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The study of selective metal oxide-based binary/ternary systems has received increasing interest in recent years due to the
possibility of producing efficient new ceramic materials for relative humidity (RH) detection, given the superior properties of
the mixed compounds in comparison with pristine ones. The aim of this work was focused on preparation and characterization
of non-doped and Nb,O5-doped TiO, : WO; pair (in the pellet form) and evaluation of corresponding humidity-dependent
electrical properties. The microstructure of the samples was analyzed from scanning electron microscopy, X-ray diffraction
patterns, Raman spectra, BET surface area analysis, and porosimetry. The electrical characterization was obtained from
impedance spectroscopy (100 Hz to 40 MHz) in the 10-100% RH range. The results showed that adequate doping levels of
Nb,O5 introduce important advantages due to the atomic substitution of Ti by Nb atoms in highly doped structures with
different levels of porosity and grain sizes. These aspects introduced a key role in the excursion (one order of magnitude) in the
bulk resistance and grain boundary resistance, which characterizes these composite ceramics as a promising platform for RH
identification.

1. Introduction

The development of new ceramic metal oxide materials
provides a promising platform for diverse applications such
as optoelectronics, microelectronics, dye-sensitized solar
cells, and tunneling devices [1-3].

In particular, the production of moisture sensors of metal
oxide materials requires improved selectivity and stability for
water sorption. These processes are intrinsically dependent on
microstructure and prevailing transport mechanisms of
resulting materials. The doping process induced by metal
oxides introduces atomic defects which affect the overall

conduction mechanisms of blends, characterizing the relative
concentration of a dopant as a tuning parameter in the op-
timization of electrical response in terms of RH variation [4-7].

The typical process of structural modification is provided
by mechanical mixing of the powders, molding, and sin-
tering of the pelletized samples [8, 9].

The introduction of a doping agent in a mixed metal oxide
ceramic has been considered an interesting strategy for im-
provement in the dependence of impedance value with rel-
ative humidity (RH) variation [10-13]. The incorporation of
dopants affects the structure and morphology of the ceramic,
providing additional path-structural water layer interaction.
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In this work, the authors explored the incorporation of
niobium pentoxide (Nb,Os)—an n-type transition metal
oxide (E; of 3.2-4 eV) applied as a dopant for the TiO, : WO3
pair. The microstructure was evaluated from SEM images,
X-ray diffraction patterns, Raman spectra, BET analysis, and
porosimetry. These techniques were explored in order to
evaluate the influence of each component on the overall
electrical response of the blends under controlled variation
of RH.

2. Experimental

2.1. Materials and Methods. TiO,, WO3, and Nb,O5 (Fluka)
were used as received. Grain size was determined using an
Autosizer II C (Malvern Instruments). The X-ray diffraction
patterns were obtained by means of a Philips X’Pert, PW
3040/00 using Cu-K, radiation (K, = 1.5418 A) (20° < 26 < 75°)
with 0.04° of step and 0.5s per point. Raman spectra of the
samples were obtained in a HORIBA Jobin-Yvon Raman
spectrometer in which the excitation wavelength was adjusted
to 532nm with a power of 25mW. SEM images were ob-
tained in a Philips scanning electron microscope (model XL
30 TMP), operated at 30 kV. The pore area was determined
using a Micromeritics PoreSizer 9320 mercury porosimeter
(as a standard procedure, chamber containing the samples
was degasified, and then, mercury intrusion pressured analysis
was performed in the pressure range from 0.5 up to 30000 psi).
Brunauer-Emmett-Teller (BET) surface area experiments
were provided by a Micrometrics ASAP using nitrogen gas.
The impedance of the samples was measured in the range
between 100 Hz and 10 MHz, with an AC voltage of 0.5 V—no
bias, in a Hewlett-Packard (model HP4294A) impedance/
gain-phase analyzer.

