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ABSTRACT Today, high-level synthesis (HLS) tools are being touted as a means to perform rapid
prototyping and shortening the long development cycles needed to produce hardware designs in register
transfer level (RTL). In this paper, we attempt to verify this claim by testing the productivity benefits offered
by current HLS tools by using them to develop one of the most important and complex processing blocks
of modern software-defined radio systems: the forward error correction unit that uses low density parity-
check (LDPC) codes. More specifically, we consider three state-of-the-art HLS tools and demonstrate how
they can enable users with little hardware design expertise to quickly explore a large design space and
develop complex hardware designs that achieve performances that are within the same order of magnitude
of handcrafted ones in RTL. Additionally, we discuss how the underlying computation model used in these
HLS tools can constrain the microarchitecture of the generated designs and, consequently, impose limits
on achievable performance. Our prototype LDPC decoders developed using HLS tools obtain throughputs
ranging from a few Mbits/s up to Gbits/s and latencies as low as 5 ms. Based on these results, we provide
insights that will help users to select the most suitable model for designing LDPC decoder blocks using these
HLS tools. From a broader perspective, these results illustrate how well today’s HLS tools deliver upon their
promise to lower the effort and cost of developing complex signal processing blocks, such as the LDPC block
we have considered in this paper.

INDEX TERMS Error correction codes, reconfigurable architectures, accelerator architectures, reconfig-
urable logic, high level synthesis.

I. INTRODUCTION
Traditionally, implementing a relatively complex process-
ing algorithm on a field-programmable gate array (FPGA)
started with developing a register transfer level (RTL)
description of a digital circuit to perform the computation.
However, producing such a RTL description is a tedious
task where one needs to detail each low-level circuit oper-
ations, such as the movement of data between hardware
registers (i.e., flip-flops) and the individual operations per-
formed on this data. Therefore, developing hardware designs
was only possible for hardware designers who had
the necessary skills. Today, however, there exist high-level

synthesis (HLS) tools that promise to enable users without
such specialized skills to develop complex hardware designs.
Additionally, HLS tools enable users to shorten the design
development cycles and efficiently explore a large design
space and identify designs that achieve the appropriate trade-
offs between performance and resource requirements [1].
Furthermore, since these HLS tools use traditional software
development languages, e.g., C, C++ and Open Computing
Language (OpenCL), it enables users to easily migrate exist-
ing implementation on platforms such as central process-
ing units (CPUs) and graphics processing units (GPUs) to
target FPGAs.
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Software-defined radio (SDR) systems [2] contain
several complex signal processing blocks that must be care-
fully optimized to achieve the optimum balance between
performance, system complexity and development time.
One such compute-intensive signal processing block is
the low-density parity-check (LDPC) forward error correc-
tion (FEC) codes that are often used as error correcting blocks
within advanced communication systems. LDPC codes were
invented in the early sixties by R. G. Gallager [3], however,
they remained largely unnoticed until the early nineties,
when there was enough computational power to harness
their capacity-approaching characteristics. Due to the pow-
erful error-correction capabilities of LDPC codes over a
noisy channel, today they have been widely adopted by
multiple IEEE, ITU-T and ETSI digital communication
standards [4]–[11]. Although CPUs and GPUs are often
used to simulate these codes, the bulk of deployed LDPC
decoders are in the form of dedicated very large scale
integration (VLSI) devices [7], [12]. However, these imple-
mentations are fixed and cannot be modified as standards
evolve or error-correction requirements change. On the other
hand, reconfigurable substrates, such as FPGAs, are capa-
ble of supporting SDR applications [13] and they can be
reprogrammed to satisfy different requirements or to deploy
multiple communication standards.

FIGURE 1. Energy efficiency vs. throughput tradeoffs of the LDPC
decoders obtained using different computing architectures: (a) operating
regions of the different decoder technologies employed; and
(b) development effort relative to the potential decoding throughputs.
The projected FPGA HLS region of interest (ROI) is highlighted in (a).

In this paper, we investigate how one can utilize HLS
tools to reduce effort and time (see Figure 1) needed to
develop complex LDPC decoding solutions. More specifi-
cally, we discuss how a designer can perform design space
exploration and develop FPGA solutions that can handle
the various intricacies of LDPC codes, such as complex-
ity of decoding algorithms for both binary and non-binary
LDPC codes, regularity of code structure, parallel-exposure
of the decoding schedules and Turbo-decoding message-
passing (TDMP) or two-phased message-passing (TPMP).
We demonstrate how users without specialized hardware
design expertise can easily develop LDPC decoders using
three state of the art HLS tools: Altera OpenCL, Max-
Compiler and Xilinx Vivado HLS. Moreover, the proposed
decoder designs produced by the HLS tools achieve perfor-
mances that are comparable to those of RTL designs.

The main contributions of this paper can be summarized as
follows:
• identification of the key challenges in using HLS
approaches for designing distinct LDPC decoder archi-
tectures;

• assessment of the attainable LDPC decoding perfor-
mance (i.e., throughput and latency) for HLS-based
decoder designs;

• discussion on how the underlying architecture constrains
the LDPC decoder design space and, therefore, attain-
able decoding performance;

• discussion and ranking of the HLS proposed decoders
against RTL-based approaches available in the literature.

II. LDPC CODES AND DECODING ALGORITHMS
Introduced in the early sixties [3], and left untamed until
the early nineties due to insufficient computational power to
prove their capacity-approaching abilities, LDPC codes are
linear block codes defined by sparse parity-check matricesH
that verify the condition

c×HT
= 0, c ∈ C, (1)

with c a codeword belonging to the set of codewords C lying
in the null-space of H. The parity-check matrix defines the
adjacency matrix to the Tanner graph (see Fig. 2), a bipartite
graph that assigns a check node (CN) to each row in H,
and variable nodes (VNs) to H columns. Whenever a non-
null element hcv exists, there is an edge connecting CNc to
VNv [14]. The codeword c can be a binary value, in which
case a VN corresponds to a single bit, or it can be a non-binary
symbol in the Galois Field GF(q), typically an m-tuple of
bits in digital communication systems—the symbol is defined
over the binary extension field GF(2m).1

