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Abstract: Smart Environments try to adapt their conditions focusing on the detection, localisation, and
identification of people to improve their comfort. It is common to use different sensors, actuators, and
analytic techniques in this kind of environments to process data from the surroundings and actuate
accordingly. In this research, a solution to improve the user’s experience in Smart Environments
based on information obtained from indoor areas, following a non-intrusive approach, is proposed.
We used Machine Learning techniques to determine occupants and estimate the number of persons in
a specific indoor space. The solution proposed was tested in a real scenario using a prototype system,
integrated by nodes and sensors, specifically designed and developed to gather the environmental
data of interest. The results obtained demonstrate that with the developed system it is possible to
obtain, process, and store environmental information. Additionally, the analysis performed over the
gathered data using Machine Learning and pattern recognition mechanisms shows that it is possible
to determine the occupancy of indoor environments.

Keywords: smart environments; Internet of Things; indoor occupancy; machine learning;
data analysis

1. Introduction

The Internet of Things (IoT) paradigm enables the interaction between physical objects via
application services to add characteristics such as network connectivity, sensing, and actuation allowing
to move forward to the Smart Objects approach. Thus, Smart Objects can communicate with each
other, share information, and coordinate their actions in order to take smart and cognitive decisions
according to the environment where they are deployed [1].

Combining the IoT paradigm and the Smart Objects approach, the concept of Smart City arose.
A Smart City uses a variety of sensors and Smart Objects embedded on traditional things and locations
(e.g., buildings, parks, and sidewalks) to improve the citizens’ quality of life. One of the Smart Cities
sectors is Smart Environments, and its definition is given by Cook et al. “A Smart Environment can
acquire and apply knowledge about the surroundings and its inhabitants to improve their experience
in that ambiance” [2].

Smart Environments have become popular in recent years targeting the automation of everyday
tasks in order to improve the quality of life. A typical example of this kind of systems is the management
of energy consumption and Heat Ventilation and Air Conditioning (HVAC) [3,4] in Smart Buildings.
For the previous particular use case, it is essential to know the occupancy estimation of specific areas
in order to trigger the proper actions to minimise consumption during periods of vacancy, optimise
ventilation dynamically for occupant comfort, or forecast of long-term behaviors.

To empower the Smart Environment approach, the use of learning mechanisms plays a key role
to analyse patterns, predict situations, and take decisions/actions. Thus, new terms such as Ambient
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Intelligence (AmI) arise in this context. AmI brings intelligence to our everyday environments, making
them sensitive to us. AmI’s primary goal is to introduce automation into the environment to generate
knowledge about the users and their surroundings, accumulating data and taking smart and cognitive
decisions [5]. Making these environments smarter, we can make the life of their occupants simpler and
more automated.

A specific research topic framed in the context of a Smart Environment is focused on looking at
people, detecting, tracking and identifying them, as a way to offer high-quality, intelligent services,
while considering human factors such as life patterns, health, and mood of a person [2]. One example
is to analyse patterns of an elderly person and generate an alert when something abnormal happens.
For this, knowing the place’s occupancy is a priority. Many techniques are developed to detect the
presence of people, the most common are cameras and wearable devices. However, these devices
suffer from privacy or intrusiveness issues. Research challenges arise with the design of occupancy
detection techniques. One of these challenges is related to how to preserve occupants privacy. A Smart
Environment system should be designed to avoid identifying occupants or their activities. Thus,
there is the need for non-intrusive techniques to detect occupancy or improve the mechanisms
already available.

Environmental data are an excellent source of information for occupancy detection since the
presence of living beings affects the surroundings through heat or Carbon Dioxide (CO2) emission
without jeopardising the privacy of the occupants in that particular location. Nevertheless, only with
data, it is almost impossible to gauge something. Machine Learning (ML) techniques look at the
data and try to find patterns; with these patterns, it is possible to affirm the occupancy with a certain
percentage of certainty. Although some contributions have been performed in this direction, there is
still room for improvement, and this research proposal is focused on that.

The main purpose of this research is the design and development of an affordable and
non-intrusive solution to improve occupants experience in Smart Environments with ML support.
The proposed solution monitors temperature, light intensity, noise, and CO2 to estimate the presence of
occupants through these environmental features that can be integrated with other existent approaches.
First, the data are collected and analysed, before applying ML techniques to infer the occupancy of the
area under monitoring. In the first stage, our solution detects the presence or absence of occupants.
In the second stage, the number of occupants inside the area of interest is estimated.

This paper is structured as follows. Section 2 discusses the related work. Section 3 presents the
solution developed to detect occupants, its architecture, and the key features that were considered, the
gathering system and the ML concerns. Section 4 shows the experimental implementation. Section 5
analyses and discusses the results obtained. Finally, conclusions are presented in Section 6 as well as
suggestions for future works.