The experimental setup for impedance measurements
consists in a 6.5-liter chamber in which the temperature is
controlled with a 1°C precision in response to the RH
variation with steps of 10% in an overall range from 10 to
100%. All the experiments were performed at 20°C. The RH
values were obtained by mixing water-saturated air and dry
synthetic air, in which the respective amount of each part
was regulated by mass flow controllers. The impedance
spectra for each RH value were reached at a continuous
flow rate of 51/h, after at least 90 minutes of stabilization.
The measuring electrical contacts were made of gold on
opposite sides of the top surface of the samples.

2.2. Preparation of the Samples. The pristine TiO, : WO,
powder was prepared by mechanical mixing of TiO, and
WO; in the ratio of 48.92 : 51.08 wt.%, respectively. The
dopant (Nb,Os) was incorporated by direct mixing with
specific amounts (2, 4, and 6 wt.%), and named as TiW-Nb2,
TiW-Nb4, and TiW-Nb6 samples. All the samples were
prepared in the form of pellets for the microstructural
and electrical characterization. The mixtures (pristine and
doped powders) were initially pelletized in the samples of
8 mm x 6 mm x 1 mm under 8 MPa of uniaxial pressure and
then isostatically pressed at 200 MPa. Afterwards, the
thermal treatment (under air) was conducted at 700°C for 2 h
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FIGURE 1: SEM micrographs of the TiO, : WO;-doped sensors with
2% (a), 4% (b), and 6% (c) content of Nb,Os.

with heating and cooling rates of 20°C/min in accordance
with a previous used procedure [8, 9].

3. Results and Discussion

3.1. Morphology of the Mixed Pellets. SEM images of TiW-
Nb2, TiW-Nb4, and TiW-Nb6 are shown in Figure 1. As
can be seen, the resulting material is characterized by
a porous surface with a distribution of different aggre-
gation sizes of particles disposed in overlaid layers,
providing free sites for molecule percolation along the
structure. Statistical analysis of the images indicates
a distribution of smaller grains with size around 225.4 +
88.2nm. A slight increase in the size of the smaller ag-
gregates is observed for TiW-Nb4 sample, reaching
284.5 + 131.6 nm. The aggregation level is favored by the
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progressive incorporation of a doping agent (Figure 1(c))
(TiW-Nb6 reveals aggregates with a diameter of about
386.7 +252.3 nm). By comparing the images, it is possible
to identify a slight dependence of the aggregation level on
the dopant concentration.

These data can be confirmed by the differential mer-
cury intrusion curves (shown in Figure 2). As shown,
a broad peak in the range of 0.07-0.5 ym with maximum
in 0.275um is observed for all the samples. A weak
contribution is observed in the range of 3-30 ym, shown
in details in the inset, characterizing the distribution of
aggregates with different sizes, as observed in the previous
SEM images. Using the total volume of intruded mercury,
the corresponding values for the total porosity were
calculated: percentages of 34.4, 37.1, and 37.0 were de-
termined for the samples TiW-Nb2, TiW-Nb4, and TiW-
Nb6, respectively, indicating that doping load introduces
minimal differences on the pore structure of the resulting
material, which remain distinct due to the previously
defined ratio of the semiconductors used in the prepa-
ration, preserving the structural humidity properties of
the template.

The BET surface area of samples is summarized in
Table 1. The results (Table 1) confirm that progressive
incorporation of the dopant until 4 wt.% introduces neg-
ligible influence on the surface area of samples. The higher
level of the dopant in the sample TiW-Nbé6 affects the
response (32% in terms of undoped ones) affecting the
water adsorption if compared with samples prepared under
low doping level condition.

3.2. Microstructural Characterization. The X-ray diffraction
patterns of a pristine sensor (mixed TiO, : WO3) sintered at

TaBLE 1: BET surface area and crystal dimensions calculated from
Scherrer’s equation.