A. DECODING ALGORITHMS
Decoding transmitted codewords can be performed by hard
decoding, but is mostly performed using soft-decoding meth-
ods that present improved coding gains over the former [14].
Soft-decoding algorithms are based on message-passing
between CNs and VNs that compose the Tanner graph.
In Figure 2, each VN corresponds to a codeword symbol and
each CN to a parity-check equation [14]. The channel demod-
ulator computes an a-priori stochastic measure mv to each
symbol in the log-likelihood ratio (LLR) or probability mass
function (pmf) domain, L(mv) ormv(x), respectively, where x
is a symbol defined over the binary extension field GF(2m).
Then, according to the connections defined in the Tanner
graph of the LDPC code, each VN broadcasts the initial esti-
mate as L(mvc) ormvc(x) messages across their edges towards
the set of adjacent CNs C(v). At the CN level, new messages
L(mcv) or mcv(x) are computed and sent back to the set of
adjacent VNs V (c) which compute new L(mvc) or mvc(x)

1It is usual to define the primitive element of a given Galois Field generi-
cally as α. With the exception of the zero element, all remaining symbols in
the field, can be written as powers of α [14].
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FIGURE 2. Parity-check matrix and Tanner graph representation in (a) GF(2m) (blue) and (b) GF(2) (red),
depicting the message-passing between nodes for the (a) non-binary FFT-SPA and the (b) MSA.

estimates and repeat the procedure. The binary case presents a
simpler algorithm with no mathematical operation applied at
the edge-level, whereas in the non-binary case, a permutation
is applied to all pmf traversing the graph from VN to CN
and are depermuted on the opposite direction. This is formal-
ized asmcv(h−1cv ×hcv×x). With each iteration, an a-posteriori
likelihood estimate, L(Mv) or Mv(x), can be computed from
which a hard-decision regarding the most likely symbol state
can be made.

Among the set of decoding algorithms that can be used,
the MSA and the FFT-SPA are particularly interesting for the
binary and the non-binary cases, respectively [15], [16]. The
MSA is composed of CN processing (2), a new a-posteriori
estimate on the most likely bit state (3) performed also in con-
junction with the VN processing (4), and formalized below
with i denoting the current decoding iteration:

L(m(i)
vc) = min

v′∈V (c)\v
|L
(
m(i−1)
cv′

)
|×

∏
v′∈V (c)\v

sign
(
m(i−1)
cv′

)
(2)

L(Mv
(i)) = L(mv)+

∑
c′∈C(v)

L(m(i)
vc′
) (3)

L(m(i)
cv) = L(M (i)

v )− L(m(i)
cv). (4)

The non-binary decoding is more complex as it can scale
with ∼O(m·2m), making the practical decoding of non-
binary LDPC codes much more challenging than binary
ones [14], [17]. Some of the known decoding algorithms with
the lowest complexity includemin-max (MM), extended min-
sum (EMS), their Trellis versions trellis min-max (TMM) and
trellis extended min-sum (TEMS), and FFT-SPA [16]–[18].
Among them, FFT-SPA is of particular interest since it

forgos any operation over GF(2m) and the logic overhead
of finding the required configuration sets needed in TMM
and TEMS [17]. The FFT-SPA is composed of CN process-
ing (5) performed in the Fourier domain and a-posteriori
estimate on the most likely symbol state (6) together with the
VN processing (7):

m(i)
cv(hcv×x) = F


∏

v′∈V (c)\v

m(i−1)
v′c

(z)

m(i−1)
v′c

(z = 0)

 (5)

M(i)
v (x) = mv(x)

∏
c′∈C(v)

m(i)
vc′
(x), (6)

m(i)
vc(x) = M(i)

v (x)/m(i)
cv(x), (7)

with x ∈ GF(2m) and the Fourier transform mvc(z) of the
pmf mvc(x) given by mvc(z) = F (mvc(x)), where F(·) is the
Walsh-Hadamard transform (WHT) operator—the discrete
Fourier transform (DFT) is also the WHT but in the binary-
extension field domain [14].

The workload for the binary and non-binary decoding
algorithms include the CN and VN processing and addi-
tional edge-level operations in the non-binary case, but the
numerical complexity is typically dominated by the CN com-
putation. Therefore, a designer must carefully consider all
the arithmetic and memory operations involved in various
parts of the algorithm during the implementation. Table 1
gives upper bounds for the complexity of MSA and FFT-SPA
algorithms expressed in terms of CN arithmetic and mem-
ory instructions required per decoding iteration for the CN,
VN and edge-level processing. This data shows that the
decoding procedures scale linearly with the LDPC code
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TABLE 1. Upper bound on the complexity of arithmetic and memory operations.

dimension and with the executed number of decoding iter-
ations, but non-linearly with the order of GF(2m).

III. ARCHITECTURES FOR HLS-BASED DESIGN
In this work, we use three different state of the art HLS tools
and discuss how the features offered by these tools can be
efficiently leveraged to model good quality LDPC decoder
architectures. We specifically study how decoders can be
implemented using a wide-pipeline architecture, a dataflow
approach and a loop-annotated method,2 respectively, pro-
vided by the Altera OpenCL, Maxeler MaxCompiler and
VivadoHLS,whosemain features are summarized in Figure 3
and that are discussed next.

FIGURE 3. HLS approaches relation to RTL development and features
supported by each model (on top).

A. WIDE-PIPELINE ARCHITECTURE
The wide-pipeline architecture in this study is modeled using
the Altera OpenCL HLS infrastructure [16]. The OpenCL is
a parallel programming model that defines specific memory
hierarchies and makes it easy for the users to express paral-
lelism in the algorithm. Altera’s HLS tool generates kernels
from OpenCL code and interconnects them within a template
architecture, shown in Figure 4a). Therefore, only a part of

2This designation stems from the exposure of parallelism through loop
directives that drive the pipelining and unrolling the iterations scheduled
within.

the FPGA is used for the OpenCL kernels and the rest is used
for other hardware structures, such as the PCIe IP block for
moving data between the host (CPU) and the device (FPGA),
dynamic RAM (DRAM) controllers and clocking interfaces.
While it is possible to tailor the architecture to the spe-
cific application, this needs the designer to know advanced
hardware-level details and deviate markedly from a typical
OpenCL-based implementation flow. Without availing these
advanced features, the generated architecture might not fully
leverage the specialization capabilities of an FPGA.

