and 72 h after plating with seeding

densities of 5,000 HCT-116 cells per well, 15,000 MCF-7 cells per well, 20,000 UM-UC-3 cells per well and 20,000 HeLa cells per

well. Viability was determined using the LDH assay. LDH activity was measured in the culture supernatant and data were normalized

to LDH activity of spheroids at 24 h after cell plating (A) or LDH activity of cells growing in monolayers (B). Data are means ± S.D. of at

least three independent experiments performed in triplicate. C, D glucose utilization and lactate production of cancer cells growing in

monolayers and in spheroids at 48h after plating with seeding densities of 5,000 HCT-116 cells per well, 15,000 MCF-7 cells per well,

20,000 UM-UC-3 cells per well and 20,000 HeLa cells per well. The amount of glucose (nmol, C) and lactate (nmol, D) were estimated

using enzymatic assays and the results were normalized for mg of protein. Data are means ± S.D. of at least three independent

experiments performed in triplicate. **P< 0.01, ***P< 0.001 compared to glucose utilization or lactate production of the respective

cancer cell line growing in monolayers.

https://doi.org/10.1371/journal.pone.0177737.g003
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structure of spheroids mimics some of the physical and physiological barriers found in vivo
[19, 20, 24], spheroids of HCT-116, MCF-7, UM-UC-3 and HeLa were assessed as more pre-

dictive screens for the PDT activity of glyco-PSs. We performed uptake and PDT studies (Fig

5A) with a previously reported porphyrin conjugated with four glucose sugars (S5 Fig) [13].

Monolayer cultures of cancer cells were incubated 48 h after plating, with increasing con-

centrations (2.25, 4.5 and 9 μM) of PorGlu4 in PBS (containing a maximum of 0.5% v/v

DMSO) for up to 4 h. No toxicity was observed in untreated cells for up to 4 h in the presence

of 0.5% (v/v) DMSO in the incubation medium (S6 Fig). Moreover, PorGlu4 showed no signif-

icant dark cytotoxicity in monolayer and spheroid cultures at concentrations up to 9 μM (S7

Fig). We evaluated PorGlu4 accumulation in monolayer and spheroid cultures using fluores-

cence spectroscopy (Fig 5B, S8 and S9 Figs). The rate of uptake of 9 μM PorGlu4 for 4 h by

Fig 4. Spheroid cells have altered galectin-1 and GLUT1 protein levels. A, C western blot analysis and quantification of galectin-1 protein

levels in monolayers of HCT-116, MCF-7, UM-UC-3 and HeLa cancer cells growing in monolayers (A) or in spheroids (C). M means monolayer

and S, spheroid. Quantitative analysis of galectin-1 (normalized to β-actin) expressed as a ratio of the levels found in HeLa cells (A) or in cancer

monolayers (C). Data are means ± S.D. of at least five independent experiments. ***P< 0.001 compared to galectin-1 protein levels in HeLa

cells (A) or in respective cancer cell line growing in monolayers (C). B, D western blot analysis and quantification of GLUT1 protein levels in

monolayers of HCT-116, MCF-7, UM-UC-3 and HeLa cancer cells growing in monolayers (B) or in spheroids (D). M = monolayer and

S = spheroid. Quantitative analysis of GLUT1 (normalized to β-actin) expressed as a ratio of the levels found in HeLa cells (B) or in cancer

monolayers (D). Data are means ± S.D. of at least five independent experiments. *P< 0.05, **P< 0.01 compared to GLUT1 protein levels in

HeLa cells (B) or in respective cancer cell line growing in monolayers (D).

https://doi.org/10.1371/journal.pone.0177737.g004
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monolayers of cancer cells was also evaluated by confocal fluorescence microscopy (Fig 5C).

Initially, PorGlu4 is taken up quite readily by cancer cells, followed by a slower rate after 2 h

(S8 Fig). The uptake of PorGlu4 by cancer cells depends on the concentration, and in mono-

layer cultures was observed to decrease in the following order: HeLa�HCT-116 > UM-UC-

3> MCF-7 (Fig 5B and 5C). We compared the uptake of PorGlu4 into monolayer cultures ver-
sus spheroids (Fig 5B and S8 Fig) with a non-toxic concentration of PorGlu4 (S10 Fig). Spher-

oid structures of HCT-116 or HeLa cells had the same uptake of PorGlu4, but the uptake was

greater for spheroids of MCF-7 and UM-UC-3 cancer cells than for monolayers.