2. Related Work

Occupancy detection systems could be classified according to the need to use a terminal or
not [6,7]. In the case of the methods that require a terminal, it is necessary to attach a device to the
occupants to keep track of them (e.g., a smartphone). In the non-terminal methods, the detection is
based on a passive approach that is focused on monitoring areas or spaces instead of the identification
of devices (e.g., cameras monitoring a room). Figure 1 depicts a simple classification of the occupancy
detection methods following the terminal and non-terminal approaches, and their more specific
characterisations, which are used to organise the discussion of this section.
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Figure 1. A simple classification of occupancy/location detection methods.

In the branch of terminals, the methods for occupancy and counting lay on devices that have
embedded wireless transmitters which support different communication technologies, such as,
Radio-Frequency Identification (RFID), WiFi and Bluetooth, or Global Positioning System (GPS)
in the case of wearable devices. On the other hand, the branch of non-terminals relies on monitoring
specific surroundings by using cameras, smart meters for energy consumption, or environmental
sensors (e.g., CO2 and temperature). A discussion of some relevant works on occupancy detection
is presented below.

Hahnel et al. [8] proposed a probabilistic measurement model for RFID readers that allows
accurately tracking RFID tags in the environment; specifically, the authors studied the problem of
localising the RFID tags using a mobile platform based in robots equipped with RFID antennas.
Li and Becerik-Gerber [9] performed a survey of RFID-based solutions and the algorithms used for
occupancy and location at indoor environments. After discussing more than twenty projects, authors
identify the drawbacks of each solution to move forward to the identification of the most relevant
research challenges regarding outdoor/indoor location sensing solutions. In a follow-up research,
Li et al. [10] proposed an energy-saving strategy for Smart Buildings based on RFID occupancy
detection to support demand-driven HVAC operation by detecting and tracking occupants around
areas of interest inside the buildings. The use of RFID technologies for occupancy detection is an
affordable option considering the price of receptors and tags; nonetheless, this approach could be
affected by electric and magnetic conditions of the environment leading to inaccurate occupancy
detection. A more constraining issue is the fact that occupants have to carry a special tag to be
monitored, making the process invasive and susceptible to additional errors in case the occupants
forget their specific devices somewhere.

Some occupation detection methods take advantage of the communication technologies embedded
in devices commonly used by the occupants of the area of interest, such as Smartphones, Smartwatches,
and Fitness trackers. Huh and Seo [11] came up with a system that estimates the indoor position of a
user taking advantage of some specific characteristics of the Bluetooth protocol. Specifically, the system
uses beacon frames to extract information about the Received Signal Strength Indication (RSSI) and
trilateration that is processed to infer indoor positioning. Filippoupolitis et al. [12] evaluated how
accurate occupancy estimation in indoor environments using Bluetooth Low Energy (BLE) could be in
a prototype system composed of BLE beacons, a mobile application, and a server. After performing the
analysis of the data collected using three ML approaches (i.e., k-nearest neighbors, Logistic Regression,
and Support Vector Machine), the authors concluded that the combination of BLE and ML leads to a
good occupancy estimation.
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Depatla et al. [13] proposed a framework for counting the total number of people walking
in an area based on the WiFi RSSI measurements between a pair of transmitter/receiver antennas.
The authors developed a mathematical model to determine the probability distribution of the received
signal amplitude as a function of the total number of occupants based on Kullback–Leiber divergence
estimation. The results obtained concluded the authors’ approach could estimate the total number of
people in indoor and outdoor areas with good accuracy. Balaji et al. [14] designed a system, Sentinel,
that leverages in the WiFi infrastructure deployed in the area of interest along with Smartphone carried
by occupants to estimate occupancy and enhance the performance of the HVAC system via actuation.
The Sentinel system proposed by the authors’ shows an accuracy of 86%, with 6.2% false negative
error regarding the occupancy in indoor environments. Additionally, the tests performed depict that
using actuation over the HVAC system it was possible to save around 17.8% energy.

Wearable electronics, such as Smartwatches and Fitness trackers are becoming more ubiquitous
and carrying more sensors and communication interfaces. Jin et al. [3] took advantage of the previous
statement to investigate the causal influence of user activity on various environmental parameters
monitored by occupant-carried multi-purpose sensors. Their results showed that the fusion of the data
collected from the sensors available in the wearable devices (e.g., light level, accelerometer, heart rate,
Bluetooth, and GPS) achieves a good classification regarding occupancy/location reaching in some
cases values around 99% of accuracy. The quality of data obtained using the method that involved
wearable devices, WiFi and Bluetooth allows a more accurate occupancy/location estimation; however,
these approaches have privacy concerns regarding how to use the data gathered. For example, the use
of Bluetooth allows having access to specific and unique information of the devices, such as the MAC
address; or in the case of a Fitness tracker the heart rate histogram could reveal some particular
condition or disease. This information could be crossed with other data to obtain detailed information
about the owner of the device.