FIGURE 4. Accelerator platform topology: (a) wide-pipeline Altera
OpenCL; (b) MaxCompiler; (c) Vivado HLS developed platform. The former
two are provided by the HLS infrastructure, the latter is provided by the
designer.

1) OpenCL WIDE-PIPELINE MODEL
The work-item defines the finest-grained element at which
level the computation is defined under OpenCL [19].
Parallelism is exploited through the generation of an accel-
erator capable of holding hundreds or thousands of active
work-items in the pipeline, therefore the designation of
wide-pipeline. Work-items, organized into three dimensional
‘‘grids’’ of computation, called workgroups, that essen-
tially form a triple-nested loop structure, with a loop per
grid dimension. In the kernels generated by the HLS tool,
the entire computation is pipelined so that multiple work-
items can be processed simultaneously. Additionally, the tool
automatically maps the different memories in the OpenCL
standard to available on-chip or off-chip memories: global
memory space is mapped to off-chip DRAM, local and
constant memory spaces are mapped to on-chip block
RAMs (BRAMs) [16]. Accesses to these memory addressing
spaces are managed via interconnection networks to which
the kernels generated by the HLS tool are connected. In a
typical implementation, most of the optimizations performed
by the user directly affect the kernel and the interconnection
network is generated by the tool itself.
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2) PARALLELISM IN THE WIDE-PIPELINE
In OpenCL, a workgroup, essentially, models computation
within a triple-nested loop structure with explicit parallelism
across work-items. In the case of the FPGA, as noted earlier,
this parallelism is exploited by performing computation in a
pipelined fashion. Therefore, a designer must write C code
which is functionally correct and at the same time, exposes
enough parallelism to reach high levels of pipelining. The
efficiency of generated pipeline is measured in terms of the
initiation interval (II) of work-items, which is the number of
cycles that must elapse after accepting a work-item before it
can accept the next one. Although the designer has explicit
no control over the II, the HLS tool automatically tries to pro-
cess 1 work-item per clock cycle at a given clock frequency.
Therefore, complex algorithms or poorly constructed code
will result in lower clock frequencies of operation.

From a designers’ perspective, the performance of a design
can be improved by 1) setting a fixed workgroup size,
this removes all loop-guard constraints and facilitates more
aggressive pipelining; 2) directing the tool to generate several
compute units (CUs), kCUs to handle the execution of work-
items in the pipeline; 3) driving the level of single-instruction
multiple-data (SIMD) computation upwards (in powers of 2)
to kSIMD-way SIMD execution of work-items.

B. DATAFLOW ARCHITECTURE
Maxeler’s MaxCompiler provides a HLS infrastructure that
enables the high-level description of dataflow hardware
accelerators [20]. This is facilitated by a number of Java-
based classes that abstract away the underlying FPGA plat-
form which contains the necessary memory controllers that
enable the communication of the host computer system with
the FPGA chip—enabling constructs such as finite-state
machine (FSM) control. The model is inspired in stream-
based approaches that decouple arithmetic operations from
memory accesses and data movement. The underlying plat-
form, seen in Figure 4b), interconnects a given set of kernel
accelerators to a manager that is responsible for serving the
kernels with data and for all the data movement to and from
the dataflow accelerator [20].

Under the dataflowmodel, a kernel is defined as a hardware
datapath performing the arithmetic and logical computations
as the data flows through it. A manager is responsible for
orchestrating the kernel calls and feeding the kernel with
the data needed for the computation via off-chip I/Os, in a
streaming fashion. The compiler also uses a streaming model
for off-chip I/O to the PCIe, to implement so-called dataflow
engines (DFEs) via the MaxRing interconnection [20], and
to the DRAM memory. The objective is to keep the uti-
lization of the available off-chip communication bandwidth
high, without the need for users to dig deeper onto low-
level FSMs that control the flow of data. With this approach,
by keeping communication and computation separate,
kernels can be deeply pipelined without encountering syn-
chronization issues—both communication and computation
occur concurrently.

C. LOOP-ANNOTATED ARCHITECTURE
Vivado provides a HLS toolchain that enables users to design
hardware from C/C++ or SystemC description [21]. In addi-
tion to this description, the user can provide additional inputs,
such as inline compiler directives using the #pragma con-
struct or using a separate TCL script, to further optimize
the generated hardware. The HLS tool compiles the inputs
and synthesizes a hardware module, in the IP-XACT format,
which implements the computation inside a top-level func-
tion that is marked within the user description. During this
C-synthesis, all the functions, logic and arithmetic, inside
this top-level are mapped onto hardware primitives. At this
stage, the behavior of the generated design can be analyzed
for functional correctness at the clock cycle level. Then,
the generated hardware module is connected within a larger
platform design, such as the one shown in Figure 4c), before
performing the circuit synthesis. Among the available direc-
tives, we can highlight the following that are of interest to
the generation of efficient LDPC decoders: 1) loop directives
that deal with unrolling, pipelining and how complex loop
structures can be flattened or merged; 2) memory directives
that influence howmemory is mapped, e.g., arrays can be par-
titioned or reshaped in block or cyclically; 3) resource direc-
tives that integrate specific hardware blocks onto the HLS
description such as BRAMs, multipliers, FIFOs or protocol-
specific I/O blocks.

Concurrency can be hard to express in C/C++ without
suitable extensions, such as the parallelism defined at the
work-item level in OpenCL kernels, thus, loop pipelining and
loop unrolling are responsible for the bulk of parallelism
exposed by the algorithm description.

IV. HLS PARALLEL LDPC DECODERS
Herein, we discuss the development of LDPC decoders for
each of the HLS approaches.

A. WIDE-PIPELINE BINARY LDPC DECODER
Two distinct approaches for wide-pipeline decoders can be
followed i) one by exploiting pipelining of work-items to
the fullest [5] and ii) by defining multiple kernels, the lat-
ter an approach closer to typical programmable OpenCL
approaches [22], as seen on Fig. 5. We refer to the former
as pipelined decoder, as presented previously in [5], and the
designated multi-kernel decoder is discussed below.