Fig 5. PorGlu4 produces toxicity after PDT in cancer cells growing as monolayers or spheroids. A uptake and PDT studies schedule.

B intracellular uptake of PorGlu4 by HCT-116, MCF-7, UM-UC-3 and HeLa cancer cells growing as monolayers or spheroids. The

concentration of PorGlu4 was determined by fluorescence spectroscopy (λexcitation at 410 nm and λemission at 702 nm) after incubation of

cancer cells with 9 μM of PorGlu4 for 4 h and the results were normalized to protein quantity. Data are means ± S.D. of at least three

independent experiments performed in triplicate. ***P< 0.001 compared to PorGlu4 uptake by MCF-7 cancer cells. C representative

fluorescence images of cancer cells incubated in darkness with 9 μM of PorGlu4 for 4 h (red, λexcitation at 640 nm and λemission 685/40 nm

band pass) and cell nucleus stained with DAPI (blue, λexcitation at 405 nm and λemission at 460/50 nm band pass). Scale bars 20 μm. D

cytotoxicity at 24 h after PDT with PorGlu4 in cancer cells growing in monolayers, determined using the MTT assay. Cells were incubated

with 9 μM PorGlu4 for 4 h and PDT was performed during 30 min at 0.44 mW/cm2. Data are means ± S.D. of at least three independent

experiments performed in triplicate. ***P< 0.001 compared to phototoxicity in control cells. $P< 0.05, $ $ $P< 0.001 compared to photoxicity

in MCF-7 cancer cells. E cytotoxicity at 24 h after PDT with PorGlu4 in cancer cells growing in spheroids, determined using the LDH assay.

Spheroids were incubated with 9 μM PorGlu4 for 4h and PDT was performed during 30 min at 0.44 mW/cm2. Data are means ± S.D. of at

least three independent experiments performed in triplicate. *P< 0.05, ***P< 0.001 compared to phototoxicity in control spheroids. $ $ $P<
0.001 compared to photoxicity in MCF-7 cells. F cytotoxicity at 24 h after PDT with PorGlu4 in cancer cells growing in monolayers and

spheroids, determined using the LDH assay. Spheroids were incubated with 9 μM PorGlu4 for 4h and PDT was performed during 30 min at

0.44 mW/cm2. Data are means ± S.D. of at least three independent experiments performed in triplicate. **P< 0.01, ***P< 0.001 compared

to phototoxicity in the respective monolayer culture.

https://doi.org/10.1371/journal.pone.0177737.g005
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Photodynamic activation of PorGlu4 induces cytotoxicity in monolayers

and spheroids

We investigated the effects of PorGlu4 mediated PDT efficacy in monolayer and spheroid cul-

tures. For these studies we used human cancer cell line spheroids with volume and average

diameter of 0.05 mm3 and 443 μm, respectively. The cells were treated 48 h after plating, with

non-toxic PorGlu4 concentrations ranging from 2.25 to 9 μM for 4 h, and then exposed to

light (420–700 nm) delivered at 0.44 mW/cm2 during 30 min (0.792 J/cm2). The 48 h time

point following cell seeding was chosen based on the time needed for spheroids of the different

cell lines to form and achieve reproducible and similar compactness (vide supra). In all mono-

layer cultures, the light activation of PorGlu4 induced a clear concentration-dependent reduc-

tion of cell viability (S11 Fig). As shown in Fig 5D, the phototoxicity induced by PorGlu4 in

cell monolayers decreased in the following order: HeLa> UM-UC-3 > HCT-116 >MCF-7.

When PDT was performed in spheroid cultures, the release of LDH into the cell culture

medium was increased compared with controls (Fig 5E and S12 Fig). However, the amount of

LDH leakage into the extracellular medium was lower for all cancer spheroid cultures com-

pared to corresponding monolayers (Fig 5F).