In the non-terminal branch for occupancy/location, the methods that use cameras are well-known.
Fleuret et al. [15] combined a generative model with dynamic programming to track occlusions and
lighting changes in frame images in order to derive the trajectories of each of them. With the proposed
model, authors were able to track multiple persons and ranked their trajectories inside the area under
study. Alahi et al. [16] addressed the problem of localising people in crowds using a network of
heterogeneous cameras by formulating a problem focused on calculating the occupancy vector per
each captured frame; this is the discretised occupancy of people on the ground from the foreground
silhouettes. The occupancy approach proposed is complemented by a graph-driven tracking procedure
suited to deal with the temporal dynamics of people occupancy vectors. The main outcome of this
work is a well-defined mathematical formulation to locate people via cameras that record frames
with very noisy features. In the same way as with the wearable solutions discussed above, the use of
cameras for occupancy/location brings a set of privacy issues regarding the identity of occupants and
objects that could represent a problem in the final solution.

A different solution based on Smart Meters is presented by Chen et al. [17]. They tried to predict
the occupancy analysing electrical usage. They observed that the home’s pattern of electricity usage
changes when there are occupants. The study was carried out in two homes and later on correlated
with statistical data (e.g., power’s mean and variance). Some challenges on non-intrusive occupancy
monitoring are also discussed. Another solution by Lee et al. [6] used an array of pyroelectric infrared
sensors (PIR) to detect resident’s location in a Smart Home. The authors also proposed an algorithm
to analyse the information collected from the PIR sensors. The evaluation was carried out using an
experimental testbed. Jin et al. [18] tested several binary techniques using data from residential and
commercial buildings based on information regarding power usage that requires minimal system
calibration and setup, while also ensuring the privacy of the occupants. The accuracy of these works to
determine the number of occupants is low and could be considered just an estimation since the power
consumption is aggregated, consequently, the exact number of people occupying the area of interest
could not be accurate.
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The results of Dong et al. [19] indicate that CO2 and acoustic parameters have the most significant
correlation with the number of occupants in a space. Several studies correlate the CO2 concentrations
with the presence of occupants such as in the research of Gruber et al. [20]. Ryu et al. [21] used indoor
and outdoor CO2 concentrations and electricity consumptions of lighting systems in a controlled
testbed. Although the CO2 levels could be used to determine occupancy, gathering this kind of data
with good levels of accuracy is not an easy task considering that aspects such as room ventilation,
room flow-rate, and presence of plants in the room could drastically influence the concentration
and dissipation of the aforementioned gas. Thus, it is not feasible to only use CO2 as a metric for
occupancy estimation.

Candanedo et al. [22] and Amayri [23] estimated occupancy using a combination of heterogeneous
sensors. The first research uses data from light, temperature, humidity and CO2 sensors; and the
second one uses data from luminance, temperature, humidity, motion detection, power consumption,
and CO2, as well as data collected from a microphone or door/window burglary sensors. These works
follow the same ground truth strategy focused on cameras to corroborate the presence of occupants,
which introduce several privacy constraints. Additionally, both works utilise ML techniques to evaluate
the results of the proposed solutions, particularly, decision tree learning algorithms. Considering the
number of sensors and devices used in these studies were significantly high, our proposal is focused
on answering the question whether it is possible to obtain similar or better results regarding occupancy
detection using fewer resources. Even more, our proposal uses a non-intrusive ground truth strategy
to avoid jeopardising the privacy and security of the occupants in the area of interest.

This research uses as inspiration some of the ideas proposed in the works discussed, in particular,
the gathering of data from different sources to move forward to a complete analysis of the data collected
using a ML approach. Our goal is to detect occupancy in indoor environments by pre-processing the
datasets collected before applying ML to a binary and multi-class problem. Additionally, we design our
solution focused on two main requirements: the first one is to try to take advantage of cheap/affordable
devices commonly deployed in Smart Environment, and the second one is to guarantee that the privacy
of the occupants in the area under study would not be compromised. Thus, after the discussion of
the works in this research area, our proposal uses environmental features via the combination of data
gathered from different sensors. This solution is presented in the following section.

3. Occupancy Detection in Indoor Environments

As discussed in the previous section, occupancy detection could be used to trigger some actuation
mechanisms in Smart Environments in order to improve resource usage and user experience, among
other factors. An important issue that must be considered is the preservation of privacy of the data
collected and analysed. Additionally, it would be desirable to take advantage of the infrastructure
available in the surroundings to avoid incurring in extra expenses, while allowing the scalability of the
solution. Considering these factors, this research is focused on a non-intrusive and inexpensive solution
for occupancy estimation that ensures occupants privacy while taking advantage of the technological
infrastructure already available in common Smart Environments including Smart Buildings and Smart
Homes. From the analysis performed on Section 2, and to comply with the previously established
requirements, our occupancy detection solution is focused on environmental data.

A scene analysis approach is used in this research to extract the features of interest for indoor
scenarios to proceed and then to estimate the occupancy in the area using the gathered data [24]. The
scene analysis method does not rely on any theoretical model or specific hardware; however, it requires
a preliminary phase for capturing features which are influenced by changes in the area of interest [25].

In this section, we explain the criteria applied to select the features used in our solution before
moving forward to the description of the design of the four-layers architecture adopted for the
gathering and processing of the data. The section concludes with the discussion of the ML classifiers
that were selected to improve the performance of occupancy detection in indoor environments. Table 1
summarises the terms used in the remaining of the manuscript.
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Table 1. Notation table.