1) THREAD-PER-NODE MULTI-KERNEL LDPC DECODER
In this case, the node- and edge-level functions are synthe-
sized into separate kernels. Algorithm 1 defines the multi-
kernel approach that can be used to implement an LDPC
decoder for the binary case. The multi-kernel approach
enables us to specify parallelism at a very fine-grained level.
Otherwise, the unbalanced quantity of work performed at
the node- and edge-level within the same kernel can lead
to sub-optimal designs. In fact, for kernels that compute the
CN or the VN, higher IIs are achieved if they are left without
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FIGURE 5. Altera OpenCL TpN execution and work-item scheduling: following a) a multi-kernel strategy, where an execution grid per
iteration per processing stage is issued, and completely flushed, and using b) a pipelined approach where work-items are scheduled
at once and the single-kernel pipeline is never flushed [5].

performing the update procedures at the edge-level that pre-
cede and follow them. Likewise, higher IIs are accomplished
for edge-level kernels if no node-level computation is defined.

Algorithm 1 Multi-Kernel TpN MSA Decoding Using
the OpenCL Wide-Pipeline Approach

1: Launch OpenCL multi-kernel TpN decoder
kernels

2: repeat
3: CN processing kernel
4: for wki = 0 to M − 1 do
5: Load all L(mvc) from DRAM (dc LLRs per

work-item)
6: Execute CN update (2)
7: end for
8: Wait for work-items in the CN pipeline to be

flushed
9: VN processing kernel
10: for wki = 0 to N − 1 do
11: Load all L(mcv) from DRAM (dv LLRs per

work-item)
12: Load L(mv) from DRAM (1 LLR per

work-item)
13: Execute VN updates a-posteriori (3) and (4)
14: end for
15: Wait for all work-items to be flushed
16: until all i iterations are executed
17: Copy L(m∗v ) from FPGA DRAM back to host

B. DATAFLOW BINARY LDPC DECODER
Using the dataflow model for the LDPC decoder provides
the ability to more freely define the architecture in HLS,
although, as a consequence, it also puts more responsibility
on the designer. The additional freedom avoids limitations
such as the need to map the physical addressing spaces to
logical ones, each with different scopes and variable lifetime.
Moreover, we are now able to define functional units (FUs) at

the node-level which can be used to express varying degrees
of partially parallel designs [23].

1) M-FUNCTIONAL UNIT LDPC DECODER
Given the popularity of quasi-cyclic LDPC (QC-LDPC) and
LDPC Irregular-Repeat-Accumulate (LDPC-IRA) codes in
communication standards, we developed a binary LDPC
decoder for LDPC-IRA codes with M FUs that utilizes a
partially-parallel architecture [23] (see Fig.6). This architec-
ture exploits the modular M properties within the Tanner
graph of LDPC-IRA codes. Additionally, by utilizing the
streaming model we divide the dataflow accelerator onto a
manager that handles all data communications from the front-
and back-end and the processing block that is connected to the
managers and contains one or more kernels.

The front-end and back-end interface the input and
output streams, respectively, from the external interfaces
(e.g., PCIe or DRAM) to BRAM units in the FPGA. The
processing block performs the processing of data coming over
the input streams. A double-buffering mechanism ensures
that at any given time there can be 1) data being read over the
input streams, 2) data being processed by processing block
and 3) processed data being written to the output stream [24].
The precise control facilitated by the extended-Java language
allows the definition of a processing rate for the computation
which loads one message per FU per clock cycle.

The actual number, M , of FUs in the system is specified
by the designer before synthesis and it is implemented as
DFE-array of the defined LDPC FUs. Usually, M is
a sub-multiple of the expansion factor zf of QC-LDPC
codes [23] or a sub-multiple of the regularity factor of
LDPC-IRA codes [6]. Thus, we can decide between assign-
ing more or less FUs to a decoder based on the required
throughput and/or the available resources on the FPGA fabric.
Furthermore, the M -modulo architecture assigns a separate
memory bank to each FU so that stalls are minimized—
this enables simultaneous reading and storing of mes-
sages that can be as high as a message per clock cycle.
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FIGURE 6. Dataflow pipelined MSA FU VN and CN datapaths. a) Host, manager and kernel, and pipelined FU. The
b) VN datapath and c) CN datapath allow for concurrent execution. The shown example instantiates a single decoder,
but there is enough bandwidth to instantiate a kdec number of decoders before the PCIe link is saturated.

Other considerations regarding Tanner graph indexing per-
formed by the permutation network (e.g., cyclic-shifters,
Benes networks or barrel shifters) are expressed directly in
the input specifications to the HLS tool [20]. Increasing the
number P of the accelerator creates a larger design, which
due to the impaired routing, will have a lower operation fre-
quency. Therefore, after a certain threshold ofP, it is desirable
to have a structure with multiple kernels where the unused
FPGA resources are utilized to instantiate additional FUs that
have high operation frequency [24]. This modularity is made
possible due to the detailed and fine-grained descriptions at
the FU-, and at the array-of-FUs-level.

2) PIPELINED FUNCTIONAL UNIT AND DECODER
Fully parallel processing at the node-level would involve
computing dc or dv messages per clock cycle. Managing the
ensuing unbalanced memory accesses and the demand for
high bandwidth can be addressed by defining the CN and
the VN processing to update sequentially, such that only one
BRAM bank is required per VN or CN being processed in
a batch of P decoders. This makes the demand for BRAM
memory ports scale with P instead of P×dv or P×dc for
a fully parallel design. As seen in Figure 6, each arith-
metic macro-function is connected to FIFO units that enables
sequential reading and writing of data at the rate of one mes-
sage per clock cycle. The tool generates appropriate counters
which push or pop data on the FIFOs as well as associated
registers to perform this operation. The internal CN and VN
update operation is formalized in Algorithm 2 at the granu-
larity of the FU-level. The complete decoder is composed of
an array ofM FUs [20]. Moreover, the pipelined FU supports
a dual-mode of operation that supports two groups of active
streams at the same time—one group in the CN datapath, and
the other in the VN datapath. This feature significantly helps

to reduce the logic overhead incurred by the FUs, since the
CN and VN datapaths share the control and clock signals,
and allows for simultaneous and coherent computation of a
new set of CNs along with a trailing set of VNs, and the other
way around.