ROS are primary mediators of PDT-induced cell death [5]. Previous studies reported alter-

ations in endogenous ROS during spheroid development [22]. To determine endogenous as

well as PDT-induced ROS generation in monolayers and spheroids, these cultures were

stained with the redox sensitive dye H2DCFDA (20,70-dichlorodihydrofluorescein diacetate)

which reacts with ROS and is oxidized into fluorescent DCF and monitored by fluorescence

spectroscopy. Endogenous levels of ROS were similar in monolayers and spheroids of MCF-7

and UM-UC-3 cancer cells (S13 Fig), but for HCT-116 and HeLa spheroids there was greater

endogenous ROS. PDT with PorGlu4 leads to ROS generation, which was greater in all mono-

layer cell lines compared to their respective spheroids (S14 and S15 Figs), even in the cases

with a lower PS uptake.

Discussion

The development of reliable in vitro models for the screening of anticancer agents also plays a

key role in understanding cancer biology. Tumor spheroid cultures with appropriate size and

shape simulate the three-dimensional tumor micro-milieu and in vivo environment in which

cancer cells reside [19, 20], e.g. the physical-chemical conditions of oxygen, pH, and nutrient

gradients. Some advantages of using spheroid cultures in PS screening are reported [1, 3, 4, 7–

9, 17]; however, a high throughput screening that involves the use of different cancer cell lines

is hampered by the difficulty of obtaining homogeneous spheroid cultures. The need to assay

biochemical activity and viability of the spheroids for each culture is underappreciated. To

analyze uptake and cytotoxicity of anticancer compounds using these three-dimensional

tumor structures, it is necessary to obtain spheroids with a compact structure and reproducible

diameters. Of the five tumor cells evaluated herein, HCT-116 colon cancer cells, MCF-7 breast

cancer cells, UM-UC-3 bladder cancer cells and HeLa cervical cancer cells grew as viable, sta-

ble, structurally and functionally mature spheroids by 48 h after cell seeding. MDA-MB-231

breast cancer cells failed to form spheroids in agarose-coated 96-well plates, instead, formed

loose aggregates.

The HCT-116, MCF-7, UM-UC-3 and HeLa spheroids formed 48 h after cell plating

showed appropriate size for screening of PDT agents. Spheroids with a size smaller than

200 μm may be sufficient to mimic three-dimensional cell-cell and cell-matrix interactions but

they are inappropriate to reflect pathophysiological conditions with hypoxic areas in the spher-

oid center or to mimic proliferation gradients [18]. Also, spheroids with diameter > 200 μm
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mimic the chemical gradients found in vivo [24]. Cells cultured in spheroids with sizes beyond

500 μm may become quiescent with formation of a necrotic core and undergo cell death due

to limited diffusion of oxygen and nutrients inside spheroids [41, 42]. Studies have demon-

strated that not only spheroid volume, but also spheroid shape may be a source of variability

when these three-dimensional structures are used on the evaluation of a new anticancer com-

pound [24]. Irregularly shaped spheroids are generally observed to have two necrotic cores

instead of one, which results in inconsistent viability. Thus, we optimized conditions to obtain

spherically-shaped spheroids of homogeneous size and preserved cell viability for at least 72 h

after cell seeding.

Glycolysis converts glucose into pyruvate and then to lactic acid. In the presence of oxygen,

most of the mitochondria of mammalian cells oxidize pyruvate to carbon dioxide and water,

thereby inhibiting glycolysis [33]. The increased glycolysis in cancer cells leads to increased

lactic acid, i.e. the Warburg effect, even if oxygen is available [43, 44]. High glucose consump-

tion is a unique property of cancer cells and might have a key role in promoting tumor

development [33]. Increased glucose transport in cancer cells is associated with increased

expression of GLUTs (such as GLUT1 and GLUT3 [37, 45]) that contribute to the neoplastic

process. Compared with tumors with typical oxygen levels, hypoxic tumors require increased

glycolysis to survive [33], so the development of hypoxic regions in three-dimensional cultures

increases glucose utilization and lactate production [46].