Term Meaning

Temp Temperature
LR Logistic Regression

SVM Support Vector Machine
ANN Artificial Neural Network

TP True Positive
TN True Negative
FP False Positive
FN False Negative
λ Regularisation Parameter
pd Polynomial Degree Parameter
C Penalty Cost Parameter
γ Standard Deviation Parameter
hu Hidden Layers Units

3.1. How Do Human Beings Change Their Surrounding?

A human body is similar to a machine, as to perform actions it needs energy. The first and second
laws of thermodynamics state that it is impossible to create energy out of nowhere and a hot body
transfers its energy to a cold one. Consequently, the human body is subject to these laws. This energy
is interchanged with the environment, in the form of heat, can be by sensible heat (conduction,
convection, and radiation) or latent heat transfers (evaporation and condensation) [26]. A healthy
adult human releases approximately between 100 Watts (in a resting state) and 1000 Watts (in an effort
state), equivalent to the heat dissipated by a few laptops [27]. Thus, the heat of an environment is
influenced by the number of persons in there.

Similar to heat, CO2 is a side effect of the metabolism. It is an essential gas for the existence of
life, but at very high concentrations (e.g., greater than 5000 parts per million (ppm)) it can pose a
health risk. CO2 concentrations commonly found in buildings are not a direct health risk, but this
concentration can be used as an indicator of occupancy [28]. In fact, occupants are the principal source
of CO2 increasing in indoor environments [29].

In 1879, Thomas Edison invented the first light bulb which made viable to extend the working
hours of the human beings [30]. Nowadays, it is common to have artificial light in working spaces.
This fact enables the possibility of drawing a relation between light sources and occupancy in
indoor environments.

Noise is another feature that is affected by the number of human beings in an ambient [31].
Thus, it is possible to expect that the noise of a specific place will increase with the number of people
there. An important fact that should be considered in indoor environments is that they usually have
background noise produced by household appliances or other static sources of sound.

Considering the discussion and facts addressed so far in this section, this research uses the
following environmental features to detect and estimate the occupancy of indoor environments: heat
(via the measurement of the temperature in the area of interest), CO2, light intensity, and noise.
Specifically, a testbed was designed to acquire the data and extract the information to be analysed
using a ML approach.

In the next subsection, the architecture designed and used to process the data gathered from the
features selected in this work is presented.

3.2. Data Processing Architecture

The data processing architecture used in this research is depicted in Figure 2. The architecture
has four layers: Objects Layer, Communication Layer, Analysis Layer, and Application Layer.
The functionality of each layer is presented below:
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• Objects Layer: Deals with the physical sensors that collect raw data information. The sensors used
in this research are presented in Table 2.

• Communication Layer: Handles the data coming from the sensors. In this layer, the following
components are used: an embedded operating system, signal processors, microcontrollers, and
gateway nodes. In this layer, the communication between an Arduino Yun (a microcontroller
board based on the ATmega32u4 and the Atheros AR9331) and the sensors (e.g., thermistors and
sound sensors) is carried out using 10 bits ADC via an I2C bus. The Arduino Yun communicates
with a Raspberry Pi (RPi) by Serial Communication performed by the Universal Serial Bus (USB)
port to process and store the data gathered.

• Analysis Layer: Provides the data management required to extract the necessary information from
the raw data collected in the lower layers. This layer includes the elements to perform data
mining, analytics services, and device management. The data collected and analysed are stored
using a MySQL Database (version 5.5). The tool used to perform the analytics of the data was
Matlab (version v.9.2.–R2017a).

• Application Layer: Deals with the utilisation of the processed data. It includes services and
applications. This last layer uses the previous layers to acquire raw data through sensors, storing
and treating it to apply ML techniques to perform the main goal of this research, which is to detect
people in indoor environments using a non-intrusive approach.

Table 2. Sensors used in the Objects Layer.

Name Type Manufacturing Communication

NTC Thermistor Module Temperature Adafruit ADC
CCS811 Breakout CO2 Adafruit I2C
Sound Detector Noise SparkFun ADC

TSL2591 Breakout Light Adafruit I2C

Figure 2. Data processing architecture.

The flow of data in the processing architecture begins at the lower level with the raw data
acquisition via environmental sensors. Specifically, every time that the Arduino Yun receives a
signal from the RPi (every 10 s), the former one gets ten samples with a delay of 100 microseconds.
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Next, an average is computed and sent to the RPi. Finally, a new average is calculated using the
aggregated data of six values and it is stored in the MySQL database. With this average, it is possible
to decrease the fluctuations in the data. This process is repeated every minute. In the upper layers
of the architecture, the analytic functions using ML are run over the data collected and stored after
pre-processing it. Thus, the outcome of the Application Layer will be an estimation of the occupancy
of the indoor area under study.

3.3. Machine Learning Classifiers and Their Parameters’ Tweaking

In the ML context, a supervised approach is used to process the data so the system could
learn from it. We use three classifiers: Logistic Regression (LR), a direct probabilistic interpretation;
Support Vector Machine (SVM), a hyperplane with the maximal margin to separate the data with
similarities; and Artificial Neural Network (ANN), a classifier inspired by how the human brain works.
For the ANN case, the hypothesis function is obtained by processing the input features via a set of
activation units. These classifiers are largely used in classification problems [32–34]. The purpose of
using these three classifiers is to compare and select the best classifier, considering the specific problem
and the features involved.