C. LOOP-ANNOTATED NON-BINARY LDPC DECODER
To study the loop-annotated design approach, we use it
to implement a more complex case: the non-binary LDPC
decoder. In this design, front-end and back-end units stream
data from the off-chipDRAM toBRAMs on the FPGA so that
data is brought closer to where the computation is performed.
The computation unit is generated using the HLS tool from
a high-level description. This description details nested-loop
structures that perform the computations shown in Figure 2a)
and formalized in (5), (6) and (7).

1) LOOP-ACCELERATION
Although we consider non-binary decoding case here,
the binary decoding case can be derived from it by trim-
ming out some of the computation. Figure 7 a) shows the
loop-structure for the FFT-SPA non-binary LDPC decod-
ing algorithm. The trip count of each loop and its relative
position in the nested-loop structure would determine what
optimizations are applied on it produce an efficient design
using Vivado HLS. We can use the loop-pipelining and loop-
unrolling directives to improve the parallelism in the loop
computation. However, the effective parallelism in the design
will depend on other factors, such as having enough band-
width to serve data to all the parallel computation in the
datapath [25].

To optimize loop structures, we can use loop-unrolling
to either unroll it completely and perform all its opera-
tions simultaneously, or unroll it only by a factor of kunroll ,
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Algorithm 2 MSA Decoding Using the Dataflow
Approach

1: Host data and DFE management
2: Initialize data and move it to FPGA DRAM over

PCIe
3: Launch DFE execution
4: Reset FIFOs, registers and counters (Figure 6)
5: Stream L(mvc), L(mcv) and L(mv) from DRAM to

BRAMs
6: repeat
7: d-th FU (P FUs in parallel)
8: CN operation
9: for All CUs in the DFE in CN mode do
10: Load L(mvc) from d-th BRAM bank and push to

FIFO
11: FIFO output is streamed to arith. units

(Figure 6c))
12: Execute CN update (2)
13: Store updated L(mc−kCUsv) to d-th BRAM bank
14: end for
15: VN operation
16: for All CUs in the DFE in VN mode do
17: Load L(mcv) from d-th BRAM bank and push to

FIFO
18: FIFO output is streamed to arith. units

(Figure 6b))
19: Execute VN updates (3) and (4)
20: Store updated L(mv−kCUsc) to d-th BRAM bank
21: end for
22: until all i iterations are executed
23: Move data from DFE over PCI
When commuting operation from CN to
VN (c−kCUs<0) or from VN to CN (v−kCUs<0) the
elements in the former mode of operation are still being
flushed while the latter are commencing to be updated
mantaining coherence.

where kunroll loop iterations are performed simultaneously.
Another loop optimization is loop-pipelining which enable
the subsequent loop iteration to begin before the previous
one has completed. When applying pipelining, the tool aims
to achieve a certain II for that loop, which is the number
cycles between the start of consecutive loop iterations. When
applying this optimizations, perfect inner loop structures are
merged into a single loop. In the case of imperfect inner
loops, the loop structure is kept the same, i.e., kunroll = 1
and the II is set as the loop latency—effectively, there is no
pipelining. Naturally, the ability to effectively schedule all
kunroll iterations at once or meet the requested II is limited by
data dependencies within the loop iterations, logic available
to instantiate a higher number of arithmetic resources and
bandwidth available to serve a higher memory load.

When applying both unrolling and pipelining together,
unrolling outer loops and pipelining the inner loops will

instantiate multiple pipelined FUs that process the inner
loops. On the other hand, pipelining the outermost loop
requires the unrolling of all the inner loops, and results in the
generation of a wide-pipeline FU. The former results in lower
performance and higher logic utilizations. However, the latter
results in a smaller design with higher overall IIs. Therefore,
we pipeline the outermost loops (O) and unroll the innermost
one (I).

2) MEMORY MAPPING
Similar to the dataflow approach, we can fully tailor the
way data flows in the FPGA decoder. Data is initialized and
streamed from the FPGA DRAM to BRAMs at the acceler-
ator front-end. BRAMs are physically two-port memories,
which can be split onto two single-port half-size BRAMs,
and the C-synthesizer’s default behavior is to store arrays
using the minimum number of required BRAMs with array
elements stored sequentially. Typically, one of the BRAM
ports is used for writing and the other for reading, limiting
in-order data accesses to a rates of a single element per clock
cycle. However, there are memory optimizations (e.g., array
partitioning and reshaping) that can be used to overcome this
limitation.

Partitioning and reshaping directives can be used to split
data arrays across multiple BRAM modules such that more
ports are physically exposed to the computation units, ormore
words can be read simultaneously with each read
operation. These optimizations increase the data bandwidth to
the arithmetic units. However, exposing BRAMports without
instantiating a sufficiently high number of arithmetic units
to exploit it does not translate into higher computational
performance. In fact, it is the correct combination of the loop
and memory directives that leads to the optimal accelerator
performance. Using these optimizations, small width data
arrays can be reshaped such that each word from the BRAM
contain multiple data elements from the array. Addition-
ally, by applying the partitioning optimization, the array
elements can be cyclically divided across kcyclic BRAM
banks [25] so that non-consecutive elements can be read
simultaneously [25], as shown in Figure 7 b). In Algorithm 3,
the assumed number of banks is 2m, allowing fully unrolled
accesses by the inner loop iterating over the field dimension
to the elements therein stored.

V. EXPERIMENTAL EVALUATION
In this section, we discuss the experimental results obtained
using the experimental setup listed in Table 2 and for the
dataset detailed in Table 3.

A. APPARATUS AND DATASET
The details of Virtex and Stratix FPGA families utilized
in this work are detailed in Table 2. The HLS-based
LDPC decoders were developed and analyzed for codes
dataset defined in Table 3. These codes were chosen
due to their codeblock length, regularity (QC-LDPC and
LDPC-IRA), and applicability—the codes used areWi-Fi and
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FIGURE 7. Two of the transformations applied in the loop-annotated decoder case: (a) loop nest structure definition to allow effective
unroll and pipeline directives compounded by (b) array reshaping for improving bandwidth and scheduling of multiple iterations
in parallel.

TABLE 2. Utilized HLS tools and FPGA boards characteristics.