Previous studies demonstrated that glucose utilization and lactate production are higher in

cancer cells spheroids compared with monolayers [22, 47]. Others reported that the glycolytic

fluxes and GLUT1 proteins levels are dependent on spheroids age [48]. We observed alter-

ations in glucose metabolism upon spheroid formation using the fluorescent glucose analog

2-NBDG which is taken into cells through glucose transporters [34, 49]. These results suggest

that, concomitant to the development of MCF-7 and UM-UC-3 spheroid structures, there is

alteration in the pattern of metabolism with increases in glucose dependence. Since the uptake

of glucose by cancer cells depends on the levels of glucose transporters such as GLUT1 [33];

increased GLUT1 protein levels explain the increased glucose consumption by MCF-7 and

UM-UC-3 spheroid cancer cells, and the uptake of PorGlu4. Interestingly, HCT-116 and HeLa

spheroids demonstrated a decreased consumption of glucose arising from a decreased content

of GLUT1. Previous studies demonstrated that dephosphorylation of 2-NBDG by hexokinase

can result in efflux from cells [49]. Alterations in hexokinase expression have been observed

during spheroids development [46], which for HCT-116 and HeLa spheroids can result in

dephosphorylation and efflux of 2-NBDG and lead to an apparent decreased glucose

consumption.

The commercial assay [34] reveals that the development of UM-UC-3 and HeLa spheroids

results in increased lactate production relative to cell cultures, while lactate levels during the

development of HCT-116 and MCF-7 spheroids were the same as the cell cultures. The

increased lactate by UM-UC-3 spheroids likely arises from increased glycolysis. Previous stud-

ies demonstrated that lactate production and utilization can occur simultaneously and these

processes are highly dependent on external lactate concentrations [50]. Therefore, the

increased lactate in the culture medium of HeLa spheroids, in spite of decreased glucose utili-

zation, can be due to alterations in lactate efflux [51]. The breakdown of cellular macromole-

cules or the catabolism of other fuels besides glucose can also give rise to the increased lactate

levels found in the culture medium of HeLa spheroids [46]. Since lactate efflux depends on

monocarboxylate transporter 1 (MCT1) [51], alterations in the expression of MCT1 during

spheroids development can also explain the differences in lactate production. The differential

lactate production in monolayers versus spheroids can also be a result of alterations in the

expression of enzymes involved in lactate oxidation (such as LDH5 and LDH1 [52]).
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The oxygen sensor transcription factor hypoxia-inducible factor-1α (HIF1α) has a key role

in the glycolytic response [53]. Under hypoxic stress, the upregulation of HIF1α induces the

expression of survival genes such as glucose transporters [54], haematopoeitic factors such as

transferrin and erythropoietin [55], hexokinase II [56], and angiogenic growth factors such as

vascular endothelial growth factor, VEGF. HIF1α expression is increased in spheroid cultures

compared to cells growing in monolayers, additionally, HIF1α overexpression is accompanied

by increased GLUT1 protein levels [48]. HIF1α overexpression increases galectin-1 expression

and HIF1α inhibition attenuates hypoxia induction of galectin-1 [57]. Further, the enhanced

glycolysis observed in UM-UC-3 and MCF-7 spheroids could be driven mainly by hypoxia,

and induced by the increased expression of genes encoding proteins involved in glucose

metabolism.

For screening of new glyco-PSs to be used in cancer PDT [6, 10, 58], the overarching

hypothesis is that these dyes adhere to glyco-binding proteins such as galectin-1 and GLUT1

overexpressed in cancer cells, thereby improving the selectivity of the PS for cancer. In both

MCF-7 and UM-UC-3 cancer cells, we found increased protein levels of galectin-1 and

GLUT1 in spheroids compared to their respective monolayers. In HCT-116 spheroids the

expression of these proteins was lower when compared with monolayer cultures. Galectin-1

protein content was unaltered in HeLa spheroids, while GLUT1 protein levels were reduced.

The precise mechanism underlying these changes is protein expression in spheroids requires

further investigation, yet it is well known that the expression of both galectin-1 and GLUT1 is

altered during hypoxic conditions due to upregulation of HIF1α [54, 57]. Thus as an assay for

the potential clinical value of glyco-PS as effective PDT agents, monolayer cultures of some cell

lines can give over optimistic prognoses, while other cell lines underestimate the prospects.