Some parameters can improve the overall performance of the classifier. These parameters have
fix/default value results under the same conditions. Thus, it is necessary to tweak the classifiers’
parameters according the problem under study to improve the results obtained during the analysis of
the data. For LR, the regularisation parameter λ and the degree of the polynomial pd were used. In the
case of SVM, we applied the penalty cost C, and the standard deviation parameter γ. For ANN, the
number of hidden layers units hu, and the previous λ and pd parameters were utilised.

Regarding the default cases, for LR, a sigmoid function with threshold equal to 0.5, λ = 0,
and pd = 1 was used. For SVM, a Radial-Basis Function (RBF) kernel was used in conjunction with
these values C = 1 and γ = 0. For ANN, three layers (input layer, hidden layer, and output layer)
were used, and the following values were set: λ = 0, hu = 1, and pd = 1. These values represent the
base cases for each classifier before proceeding with a grid search during the training phase in order
to tweak them to improve the performance of each classifier. For LR, the possible values of λ were
[0, 0.01, 0.1, 1, 10, 100] and for pd the range was 1–3. For SVM, γ values were [0, 0.01, 0.1, 1, 10], and C
could assume [0.1, 1, 10]. Finally, for ANN, λ could take the following values [0, 0.1, 1, 10], the range
of values of pd was 1–3, and hu could assume 1–3. To select the default and improved values for the
classifiers, we used the recommendations of Clarke et al. [32] and Perez et al. [33].

In this research, two problems were studied, a binary problem, where the positive case is the
presence of occupants and the negative case is the absence of occupants, and a multi-class problem,
where the objective is to determine the exact number of occupants. The research started with the
selection of the features to estimate the occupancy in indoor environments, to move forward to the
design of the four-layers data processing architecture corresponding to: (1) the sensors to gather
the data concerning the features selected; (2) the communication protocols used between sensors,
microcontrollers, and processors; (3) how to pre-process and store the data; and (4) the analysis of the
data collected using a ML approach where the different classifiers were tested in order to determine
the best one by tweaking their parameters.

The setup of the testbed used in this work, as well as how the ML classifiers were evaluated
according to their performance is detailed in the next section.

4. Experimental Setting

The experiments were conducted in a room of the Laboratory of Communications and
Telematics–Centre for Informatics and Systems located in the middle of the Department of Informatics
Engineering at the University of Coimbra. The room has an area of 8.5 × 5.5 m2 and 4.15 m of height.
This room has a small occupancy change (the maximum number of occupants is five, and the minimum
number of occupants is zero) and very low ventilation. The only ventilation in the room is the door
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and few window cracks. The heating, ventilation, and air conditioning equipment were off during the
time of the tests to prevent any influence on the data collected, and it was assumed that the occupants
kept the doors and windows closed and the lights on during the period they were in there.

This testbed was set up to study occupancy detection in indoor environments using non-intrusive
sensors and ML techniques. The primary objective of the experiments is to evaluate the accuracy
regarding occupancy detection in two branches, the simplest one focuses on the presence or absence of
occupants; and the more advanced one on the estimation of the number of occupants. In the remainder
of this section, we discuss about the placement of the nodes to collect the environmental data and
analysis performed to evaluate the accuracy and precision of the classifier utilised. The datasets used
in this research, as well as the source code used in the nodes (e.g., Arduinos and RPIs) and the analysis
of the data using ML methods, are available via a GitHub repository [35].

4.1. Nodes Placement and Ground Truth Strategy

Three gathering and processing nodes (i.e., 3 RPis and 3 Arduinos) were placed in the room
(see Figure 3) in strategic positions to collect data. Figure 4 shows the physical location of the nodes
in the area under study. Node 1 has a temperature (in and out) and sound sensors; Node 2 has
temperature, CO2 and sound sensors; and Node 3 has the most significant variety of sensors including
temperature, CO2, sound, and light intensity. Besides gathering environmental data, Node 1 is
responsible for controlling the number of occupants in the room (i.e., the ground truth device is
attached to it) and also works as the storage node of the data collected during the experiment.

Three CO2 and temperature sensors were placed on each node, and the average of the values
collected were computed to mitigate possible fluctuations. The sound detectors were placed close to
the occupants for accuracy purposes. The light sensor was placed as far from the windows as possible
so that the main light source incident on it was one of the lamps. Regarding the temperature, a sensor
was placed in the hallway and other sensors inside the room. The difference between the temperatures
gathered at these two different places was analysed to estimate the occupancy in the room.

Figure 3. Nodes and sensors deployed in the testbed: (top) Node 1 ((left) indoor sensors; and (right)
outdoor temperature sensor); and (bottom) Node 2 ((left) and Node 3 (right).
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Figure 4. Nodes and sensors placement.