BET surface Crystallite size (nm)
Samples 2 .

area (m°/g) TiO, WO;
TiW 5.15 20.8 19.5
TiW-Nb2 4.99 19.5 18.0
TiW-Nb4 4.94 20.1 18.5
TiW-Nb6 3.49 19.5 19.5

700°C for 120 minutes in air are compared with those of
a nonsintered sample in the inset of Figure 3(a). It is note-
worthy that the anatase phase of the nonsintered sample is
converted into rutile phase as a consequence of annealing.
Both TiO, polymorphs are characterized by tetragonal con-
figuration consisting in TiO4 octahedra that share four edges
with anatase and two with rutile. The rutile is identified by the
ICDD card no. 21-1276 according to the following crystal
system: tetragonal space group: P4,/mmm-D}; with
the unit cell parameters a = b =4.5933 A and ¢ = 2.9592 A. The
spectrum of tungsten trioxide, shown in the inset (B) of
Figure 3(a), reveals the decrease in the intensity of the initial
monoclinic phase due to the sintering process—by in-
troduction of impurities and defects. It is also noticeable the
appearance of the anorthic phase identified by ICDD card no.
083-0951 and of the monoclinic identified by ICDD card no.
071-0131. These diffraction patterns confirm the existence of
a polycrystalline material that results from a mixture between
the oxides. In Figures 3(b)-3(d), the XRD patterns of the
samples TiW-Nb2, TiW-Nb4, and TiW-Nbé6 are shown.
The possible incorporation of Nb”* ions into the crystalline
structure of TiO, [14-16] can be assumed, once the cor-
responding ionic radius of Ti*" and Nb>* can be identified
as a source for the absence of niobium peaks in the cor-
responding curves. The insets of Figures 3(b)-3(d) confirm
the absence of the rutile phase and the incorporation of Nb
atoms into the TiO, structure. XRD peaks of anatase TiO,
were identified at 20=25.3", 36.9°, 37.8°, 38.5%, 48.1%, 55.1°,
62.7°, and 68.6". The latter phase also has tetragonal or-
ganization with the space group OD}lz 14, and with the unit
cell parameters a=b=3.7842A and c¢=9.5146A, all
identified by the ICDD card no. 21-1272. Therefore, in
order to state more clearly the substitution of Ti atoms by
Nb atoms, the unit cell parameters of samples under study
were calculated from the anatase peaks located at
20=25.28" and 20=48.05". The calculated cell parameters
are a=b=3.7818 A and ¢=9.6261 A for the sample TiW-
Nb2, corresponding to an increase along c-direction and
a decrease along a-b directions, when compared with the
standard values. Such distortions reinforce the niobium
incorporation: they were also observed for the sensors
doped with 4 wt.% (a=b=3.7822 A and ¢=9.5971 A) and
6wt.% (a=b=3.7838 A and ¢=9.5410 A). Moreover, the
anatase phase showed a slight shift towards smaller 26
angles as doping content increased, as verified in
the changes in the peak positions 26 =48.08" (2 wt.%) and
20=48.05" (6 wt.%). The average crystallite size of WOj3
and TiO, of doped and nondoped sensors was calculated
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FiGure 3: Diffraction patterns of a nondoped sensor (a) and of the TiO, : WO;-doped sensors with 2% (b), 4% (c), and 6% (d) of Nb,Os.

by the Scherrer equation (D = k.A/f.cos0, where D denotes
the crystallite size,  corresponds to the full width at half
maximum, 0 is the Bragg peak, in radians, A is the
wavelength of incident radiation, and k is the Scherrer
constant). Table 1 summarizes the values obtained for
the higher intensity reflections (101) and (002) of the TiO,
and WOs;, respectively. Comparing both WO; and TiO,
crystallite sizes of doping sensors with the value of non-
doped sensor, it is observable that niobium incorporation
promoted a slight decrease of crystallite dimensions for
both oxides. These results indicate that niobium has been
incorporated into the crystal lattice of titanium and
provides considerable changes in the electrical response to
humidity of the pellets.