Herein we used cell lines growing in monolayer and spheroid cultures, each expressing dif-

ferent levels of galectin-1 and GLUT1. The photophysical properties of the porphyrins allow

us to correlate the expression of these proteins to PorGlu4 uptake and the phototoxicity in

both monolayer and spheroid cultures. Because the tetraglycosylated porphyrin PorGlu4 and

related glycosylated porphyrinoids are well-studied by several labs [13], it is an ideal system to

validate the use of HCT-116, MCF-7, UM-UC-3 and HeLa spheroids in the in vitro studies of

PDT with a glyco-PS.

The uptake and PDT phototoxicity with PorGlu4 depends on the cell line and on the in
vitro model. Differences in uptake and localization of PorGlu4 in monolayers versus spheroids

can result in different modes of cell death. Since cell death involves several complex processes

of cellular damage, differential gene expression profiles in monolayers versus spheroids [16]

can reveal different cell death pathways induced by PorGlu4 in these in vitro models. Since

PorGlu4 corresponds to a porphyrin surrounded by four glucoses, it is expected that proteins

able to bind glucose (such as GLUT1) have a key role during its uptake. As expected, the

uptake of PorGlu4 was greater in cell lines expressing higher levels of GLUT1 proteins than in

cell lines with lower levels of these proteins. Interestingly, galectin-1 is unlikely to be involved

in the uptake of PorGlu4, since a decreased expression of this protein in HCT-116 compared

with UM-UC-3 and HeLa cancer cells did not correspond to a proportional decreased uptake.

Although the increased levels of GLUT1 proteins during the development of MCF-7 and

UM-UC-3 spheroids resulted in increased PorGlu4 uptake, the three-dimensional culture

model demonstrated greater resistance to phototoxicity compared with monolayer cultures,

which is consistent with previous studies [1]. Many factors affect PS accumulation in spher-

oids, and hypoxia and related alterations in the metabolism affect the phototoxic response.

Additionally, the slower proliferation of spheroids compared with monolayer cultures can

contribute to the lower phototoxicity in spheroids. In monolayer cultures, the cells are exposed

to uniform PorGlu4 and oxygen levels. For spheroids, the reduced diffusion of PorGlu4 and
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oxygen to the center of spheroids reduces the ROS production, thereby reducing PDT efficacy

in the core. Although previous studies reported the formation of a necrotic core in spheroid

development due to lack of nutrition and oxygen [20], we did not observe this phenomenon

when imaged in bright-field microscopy [24] because we used 423–463 μm spheroids cultured

for short times (72 h).

Changes in cell redox status with increasing endogenous generation of ROS typically are

observed during spheroid development [22]. Alterations in spheroids redox status (e.g. activity

of antioxidant enzymes) can be involved in the resistance of spheroid cultures compared with

cells growing in monolayers. We detect an increase in endogenous ROS generation during the

development of HCT-116 and HeLa spheroids. The GLUT1 protein has antioxidant functions

in cells due to its ability to import the oxidized form of vitamin C (dehydroascorbic acid) [59]

to the mitochondria. Therefore, it is expected that the decrease in GLUT1 protein expression

in HCT-116 and HeLa spheroids results in an increase of endogenous ROS. We confirmed

that the phototoxicity induced in monolayers and spheroids after PDT with PorGlu4 was

mediated by the generation of ROS. As expected, the ability of PorGlu4 to induce ROS genera-

tion was greater in HCT-116, UM-UC-3 and HeLa monolayer cultures compared with MCF-7

cancer cells. Moreover, ROS generation upon light irradiation was greater in monolayer than

in the respective spheroid cultures.

Conclusions

Spheroids as models to screen therapeutics present distinct advantages [60–63]. The present

study provides a detailed characterization of HCT-116, MCF-7, UM-UC-3 and HeLa spheroid

Fig 6. Spheroid formation with HCT-116, MCF-7, UM-UC-3 and HeLa cancer cells; and phototoxicity with PorGlu4. The initial

aggregation of monolayer cancer cells plated for spheroid formation lasted for 24 h. Within 48–72 h the small clumps were replaced by

compact spheroids. The glycolytic status as indicated by glucose usage and lactate production, endogenous levels of ROS, and

expression of galectin-1 and GLUT1 are altered during spheroids formation. PorGlu4 is non-toxic at these concentrations yet has high

toxicity upon PDT. The uptake and phototoxocity of PorGlu4 is dependent on the cell line, levels of galectin-1 and GLUT1 in cancer cells

and on the in vitro (2-D or 3-D) model used.