TABLE 3. Dataset utilized for the LDPC decoders.

DVB - satellite 2nd gen. (DVB-S2) standard codes. The
place and route (P&R) results obtained for the logic utiliza-
tion, operating clock frequency, decoding figures of merit,
decoding throughput and decoding latency (for 10 decoding
iterations) are summarized in Table 4. The parallelism
nomenclature introduced earlier can be summarized also in
terms of a number of processing units (PUs), where PUs =
kdec×kCUs.

B. LOGIC UTILIZATION NORMALIZATION
Due to the differences in the FPGA architectures and fam-
ilies, which apply different combinations for number and
type of LUTs and number of FFs each slice of logic ele-
ment possesses, we borrow on the normalizing methodology
discussed in the survey work [4]. This rationale adopts a
so-called equivalent logic block (ELB) as the fined-grained
logic element of normalization, composed of one 4LUT
and one FF (c.f. Table 2). Thus, the actual logic utiliza-
tion results are converted onto ELBs so that they can be

TABLE 4. FPGA utilization and performance of the decoders after P&R for
the LDPC accelerator supported.

crossed compared. First, the 6LUT and adaptive logic mod-
ules (ALMs) of Xilinx and Altera families must be converted
into a number of 4LUTs. It is considered that each Xilinx
6LUT is equivalent to two 4LUTs and that each Altera ALM
is equivalent to two 4LUTS. To actually obtain the number
of ELBs the maximum number of required FFs or converted
4LUTs is then used [4].

C. WIDE-PIPELINE DECODER
In this section, we present and discuss the experimental
results for the wide-pipeline architecture LDPC decoders, for
both the pipelined single-kernel and the multi-kernel thread-
per-node (TpN) approaches.
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Algorithm 3 Loop-Annotated FFT-SPA Decoder. The
Decoder BelowAssumes PipelinedOuter Loops (O)With
II = 1, Fully Unrolled Inner Loops (I) and BRAM-Array
Reshaping as Detailed in Solution VI (Table 5)

1. Stream mvc(x), mcv(x) and mv(x) from DRAM to
BRAMs

2. Launch loop-annotated kernels on the FPGA
3. repeat
4. VN processing kernel
5. for (O) All VNs do
6. for (I) All symbols in GF(2m) do
7. for (I) All mcv do
8. Load mcv(x = q) and mv(x = q) from q-th

BRAM bank
9. Execute VN update (7)

10. end for
11. Store mvc(x = q) to q-th BRAM bank
12. end for
13. end for
14. Permutation/Depermutation
15. for (O) pmf in the Tanner Graph do
16. for (I) All symbols in GF(2m) do
17. Permute pmf
18. end for
19. end for
20. FWHT kernel
21. for (O) pmf in the Tanner Graph do
22. for (I) All symbols in GF(2m) do
23. Load one pmf (VN) or Fourier pmf (CN)
24. end for
25. Perform radix-2 butterfly computation
26. for (I) All symbols in GF(2m) do
27. Store the Fourier pmf (VN) or pmf (CN)
28. end for
29. end for
30. CN processing kernel
31. Similar to described in lines: 5 to 13, but in the

opposite direction of Tanner Graph traversal (5)
32. FWHT kernel (execute 20:29)
33. Depermutation kernel (execute 15:19)
34. until all i iterations are executed
35. Copy m∗v (x) from BRAMs back to DRAM

1) THREAD-PER-NODE MULTI-KERNEL DECODER
We employed the multi-kernel approach to design a decoder
for the MSA decoding algorithm and used the dataset II
to evaluate it. As shown in Table 4, we also instantiated
multiple CUs, however, due the higher resource requirements
of the design, we were only able to instantiate up to 2 CUs.
As noted earlier, the complexity of the design resulted
in a reduction in the maximum operating clock frequency
from 240MHz to 157MHz. This reduction in the clock fre-
quency hampered the decoding performance of this decoder
design.

2) INEFFICIENCY OF THE OpenCL MEMORY MODEL
The OpenCL memory model when mapped to the FPGA
uses BRAMs to implement the local memory. However,
adhering to this standard implies that the same lifetime and
scope of the memorymust be maintained. This is a significant
disadvantage since data that must be kept close to compu-
tation in iterative algorithms is required to flow through the
global addressing space (i.e., off-chip DRAM) twice for
every kernel call, ingressing and egressing the computation
logic. Therefore, this increases contention to the memory
interface and does not take advantage of the fact that data
can be stored on-chip and closer to the CUs. Counterintu-
itively, the HLS tool makes extensive use of the BRAMs the
generated design for its internal operation, even though data
coherence cannot be guaranteed across multiple iterations.

D. DATAFLOW DECODER
To evaluate the dataflow approach saw a M -modulo decoder
based on designs optimized for LDPC-IRA codes [6] and
benchmarked using dataset I (c.f. Table 3). This design can
scale up or down based on the M FUs that are related to the
Tanner graph regularity factor. In the dataset I, the normal
frame DVB-S2 codes are expanded by a factor of 360 allow-
ing the number of instantiated FUs to be any sub-multiple
of it, M∈{2i×3j×5k}, with 0≤i≤3, 0≤j≤2, 0≤k≤1. In the
benchmarked design, we studied sub-multiple factoriza-
tions ofM∈{45, 90, 180, 360} FUs, and instantiated multiple
decoders based on the logic resources available in the FPGA
chip (detailed in Table 2). In fact, a maximum of 720 FUs
have been instantiated for up to kdec∈{1, 2, 4, 8} decoders.
As seen in Table 4, a low number of P FUs leads to lower

logic utilization and higher clock frequencies of operation.
Interestingly, memory elements scale only sub-linearly since
the BRAMs units can be shared among the different units.
Considering the utilization of LUTs, the main factor limiting
the number of instantiated decoders kdec, designs having a
utilization greater than 70% were not successfully mapped
by the tool chain. Therefore, the decoder with the largest
area (kdec = 2, M = 360 FUs) leaves 35% of the LUTs
unused. However, it is worth noting that the expected operat-
ing clock frequency limits the gains attained from defining a
higher number of decoder systems. Hence, we can speculate
that this trend would still be observed with a higher number
of FUs. The increase in FUs usually does not correspond to
a gain in decoding throughput. Also, due to the design of
M -module architecture, the latency will increase with larger
values of kdec.
The MaxCompiler flow requires the developer to intro-

duce a tentative operating clock frequency for which the
synthesis and implementation procedures will try to pro-
duce a compliant design. Therefore, the results for the
decoder solutions presented in Table 4 are shown only for the
highest achieved operating clock frequency. Compared to
the approach of the wide-pipeline tool flow which delivers
the highest clock frequency using different implementation
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TABLE 5. Optimization levels of the proposed loop-annotated
approach (see also Fig. 7).

strategies, the dataflow approach involves a trial and error
process for the user. This implies that tighter design parame-
ters (e.g., high operating frequency and large logic utilization)
will increase the time needed for the tool flow and a work-
ing design is not guaranteed. Similar to wide-pipeline case,
the dataflow decoder is connected by a platform design that
is automatically generated by the tool [20].