The Raman spectrum of nondoped TiO, : WO; and
TiW-Nb2 samples is compared in Figure 4(a). The in-
corporation of niobium originates a less intense peak in the
spectrum, corresponding to the position at 635cm™’, and
two other even less intense peaks at 513 and 390 cm ™, at-
tributed to the anatase phase, confirming that niobium

hinders the phase change of titanium dioxide. The peak at
440cm™" in the spectrum of doped pellet is assigned to
tungsten trioxide (W>*=0), also visible in the Raman
spectra of TiW-Nb4 and TiW-Nbé6 (Figure 4(b)). The
asymmetric shoulder formed is more evident for the higher
doped sensor and might be associated with the proximity of
the monoclinic WO; (mode G) vibrational mode at
605cm™" [17, 18].

3.3. Electrical Impedance Characterization of Samples. Electrical
impedance spectroscopy has been progressively reported
in the literature as a promising tool applied in the
identification of phase transitions in materials [19-22]
and transport mechanisms in structures of solid state
(ceramics) and soft matter. The frequency-dependent
excitation provides information about transport and
polarization (transport, ionic diffusion, and charge
separation). The graphical representation (Nyquist dia-
grams) offers a direct visualization of the different



Advances in Materials Science and Engineering

Intensity (a.u)

T T T T =TT T 1
900 800 700 600 500 400 300 200
Wavenumber (cm™)

—— Nondoped
—— TiW-Nb2

o TiO, anatase
o WO,
¢ TiO, rutile

()

Intensity (a.u)

900 800 700 600 500 400 300 200

Wavenumber (cm™!)

o TiO, anatase —— TiW-Nb2
e WO, — TiW-Nb4
—— TiW-Nb6

(b)
FIGURE 4: Raman spectra of the TiO, : WO;-doped sensors: (a)
nondoped and the 2% weight doped sensors; (b) 2, 4, and 6%
content of Nb,O5;.

mechanisms (relaxation process—from a characteristic
semicircle—and diffusion—from a straight line at low-
frequency limit) [23].

In terms of surface conductivity in ceramics due to the
progressive water adsorption [24], three different mechanisms
are present [25]. At low RH range, the monomolecular
adsorption process takes place as a response to surface
modification due to water molecule incorporation,
reaching a first complete layer, the chemisorbed one, in
the range 20 to 40% RH. Above 40% RH, the proton
conductivity of water dominates and diffusion effects tend
to be more effective, improving the surface conductivity.
The continuous formation of water layers, physisorbed
ones, favors the ionic transport participation in the
overall conduction process. The porous structure tends
to be filled by water molecules, allowing proton transport
between adjacent water molecules. With the increasing
water adsorption rate, the surface conductivity tends to
assume a constant value. Nyquist diagrams in Figures
5(a) and 5(b) reveal that a minimal variation is observed
for all the samples if the considered RH concentration is
above 70%, confirming the previous analysis; below 70%
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FIGURE 5: Nyquist plots at 20°C for the samples TiW-Nb2 (a),
TiW-Nb4 (b), and TiW-Nb6 (c) (black, orange, dark green, brown,
rose, purple, grey, red, light blue, and light green stand for 10, 20,
30, 40, 50, 60, 70, 80, 90, and 100% RH).

RH, the relaxation dominates over diffusion and two
overlapping semicircles are present. At increasing RH (in
the range of 40%-60%), diffusion contributions are
added to the surface contribution due to the tunneling
process along water layers. Above 70% RH, diffusion
tends to be the dominant mechanism—as a result of
mutual contribution of surface water layer and bulk
water-filled pores. This pronounced behavior is similarly
observed for the sample TiW-Nb4 (Figure 5(b)). In-
creasing dopant concentration affects the dependence of
the electrical spectrum with RH variation. As expected,
the minimal variation in the Nyquist curves’ charac-
teristic diameter reveals that saturation in the transport
is reached.

These results are confirmed in Figure 6 (impedance
measured at f=1.3kHz and 4kHz, at 20°C for different
doping levels). As shown, the incorporation of niobium in
the composite reduces the range of variation of resulting
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devices as a function of RH due to the doping level
established by the additive.