https://doi.org/10.1371/journal.pone.0177737.g006
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cultures with respect to a number of parameters that are critical for screening and designing

cancer targeting glyco-PS, including glucose metabolism, oxidative stress during spheroids for-

mation, and related variations in galectin-1 and GLUT1 proteins. This study highlights the

metabolic and morphological differences between spheroids and cell cultures that provides a

solid framework and specific methods for evaluating the efficacy of glyco-PS and other glyco-

sylated drugs. Overall, for glyco-PS as PDT agents, using spheroids is a more predictive model

of tumors than the commonly used monolayer culture (Fig 6).

Supporting information

S1 Fig. Glucose utilization of cancer cells growing in monolayers at 48 h after plating with

seeding densities of 5,000 HCT-116 cells per well, 15,000 MCF-7 cells per well, 20,000

UM-UC-3 cells per well and 20,000 HeLa cells per well. The amount of glucose (nmol) was

estimated using the fluorescent glucose analog 2NBDG and the results were normalized for

mg of protein. Data are means ± S.D. of at least three independent experiments performed in

triplicate. ���P< 0.001 compared to glucose utilization in HeLa cells.

(TIF)

S2 Fig. Lactate utilization of cancer cells growing in monolayers at 48 h after plating with

seeding densities of 5,000 HCT-116 cells per well, 15,000 MCF-7 cells per well, 20,000

UM-UC-3 cells per well and 20,000 HeLa cells per well. The amount of lactate (nmol) was

estimated using an enzymatic assay and the results were normalized for mg of protein. Data

are means ± S.D. of at least three independent experiments performed in triplicate. ���P<
0.001 compared to glucose utilization in HeLa cells.

(TIF)

S3 Fig. Quantitative analysis of galectin-1 (normalized to β-actin) in spheroid cultures

expressed as a ratio of the levels found in HeLa spheroids. Data are means ± S.D. of at least

five independent experiments. ��P< 0.01, ���P< 0.001 compared to galectin-1 protein levels in

HeLa spheroids.

(TIF)

S4 Fig. Quantitative analysis of GLUT1 (normalized to β-actin) in spheroid cultures

expressed as a ratio of the levels found in HeLa spheroids. Data are means ± S.D. of at least

five independent experiments. �P< 0.05, ���P< 0.001 compared to GLUT1 protein levels in

HeLa spheroids.

(TIF)

S5 Fig. Chemical structure of PorGlu4.

(TIF)

S6 Fig. Cytotoxicity of PBS solution containing 0.5% DMSO (v/v) in monolayer cultures at

different incubation times (0.5, 1, 2 and 4h). The percentage of cytotoxicity was calculated

relatively to control cells (cells incubated with medium). Data are means ± S.D. of at least three

independent experiments performed in triplicate.

(TIF)

S7 Fig. Non-dark toxicity of PorGlu4 at different concentrations (0, 2.25, 4.5 and 9 μM)

and uptake time of 4h, in monolayer cultures. The percentage of cytotoxicity was calculated

relatively to control cells (untreated cells). Data are means ± S.D. of at least three independent

experiments performed in triplicate.

(TIF)
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S8 Fig. Intracellular uptake of PorGlu4 by HCT-116, MCF-7, UM-UC-3 and HeLamono-

layer cultures. The concentration of PorGlu4 was determined by fluorescence spectroscopy

(λexcitation at 410 nm and λemission at 702 nm) after incubation of cancer cells with 0, 2.25, 4.5 or

9 μM of PorGlu4 for 0.5, 1, 2 or 4 h and the results normalized to protein quantity. Data are

means ± S.D. of at least three independent experiments performed in triplicate.

(TIF)

S9 Fig. Intracellular uptake of PorGlu4 by HCT-116, MCF-7, UM-UC-3 and HeLa growing

in monolayer or spheroid cultures. The concentration of PorGlu4 was determined by fluores-

cence spectroscopy after incubation of cancer cells with 9 μM PorGlu4 during 4 h (λexcitation at

410 nm and λemission at 702 nm) and the results normalized to protein quantity. Data are

means ± S.D. of at least three independent experiments performed in triplicate. ��P< 0.01,
���P< 0.001 compared to PorGlu4 uptake by the respective cancer cell line growing in mono-

layers.