A ground of truth approach was adopted in this research to validate the data gathered. Concretely,
in this work, a simple mechanism with two buttons (blue to enter and red to leave) was developed
to create the ground truth and register when a person enters or leaves the room. Every time that an
occupant presses one of these buttons, the counter is increased or decreased, respectively. To visualise
if the number of occupants is correct, three LED were introduced as a binary counter (2n − 1 occupants
in the room). The leftmost LED is the most significant and the rightmost LED is the least significant.
The number of total occupants by minute is the average of samples acquired every 10 s.

4.2. Classifier Performance Evaluation

To analyse the performance of the classifiers, several criteria were used. Accuracy measures
the percentage of entries that were correctly classified (see Equation (1)), and the miss rate measures
the percentage of entries that were incorrectly classified (see Equation (2)) [36]. True Positive (TP)
and True Negative (TN) represent the correct classification/prediction if the entry belongs to the
positive class or negative class, respectively. False Negative (FN) and False Positive (FP) represent the
incorrect classification/prediction if the entry does not belong to the negative and positive classes,
respectively [36].

Accuracy =
TP + TN

N
∗ 100 (1)

where N is the total size of the training dataset.

Missrate = (100 − Accuracy) (2)

To evaluate a classifier, it is necessary to verify its accuracy when it has to process new data.
The classifiers can have a high accuracy when they are tested with the training dataset, but they can
have a low accuracy with a new dataset. Thus, it is recommended to split the data into a training
dataset and a testing dataset [37]. The training dataset is suitable to train the classifiers, and the testing
dataset is appropriated to measure their performance to new entries. Typically, the dataset is divided
into three portions: training (to train the classifiers), cross-validation (to adjust the parameters), and
testing (to verify the performance of the classifiers) [33,37]. In this work, the dataset used was split
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following the same approach, particularly for the cross validation the k-fold method with k = 5 was
used [38].

In certain cases, the dataset can have skewed classes, i.e., one class has a small set of data.
For example, assuming that the training dataset contains 0 positive and 100 negative entries, and if all
instances are predicted correctly, the accuracy will be 100%, but the classifier had no chance of learning
the hidden patterns. With the previous example, it can be said that the accuracy does not work well
when the dataset is unbalanced, i.e., it has more data in one class than in the other.

The F-Score was used to predict the performance of the classifiers. It is a technique that
measures the discrimination of classes, through a harmonic mean of two metrics, recall and precision
(see Equation (5)) [37]. Recall measures the percentage of entries that belongs to the positive class and
was classified/predicted correctly (see Equation (3)) [36]. Precision measures the percentage of hits
over the entries of the predicted positive class that really belongs to positive class (see Equation (4)) [36].
To have a high F-Score, both precision and recall must be high.

Recall =
TP

TP + FN
∗ 100 (3)

Precision =
TP

TP + FP
∗ 100 (4)

FScore = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

Equation (5) can only be applied to binary classification problems, but it can be extrapolated to
a multi-class classification problem. The Macro-average method takes the average of precision and
recall of each class label (see Equations (6) and (7)) [39,40].

Recall =
Recall1 + Recall2 + ... + Recallk

k
∗ 100 (6)

where k is the class label.

Precision =
Precision1 + Precision2 + ... + Precisionk

k
∗ 100 (7)

The analysis and discussion of the results obtained in this research are presented in the
next section.

5. Results and Discussion

The data acquisition for this research was performed over two weeks on November 2017 using
a rate of one sample per minute. First, the data were analysed and a strategy to use it was defined.
It was confirmed that some data had outliers and noise; consequently, to mitigate this issue, two filters
(i.e., an outlier filter and a Low-Pass Filter (LPF)) were applied. The performance of the filters over the
data is depicted in Figure 5.

An LPF is a circuit that offers easy passage to low-frequency signals and difficult passage to
high-frequency signals. Equation (8) gives the discrete implementation of the first order LPF, where α

is the smoothing factor, y is the filtered output, x is the input, and n is the sample index. Calculating
the next value through this smoothing factor and the previous value, it was possible to reduce the data
noise, making the transitions between samples slower and smoother.

y[n] = αx[n] + (1 − α)y[n − 1] (8)
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Figure 5. Performance of the outlier and LPF filters over the temperature (i.e., difference of outdoor
and indoor temperatures) data gathered.

In a second stage, ten consecutive days of data were selected, representing a total of 14,400 samples
(where almost 25% represented positive cases, and 75% represented negative cases) for each dataset
and the ML mechanisms were applied. The dataset was divided into two portions, training and
testing. The training portion was then subdivided into two portions, training and cross-validation
portions, respectively, representing 70% of the original dataset and the remaining 30% corresponds to a
testing portion. Within the first portion (i.e., training) 80% was used for training and 20% was used for
cross-validation according to the k-fold (with a k = 5) approach to prevent overfitting [38]. This value
for k = 5 was selected given the unbalanced nature of our dataset, where the average occupancy was
around 8 h per day that corresponds to office hours; thus, having periods of 16 h without relevant data
per day. Using this value (i.e., k = 5), we minimise the probability of having k-portions without any
relevant data.

In the remaining of the section, a discussion about how the data were pre-processed and the
approach used during the binary and multi-class problems is presented.