E. LOOP-ANNOTATED DECODER
As discussed previously, this design benefits from multiple
optimizations; therefore, we need to combine different opti-
mizations regarding memory, loop and dataflow to achieve
the best results. Table 5 lists the designs that were obtained by
applying the optimizations in different combinations [25] and
the best design, solution VI, has also been included in Table 4.

FIGURE 8. Loop-annotated accelerator decoding latency (bars, left axis)
vs. clock frequency (points, right axis) showing the tradeoff between
latency and frequency of operation for solutions I–VII.

Figure 8 plots how the different optimization impacts the
operating clock frequency and latency of the decoder design
using dataset III-a),b),c). As seen in the Figure, the opti-
mizations, applied either by using the appropriate #pragma
HLS, or by using TCL directives, have a profound impact of
on the latency of the decoder system. There is a two orders of
magnitude difference in latency between solutions I and VI,
while there is only a small difference in operating clock
frequency for most solutions. The unoptimized decoder in
solution I achieves only a modest performance since the
decoding operations are performed sequentially. This is
mainly because the tool does not automatically apply nec-
essary optimizations to leverage the available parallelism.
However, by carefully combining the different loop-level
directives supported by the tool, we can drive the HLS tool
and produce a design that is capable of much higher perfor-
mance (e.g., I and VI).

The optimizations at the loop-level should be accom-
panied by the additional ones at the memory side. First,
to improve the effective data bandwidth, data is streamed
from DRAM onto op-chip memories (i.e., BRAMs) to keep
it close the computation. Despite this optimization, the effec-
tive computational throughput will not improve unless the
data bandwidth from the BRAMs is also increased. This is
accomplished by using the reshaping directive which has
been applied in solutions IV and VI. In solution IV, how-
ever, this optimization is not applied in conjunction with the
streaming optimization (discussed above). Solution VI com-
bines all the loop-level and memory-level optimizations
discussed here and, consequently, achieves the best perfor-
mance. Note that the memory reshaping essentially remaps
the memory indexes i enabling the computation to use a
two-dimensional addressing space with indexes (x, y) =
(mod(i, 2m), bi/2mc) that can span across multiple memo-
ries instead using only one memory. While this optimization
can improve the data bandwidth, the additional index com-
putation increases the latency of each memory transaction
and significantly impacts non-pipelined designs. However,
in a pipelined design (i.e., those using the loop-pipelining
directive) the HLS tool is able to efficiently ensure a cer-
tain II inside a loop structure. The additional latency to the
overall loop design is the number of clock cycles of the
II itself.

An interesting issue that arises when combining direc-
tives (e.g., unrolling and pipelining of loop) is about the order
in which they must be applied. Solutions VI and VII were
generated to help answer that question. First, only a single
loop structure is generated in the solution VI case, while
in VII the number of pipeline loops generated corresponds
to the ratio of the loop trip count by the unroll factor. This
leads to long running times for the C-synthesis and in the end,
to lower clock frequencies and latencies not even at par with
solution II, as observed in Figure 8.

1) REPLICATION OF COMPUTE UNITS
As seen in Table 4, the individual decoders have a low logic
utilization and our platform design (Figure 4) is able to
utilize multiple decoders (kdec>1) to improve performance.
Therefore, after generating a single decoder from the HLS
tool (as an HLS IP core), we instantiate multiple copies of
this decoder while creating the final design. The number of
decoders used will depend on the logic resources available
on the FPGA and it entails a trial and error process to find
the most suitable number. Our observation is that designs
will likely fail to meet timing if logic utilization of the LUTs
goes beyond 80%. Within this constraint, we were able to
create decoding systems with as many as 14 decoders. Using
this approach, we were able to set kdec∈{14, 6, 3}, respec-
tively for III-a), III-b) and III-c. The designs with multi-
ple decoders achieved higher overall performance, but due
to their increased routing complexity, their operating clock
frequency reduced by {12.4%, 16.0%, 6.94%}.
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FIGURE 9. Decoding throughput vs. ELBs of the proposed decoders and
surveyed RTL-decoders [4].

VI. RELATED WORK AND DISCUSSION
We compare the proposed decoders with an exaustive survey
of RTL-based FPGA LDPC decoders in the literature [4].
To provide a fair comparison across the HLS and RTL imple-
mentations, data concerning both logic utilization, num-
ber of PUs and the edges in the LDPC code is provided
in Figures 9, 10, and 11. Therein, we plot our proposed
HLS-based decoders3 with the RTL-based ones. For other
LDPC decoders in the binary domain, we utilized the dataset
available in the survey [4], while for the non-binary case,
we surveyed a dataset from the literature [27]–[34].

A. THROUGHPUT PER LOGIC UTILIZATION
In Figure 9, we assess the decoding throughput obtained
to the number of ELBs required for the LDPC decoders.
The dataflow decoders, are able to surpass the trend of
the surveyed RTL-based approaches [4], while the wide-
pipeline decoders fall behind. Dataflow decoders obtain
equivalent decoding throughputs to what is reported in the
literature [4], as well as the wide-pipeline ones, the latter,
however, at greater logic utilization. On the other hand, non-
binary decoders, while on a par in throughput, when com-
pared to the other decoders surveyed, achieve so at a much
higher logic utilization levels. Furthermore, the Galois Field
dimensions which we were able to synthesize are lower than
those compared against. The main motivation for this is the
inability of the HLS tool to scale to logic utilization levels
which can fit the FPGA architecture.