(TIF)

S10 Fig. Non-dark toxicity of PorGlu4 at 9 μM and uptake time of 4 h in spheroid cultures

as determined using the LDH assay. The percentage of cytotoxicity was calculated relatively

to control cells (untreated cells). Data are means ± S.D. of at least three independent experi-

ments performed in triplicate.

(TIF)

S11 Fig. Cytotoxicity at 24 h after PDT with PorGlu4 in cancer cells growing in monolay-

ers, determined using the MTT assay. Data are means ± S.D. of at least three independent

experiments performed in triplicate. ��P< 0.01, ���P< 0.001 compared to MTT reduction (%)

of control cells (untreated cells).

(TIF)

S12 Fig. Cytotoxicity at 24 h after PDT with PorGlu4 in cancer cells growing in spheroids,

determined using the LDH assay. Data are means ± S.D. of at least three independent experi-

ments performed in triplicate. �P< 0.05, ��P< 0.01, ���P< 0.001 compared to LDH reduction

(%) of control cells (untreated cells).

(TIF)

S13 Fig. Quantification of DCF fluorescence increase as a measure of endogenous ROS in

cancer cells growing as monolayers or spheroids. ROS levels are expressed as a ratio of the

levels found on the respective cell line growing in monolayers. Data are means ± S.D. of at

least three independent experiments performed in triplicate. ��P< 0.01, ���P< 0.001 compared

to DCF fluorescence in the respective cell line growing in monolayers.

(TIF)

S14 Fig. Quantification of DCF fluorescence increase as a measure of ROS production

after PDT in cancer cells growing in monolayers, after PDT with PorGlu4. ROS levels are

expressed as a ratio of the levels found on the respective control cells and normalized to mg of

protein. Data are means ± S.D. of at least three independent experiments performed in tripli-

cate. ��P< 0.01, ���P< 0.001 compared to ROS production after PDT in control cells. $P<
0.05, $ $ $P< 0.001 compared to ROS production after PDT in MCF-7 cancer cells.

(TIF)

S15 Fig. Quantification of DCF fluorescence increase (as a measure of ROS production

after PDT) in cancer cells growing in spheroids, after PDT with PorGlu4. ROS levels are

expressed as a ratio of the levels found on the respective control cells and normalized to mg of
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protein. Data are means ± S.D. of at least three independent experiments performed in tripli-

cate. ���P< 0.001 compared to ROS production after PDT in control cells.

(TIF)

S1 Table. HCT-116 spheroid size and cellular characteristics as a function of age (24, 48

and 72h) and number of platted cells (2,500, 5,000, 10,000 and 20,000 cells per well).

(TIF)

S2 Table. MCF-7 spheroid size and cellular characteristics as a function of age (24, 48 and

72h) and number of platted cells (5,000, 10,000, 15,000 and 20,000 cells per well).

(TIF)

S3 Table. UM-UC-3 spheroid size and cellular characteristics as a function of age (24, 48

and 72h) and number of platted cells (2,500, 5,000, 10,000 and 20,000 cells per well).

(TIF)

S4 Table. HeLa spheroid size and cellular characteristics as a function of age (24, 48 and

72h) and number of platted cells (2,500, 5,000, 10,000 and 20,000 cells per well).

(TIF)
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21. Bizik J, Kankuri E, Ristimäki A, Taïeb A, Vapaatalo H, Lubitz W, et al. Cell-cell contacts trigger pro-

grammed necrosis and induce cyclooxygenase-2 expression. Cell Death Differentiation. 2004; 11(2):

183–195. doi: 10.1038/sj.cdd.4401317. PMID: 14555963.

22. Khaitan D, Chandna S, Arya MB, Dwarakanath BS. Establishment and characterization of multicellular

spheroids from a human glioma cell line; Implications for tumor therapy. J Transl Med. 2006; 4: 1–13.