5.1. Data Pre-Processing

The processing and analysis of the environmental data gathered during the research are depicted
in Figure 6a–d. In the charts, the blue and red lines represent a day without and with occupants in the
area under study, respectively. Particularly, in Figure 6b, the red line depicts a day with precisely one
occupant in the room and the yellow line a day with more than one occupant.

In Figure 6a, the graph is in Celsius degrees by hours. For this analysis, it is important to point out
that the data corresponds to the subtraction of the indoor and outdoor temperature as it was described
in Section 4.1. For the data collected, it is possible to conclude that the temperature’s difference is
higher with occupants than without occupants. The first occupant arrived around 09:00 and the last
occupant left around 18:00. There are a couple of exceptions around 10:00 and around 12:00. The first
one happens because of the incidence of the sunlight in the room, which on this period of test occurs at
this hour, increasing the indoor temperature. The second one occurs when the occupants left the room
to have lunch.
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In Figure 6b, the graph is in ppm per hour. It is possible to see that when an occupant arrived
(i.e., around 09:00) the CO2 levels increased approximately 500 ppm. This increase was more noticeable
when more than one occupant was in the room, increasing to around 2000 ppm. In days without
occupants, the levels were between 400 and 450 ppm.

Figure 6c depicts the noise data processed. It is possible to see that the differences are not
significant considering that the values are almost the same with or without people.

The light intensity data is depicted in Figure 6d. It is possible to see that when an occupant arrived,
close to 10:00, the lux increased to around 110 and when he left, close to 18:00, the lux decreased to zero.
Around 10:00, it is possible to notice an increase in the light intensity as a result of the incidence of
the sunlight in the room. This behavior is consistent with the results and the observations performed
during the analysis of the temperature in the room.

After pre-processing the data, each classifier was tested. The results obtained are presented in the
next two subsections.

(a) Temperature. (b) CO2.

(c) Noise. (d) Light intensity.

Figure 6. Processing and analysis of the environmental data gathered.

5.2. Binary Problem

The binary problem aims to determine whether an occupant was in the room (y = 1) or not
(y = 0). Table 3 presents the results by applying the classifiers with the dataset without changing
the parameters. Analysing the results, the classifiers with best F-Scores were LR followed by SVM.
The ANN classifier had the lowest F-Score in almost all the cases. In some cases, the result was 0%,
i.e., the classifier could not predict any positive outcome.
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Table 3. F-Score results of applying ML algorithms to the data collected for the binary problem with
default parameters.

LR SVM ANN

Temp 89.70% 89.66% 89.60%
CO2 6.59% 1.43% 0%

Noise 1% 1.28% 0%
Light 95.60% 95.60% 95.42%

Regarding the noise as an element to estimate occupancy, the F-Score results show that for the
area under study this feature is not a good indicator; considering that the room is a workplace, people
are usually concentrated and spend most of the time in silence. The results of the F-Score related to the
light intensity were satisfactory with the limitation that this approach could not be used to estimate
the number of occupants in the room, just their presence.

As more occupants in the room usually results in higher CO2 concentrations, these data can detect
the number of occupants, as can be seen in Figure 6b. However, because the room does not have a
good air flow rate, this concentration reduces slowly and can take hours to stabilise. Consequently,
this approach to estimate the number of occupants inside the laboratory did not perform as expected.
One possible approach to enhance the results obtained would be to calculate the derivative and then
check whether it has a certain slope to determine if an occupant arrived or left the room; nevertheless,
this method requires more data, as well as more analysis.

The temperature data suffer from the same problem than the CO2 data. It is difficult to have
a fixed number of occupants in the room. Thus, it was important to have a dataset with more data
for calculating the time taken for the temperature to stabilise to improve the results. However, even
without this knowledge, the results were satisfactory (i.e., we obtained in average an F-Score of 89%)
to detect the presence of occupants.

Table 4 presents the parameters for which the highest F-Scores were obtained using the LR, SVM,
and ANN classifiers to the dataset collected. When performing a new F-Score and changing the
parameters and the polynomial degree, some features show an improvement, such as CO2 with an
enhancing on the F-Scores of the classifiers between 15% and 47%. Light, temperature, and noise
did not show significant growth. Even though the CO2 levels can be used to infer the number of
occupants, the data analysed has to suffer changes before applying a ML technique. The noise had a
low F-Score, and the light indicated only the presence or absence of occupants. For these reasons, only
the temperature was analysed in a multi-class problem.

Table 4. F-Score results of parameters that perform the highest score for LR, SVM, and ANN for the
binary problem.