B. THROUGHPUT PER PUs AND CODE COMPLEXITY
In Figure 10, the throughput to level of parallelism, expressed
in the number of PUs per thousand edges in the LDPC code
parity-check matrix H is plotted. This representations aims

3In Figs. 9-11 we include the wide-pipeline decoders in [5].

FIGURE 10. Decoding throughput vs. PUs per 1000 edges in H of the
proposed decoders and surveyed RTL-decoders [4].

FIGURE 11. ELBs vs. PUs of the proposed decoders and surveyed
RTL-decoders [4].

at a comparison of the decoding throughput to the LDPC
code complexity and the level of parallelism at the same time.
As seen, both the dataflow and wide-pipeline approaches
fare well with the RTL-based implementations surveyed [4].
Furthermore, the loop-annotated non-binary designs are well
within the scattered cloud of the other non-binary designs
reported, i.e. while their required logic utilization levels
is much higher than RTL-based approaches, their ability
to reach within equivalent throughputs (although for lower
Galois Field dimensions) is not impaired by the HLS tool.

C. ELBs REQUIRED PER PU
In Figure 11, the complexity of each PU is depicted.
As expected, the efficiency of HLS approaches gener-
ating low logic utilization PUs is lower than that of
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TABLE 6. Summary of features of each HLS approach for LDPC decoding and its advantages and limitations.

RTL-based ones, both for binary decoders and for the non-
binary case. These results are hereby explained by a two-
fold effect. For the one, HLS approaches cannot minimize
the number of ELBs required for a certain logic or arithmetic
function, as they are built and developed for general-purpose
utilization and are not fined-tuned for the particular tasks
required by an LDPC decoder. For the other, the platform gen-
erated by the HLS tool has been included in all the ELB logic
utilization results aforementioned. This way, a more complex
platform than that of RTL designs has been accounted for.
For instance, the wide-pipeline decoders require modules
for access to a PCIe interface to connect to their host in
the OpenCL model, and also DRAM modules for external
memory access, which are inexistent, to the best of our
knowledge in the majority, if not all, RTL-tuned architectures
[4], [27]–[34]. Likewise, the dataflow approach also requires
such functionality, while the proposed loop-annotated design
requires access to external DRAM. RTL-based designs can
have their memory spaces fully implemented in BRAM units
and provide a certain pinout interface which does not intro-
duce the ELB overhead of the HLS platforms. It is neverthe-
less, noteworthy that the dataflow LDPC decoder sees some
of its configuration well within the scattered cloud of binary
LDPC decoders depicted in Figure 11.

1) HIGH-LEVEL SYNTHESIS STATUS
According to the defined taxonomy, HLS tools are currently
in their third generation [35]. Most, are C-based efforts, led
by academia and industry. BlueSpec, is SystemVerilog-based
tool for both FPGA and application-specific integrated cir-
cuit (ASIC) design [36], extending the FSM through guarded
atomic actions. LegUp is a C-based tool, which generates
an accelerator system from a C specification, separating
data management and control into a MIPS processor from

computation that occurs in the circuits [37]. Another
academia tool is the ROCCC, providing a C to VHDL
compilation tool [38]. Moreover, Cadence C-to-silicon, uses
SystemC to raise the abstraction level and introduces trans-
action level models, targeting both FPGA and ASIC accel-
erators [39]. OpenCL models are also been getting traction
from both industry and academia alike, mainly due to the
fact that an existing code base can be ported without syntax
modifications from a CPU or GPU architecture onto recon-
figurable circuits. Silicon-to-OpenCL (SOpenCL) is one such
tool [19], generating a wide-pipeline custom accelerator for
OpenCL kernels. In addition to Altera OpenCL, used in this
work, Xilinx also provides similar wide-pipeline concepts for
their PCIe-connected FPGAs and FPGA SoC [40]. Further-
more the Vivado HLS suite also accepts C++ and SystemC
algorithmic descriptions and, most recently, the introduced
HLx suite also aims at allowing the exported HLS IP cores
to be easily connected on a suitable platform. FCUDA and
FASTCUDA generate a custom accelerator from CUDA ker-
nel descriptions [41], [42].

2) PROS AND CONS OF THE STUDIED APPROACHES
Based on the experiments described in this work, we put
forward a description of the features and limitations of each
tool and its underlying design space exploration in Table 6.
The design approach delivering a functional solution in
the least development time is based on the wide-pipeline
HLS model. However, cross-platform optimization is not
granted. To achieve optimal performance a reworking of the
OpenCL kernels had to be made. Furthermore, the dataflow
approach also offers the designer a ready-made platform, but
in this case, the HLS description must follow a dataflow
approach. A defined decoder architecture has to be provided
in this case to allow for this approach to reach within the
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high decoding throughputs realized, one order of magni-
tude beyond those obtained with the wide-pipeline and loop-
annotated designs. Finally, the latter approach allows the
highest number of optimizations, with regards to directives
that instruct the hardware generation process. Nevertheless,
in this case the designer must integrate the decoder into a host
platform. The majority of the explored optimizations in the
first and second approaches are done so through algorithmic
reworking and code refactoring, while the third approach
observes limited code refactoring, as the greater share of
optimizations is carried out through annotations in the code.

VII. CONCLUSIONS
HLS tools that enable users without hardware design exper-
tise to generate FPGA implementations from high-level lan-
guage descriptions, e.g., in C, C++, OpenCL and Java.
While such approaches produce functionally correct designs,
it is of little value unless meet the requirements of target
applications. In this paper, we studied how well current
generation HLS tools can enable users to perform design
space exploration and develop hardware implementations for
LDPC decoders. Our experimental results show that decoders
generated using HLS, either as wide-pipeline or as dataflow
designs, are able to reach within RTL-based ones decod-
ing throughputs, although at greater logic utilization. These
results suggest that for SDR system that do not have tight
constrains on area and power, HLS-based approaches can
reduce the development effort and time needed to develop
FPGA implementations. In the future, with the development
of languages, optimization and domain-specific solutions,
we believe the quality of the HLS tools will improve and they
will play a vital role in design of complex communication
systems.
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