23. Charoen KM, Fallica B, Colson YL, Zaman MH, Grinstaff MW. Embedded multicellular spheroids as a

biomimetic 3D cancer model for evaluating drug and drug-device combinations. Biomater. 2014; 35(7):

2264–2271. doi: 10.1016/j.biomaterials.2013.11.038. PMID: 24360576.

Spheroids and photodynamic efficiency of glycosylated photosensitizers

PLOS ONE | https://doi.org/10.1371/journal.pone.0177737 May 17, 2017 19 / 21

https://doi.org/10.1016/j.actbio.2015.04.014
http://www.ncbi.nlm.nih.gov/pubmed/25900441
http://dx.doi.org/10.1038/nrc1071
http://www.ncbi.nlm.nih.gov/pubmed/12724736
http://dx.doi.org/10.1021/acs.chemrev.5b00244
http://www.ncbi.nlm.nih.gov/pubmed/26317756
http://dx.doi.org/10.1016/j.jphotobiol.2016.05.011
http://dx.doi.org/10.1016/j.jphotobiol.2016.05.011
http://www.ncbi.nlm.nih.gov/pubmed/27285816
http://dx.doi.org/10.3390/ijms160510185
http://www.ncbi.nlm.nih.gov/pubmed/25950764
http://dx.doi.org/10.1186/s12951-015-0095-3
http://www.ncbi.nlm.nih.gov/pubmed/25966866
http://dx.doi.org/10.1039/c2cc17561d
http://dx.doi.org/10.1371/journal.pone.0095529
http://www.ncbi.nlm.nih.gov/pubmed/24763311
http://dx.doi.org/10.1039/c5ob01839k
http://www.ncbi.nlm.nih.gov/pubmed/26514229
http://dx.doi.org/10.1021/bi049272v
http://www.ncbi.nlm.nih.gov/pubmed/15323552
http://dx.doi.org/10.1021/bc100356z
http://www.ncbi.nlm.nih.gov/pubmed/20964323
http://dx.doi.org/10.1039/b806536e
http://dx.doi.org/10.1039/b806536e
http://www.ncbi.nlm.nih.gov/pubmed/18958330
http://dx.doi.org/10.1016/j.addr.2014.02.008
http://dx.doi.org/10.1016/j.addr.2014.02.008
http://www.ncbi.nlm.nih.gov/pubmed/24613390
http://dx.doi.org/10.1002/lsm.20350
http://dx.doi.org/10.1038/nprot.2008.226
http://www.ncbi.nlm.nih.gov/pubmed/19214182
http://dx.doi.org/10.4161/cbt.21353
http://www.ncbi.nlm.nih.gov/pubmed/22892843
http://dx.doi.org/10.1016/j.drudis.2012.10.003
http://www.ncbi.nlm.nih.gov/pubmed/23073387
http://dx.doi.org/10.1038/sj.cdd.4401317
http://www.ncbi.nlm.nih.gov/pubmed/14555963
http://dx.doi.org/10.1016/j.biomaterials.2013.11.038
http://www.ncbi.nlm.nih.gov/pubmed/24360576
https://doi.org/10.1371/journal.pone.0177737


24. Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, et al. 3D tumor spheroid models for in

vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained.

Sci Rep. 2016; 6: 19103. doi: 10.1038/srep19103. PMID: 26752500.

25. Manoto SL, Houreld NN, Abrahamse H. Phototoxic effect of photodynamic therapy on lung cancer cells

grown as a monolayer and three dimensional multicellular spheroids. Lasers Surg Med. 2013; 45(3):

186–94. doi: 10.1002/lsm.22121. PMID: 23460580.

26. Yao K, Gietema JA, Shida S, Selvakumaran M, Fonrose X, Haas NB, et al. In vitro hypoxia-conditioned

colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a

more angiogenic profile in vivo. Br J Cancer. 2005; 93(12): 1356–1363. doi: 10.1038/sj.bjc.6602864.

PMID: 16333244

27. Gong X, Lin C, Cheng J, Su J, Zhao H, Liu T, et al. Generation of multicellular tumor spheroids with

microwell-based agarose scaffolds for drug testing. PLoS One. 2015; 10(6): e0130348. doi: 10.1371/

journal.pone.0130348. PMID: 26090664.
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