LR SVM ANN

λ pd F-Score γ C F-Score λ pd hu F-Score

Temp 0 2 89.80% (+0.10%) 0.1 1 89.71% (+0.05%) 0.1 1 2 89.72% (+0.12%)
CO2 0 3 22.10% (+15.51%) 10 10 43.98% (+42.55%) 0 1 2 47.81% (+47.81%)

Noise 0 2 2.60% (+1.60%) 10 10 4.17% (+2.89%) 0 1 3 0% (+0.00%)
Light 10 1 95.60% (+0.00%) 1 0.1 95.55% (+0.13%) 1 1 1 95.32% (−0.10%)

The F-Scores reached by the classifiers, particularly in the case of Temp and Light, show that it is
possible to obtain high accuracy regarding indoor occupancy using the LR, SVM, and ANN classifiers,
which is aligned with some of the results reported in the state of the art. Specifically, in the research
work of Candanedo et al. [22], a research framed within the same topic although using a different
dataset, the authors obtained an accuracy of 85.33% for Temp and 97.66% for Light using a Linear
Discriminant Analysis (LDA) model. These results are comparable with the values obtained by LR
and SVM in this research considering the classifiers’ linearity. In the case of Temp, LR and SVM
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showed better accuracy (i.e., around 4%). On the other hand, for Light, LDA performed better than LR
and SVM by around 2%. Instead of an ANN approach, Candanedo et al. [22] decided to determine
the performance of Classification and Regression Trees (CART) learning algorithms for this specific
problem. The accuracy results obtained using CART were 86.51% and 99.31% for Temp and Light,
respectively. Thus, for Temp, the ANN approach had a better accuracy 89.72% (i.e., around 3%), and, in
the case of Light, the CART model beat the ANN classifier by around 4% (i.e., 99.31% against 95.32%).

5.3. Multi-Class Problem

The multi-class problem aims to estimate the number of occupants in a room. During this work,
on average, there were five occupants in the room. After observing the behavior of the data gathered
and the binary problem results, it is possible to conclude that temperature is the more interesting
feature to be tested in the multi-class approach. Even though it was possible to obtain F-Scores beyond
95% for all the classifiers for the data corresponding to light, its binary nature makes impossible to use
it to estimate the number of occupants in the area under study, thus it was discarded.

Table 5 summarises both the parameters and the F-Scores obtained using the default values for
said parameters, and after tweaking them. Concerning the analysis of the temperature data using the
default parameters for each classifier, the following F-Scores results were obtained: 24.43% for LR,
24.90% for SVM, and 25.15% for ANN. These results are far away from what we had expected, thus
an additional tweaking of the parameter was applied in order to improve the F-Scores. In the best
scenario, the following F-Scores results were obtained: 29.43% (more 5%) for LR; 29.72% (more 4.82%)
for SVM; and 28.70% (more 3.55%) in the case of ANN.

The results obtained for the multi-class problem show that it was not possible to estimate the
number of occupants using just the temperature data. When the default parameters were used, all the
classifiers reported almost the same F-Scores, i.e., around 24.5%. After changing the parameters,
the SVM classifier produced the best results for this dataset, around 29.72%. It was also assumed
that the human body surface had a uniform temperature and a consistent heat production, but
this is not necessarily true. The human body has a distinct physical shape and also has multiple
thermo-physiological properties. Thus, it is difficult to include those factors in a numerical constant in
an indoor space.

Table 5. F-Score results of parameters for LR, SVM, and ANN for the multi-class problem.

LR SVM ANN

λ pd F-Score γ C F-Score λ pd hu F-Score

Default 0 1 24.43% 0 1 24.90% 0 1 1 25.15%
Tweaked 0.01 2 29.43% (+5%) 10 10 29.72% (+4.82%) 0 1 3 28.70% (+3.55%)

A valid estimation of the number of occupants in indoor environments using non-intrusive
environmental sensors requires a deep study of the correlation of the data gathered. ML techniques
have proven to be useful to better understand the interaction and behavior between the sensors,
according to the changes induced by the occupants in indoor environments. For the multi-class
problem, the correlation between light, temperature, and CO2 looks promising. In a first step,
the analysis of the light could determine accurately the presence or absence of occupants, and, as a
second step, a study of the correlation between temperature and CO2 could enhance the estimation
concerning the number of occupants in a specific area. Thus, these open issues lead to the possibility
to perform future research in this field.

6. Conclusions

Nowadays, companies and researchers are working on enhancing the quality of life of citizens,
using the IoT paradigm to reach the idea of building Smart Environments. In this context, it would be
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beneficial to have mechanisms to predict or estimate the occupancy of indoor environments to make
smart decisions about how to self-adapt to the environmental conditions.

In this research, a solution for occupancy detection with non-intrusive devices using sensors
such as temperature, noise, CO2, and light intensity was proposed and tested. A functional system,
made up of a device to gather and process environmental data, and to analyse the data patterns
over the collected data regarding people occupancy in indoor environments using ML methods, was
tested. The analysis performed allows asserting that with features such as noise data in working
environments the performance of the recognition system might be degraded. However, with features
such as temperature, CO2, and light data, it will be possible to estimate the detection of occupants with
an acceptable level of accuracy. Thus, the work done in this research could feed third-party applications
focused on indoor occupancy detection to generate smart decisions considering the occupants’ needs.

For future works, it is necessary to study the full correlation of the environmental data used in this
research. A starting point could be the analysis of features and their impact on the system. The CO2

data have to endure some processing to find the most meaningful way to use this type of data, since it
was found that they represent one of the best features to detect the number of occupants.
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