3.3.1. Electrical Circuit Modelling for Sample’s
Response. Equivalent circuits have been considered as an
interesting source of parameters [25-27] that have been
associated with different mechanisms in overall electrical
response. The circuit represented in Figure 7 has been ex-
plored by the authors in recent works [8, 9], and the
components are described below:

C,., is used to represent the geometrical capacitance,
while the bulky granular response is assigned to R,//C,.
The grain boundary contribution is assigned to the parallel
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FIGURE 7: Proposed equivalent circuit for the sensors.

circuit R,//C,, while the component R,//C; characterizes
the surface contribution from electron tunnelling along
the water layers disposed above the semiconductor surface.
The charge diffusion is represented by a constant phase
element, CPE [25, 28]. For both referred diffusion mecha-
nisms, the interfacial character of their impedance makes
it partly capacitive as well as resistive: CPE | has to do with
the contribution of the pores, due to diffusion phenom-
ena taking place inside the water-filled pores, and CPE, is
related to the electrode-water layer interface diffusion
phenomena that take place at that interface.

In Tables 2-4, the best-fit parameters for the proposed
electrical equivalent circuit are summarized. A, and n, rep-
resent the two parameters of the impedance CPE,, while A,
and ,,, represent the two parameters of the impedance CPE,,,.

Due to the strong variation observed in two of these
parameters, R; and R, were chosen as relevant parameters
for RH dependence of impedance data.

Figure 8 shows the dependence of R, as a function of RH
for different doping levels. A general tendency of reduction
of the corresponding bulk resistance is observed with in-
creasing RH concentration, as a consequence of progressive
diffusion of water molecules into the bulk of the devices. In
addition to this, it is possible to identify a niobium-
dependent variation of R; with RH. The minimal varia-
tion is observed for the sample TiW-Nb6, while the maxi-
mum one is reached for the sample TiW-Nb4.

The water diffusion in the corresponding structure
introduces a competition for transport mechanisms with
intrinsic electrical properties. The higher doping level
samples are minimally affected by water incorporation,
since efficient channels for current transport are estab-
lished under doping; the water impregnation in the bulk of
the samples represents a minimal perturbation in the
corresponding transport process. In the opposite direction,
for the sample TiW-Nb4, this process is extremely de-
pendent on water incorporation.

The dependence of grain boundary resistance (R,)—
shown in Figure 9—confirms the observed behavior.
Maximum variation in R, is observed for the sample TiW-
Nb4, while negligible variation is observed for the sample
TiW-Nbé6.
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The sensitivity of all three doped samples taken at 1.3
and 4kHz is plotted in Figure 10. The sensitivity was
calculated using the ratio between the conductivity of the
sensor exposed to a certain moisture concentration and
the conductivity of the sensor under a dry air atmosphere.
As can be seen, the sample that exhibits the best sensi-
tivity is the one doped with 4% of niobium, in accordance
with the discussed morphology of the resulting material
and with the impedance changes with moisture pre-
viously discussed.
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These results confirm that structural modification provided
by niobium returns the best sensibility to RH at 4% of niobium.
At this condition, the competition established between the
doping level, induced by additive, and electrical response of
structure to water layer incorporation is maximized, charac-
terizing an optimal condition for TiW-Nb-based RH samples.

4. Conclusion

The doping level established by Nb,O; in TiO, : WO,
composites preserves the anatase phase and provides
modifications at the atomic level of the resulting structure
(niobium modifies the crystal lattice of titanium) as de-
tected by XRD data.
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This induced structural modification requires specific
and low concentration of the dopant (sample TiW-Nb4)
in order to optimize the RH sensitivity of the resulting
composite. Above this critical value, the high conductivity
of the obtained devices affects the sensibility degree of the
structure, due to the progressive aggregation of grains and
higher surface conductivity at low RH condition.
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