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Osmotic modulation of chromatin 
impacts on efficiency and kinetics 
of cell fate modulation
A. F. Lima1,2, G. May3, J. Díaz-Colunga4, S. Pedreiro5, A. Paiva5,8, L. Ferreira1,6, T. Enver3, F. J. Iborra  4 
& R. Pires das Neves1,7

Chromatin structure is a major regulator of transcription and gene expression. Herein we explore the 
use of osmotic modulation to modify the chromatin structure and reprogram gene expression. In this 
study we use the extracellular osmotic pressure as a chromatin structure and transcriptional modulator. 
Hyposmotic modulation promotes chromatin loosening and induces changes in RNA polymerase II 
(Pol II) activity. The chromatin decondensation opens space for higher amounts of DNA engaged RNA 
Pol II. Hyposmotic modulation constitutes an alternative route to manipulate cell fate decisions. This 
technology was tested in model protocols of induced pluripotency and transdifferentiation in cells 
growing in suspension and adherent to substrates, CD34+ umbilical-cord-blood (UCB), fibroblasts and 
B-cells. The efficiency and kinetics of these cell fate modulation processes were improved by transient 
hyposmotic modulation of the cell environment.

Osmotic stress can alter the role of molecular players involved in transcription itself and impact in the epige-
netic state of the cell. As a consequence, the RNA repertoire changes during and after stress stimuli. Permanent 
hyposmotic stress has been shown to promote the upregulation of specific lncRNAs that exert functions in rRNA 
gene silencing1. Additionally, this type of modulation can change chromatin topology by biophysical distortion 
of the nucleus and it may alter gene expression; although direct experimental evidence for this is still lacking2–4. 
The osmotic pressure can be a biophysical stressor that promotes water entrance and induces cell and nuclear 
size changes, with alterations in chromatin structure2,5–8. These features are crucial for cell state maintenance and 
fate decisions. Interestingly, the first nuclear reprogramming experiments by Gurdon and colleagues (1968), have 
shown a rapid nuclear swelling, a dispersion of chromosomes and chromatin, the entry of protein and the induc-
tion of DNA and RNA synthesis9 in a sequential temporal order, after the nuclear injection into the egg cyto-
plasm. This type of experiments also suggests that the cytoplasm harbours one or more soluble factors that are 
diffusible, specify cellular identity, and can trigger transdifferentiation to other cell types. Could the osmotic envi-
ronment of the egg help this process? Although in these seminal experiments the osmolarity of the nucleus and 
the egg at the time of injection is unknown, it is well described in the assisted reproduction field that the osmotic 
environment control is fundamental for successful fertilization. In intracytoplasmic sperm injection (ICSI) it is 
routine, to select the cells that perform best in a hyposmotic swelling test (HOST) which have been shown to lead 
to the formation of embryos with higher developmental potential10. On the other hand, it can be argued that even 
cells that have a low HOST score have the same fertility potential when the cell is delivered inside the cytoplasm 
and therefore HOST should be moot for ICSI cycles10. Could it be the case that HOST preconditions the sperm 
for chromatin decondensation facilitating the process later on? Indeed, chromatin transformations are widely 
accepted as major rate-limiting steps during cellular fate reprogramming11–13. There are several master transcrip-
tion factors (TFs) capable of defining the cell state and these TFs have been used to trigger transdifferentiation 
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across all major lineages (reviewed in14). At the apex of all cell types generated by TF overexpression, the induced 
pluripotent stem cells (iPSCs) have gained particular attention because they have the unique potential to generate 
all the adult cell types. The search for factors that boost the kinetics of reprogramming has found small molecules 
that impact on nucleosome structure, which constitutes an important barrier for RNA Pol II processivity and to 
the emergence of new transcription sites11,15–17.

In this study, we show that a transient hyposmotic shift promotes chromatin loosening and the recruitment of 
RNA Pol II to bind the cellular DNA. This novel methodology coupled to exogenous transcription factor expres-
sion may be used in all kinds of cellular fate reprogramming scenarios.

Results
Tailoring osmotic stimuli into a cell physiology modulation tool. First, a systematic evaluation 
of the impact of hyposmotic pressure in cell physiology was done. For that, PBS- (hypo/PBS) or media-based 
(hypo/M) cocktails (Supplementary Table S1) were used in prolonged (up to 24 hours) or transient (15 minutes) 
protocols and with variable degrees of dilution of the PBS or media (as detailed in Supplementary Table S1). A 
safety threshold was observed in K562 cell line (used as a proxy for cord-blood mononuclear cells) for hypos-
motic modulation based on the analyses of the following parameters: forward side scatter (FSC), as an indi-
rect measure of cell size18 (Supplementary Fig. S1A); adenosine triphosphate (ATP) levels, as a measure of cell 
viability (Fig. 1A); and production of reactive oxygen species (ROS) (Supplementary Fig. S1B), mitochondrial 
membrane potential (Fig. 1B) and intracellular free calcium (Fig. 1C), as general physiologic readouts. Short 
term mild hyposmotic modulation (hypo+/M, hypo2+/M, hypo+/PBS and hypo2+/PBS) is safe in K562 
cells (Fig. 1D). During the first hour of exposure to mild PBS-hypotonic conditions there is a decrease in ATP 
(Fig. 1A), mitochondrial membrane potential (Fig. 1B) and an increase in intracellular calcium (Fig. 1C) which 
does not translate into significant oxidative stress (Supplementary Fig. S1B and S1C) and proves the point that 
cells react quickly in these conditions. The same assay, done with medium-based osmotic conditions, shows 
no significant alterations (Supplementary Fig. S1D to S1E). The time of exposure to the osmotic modulation 
is a determinant factor. When the cells are exposed to mild PBS-based conditions during 15 minutes and then 
return to an isosmolar media, they quickly reach normal calcium levels (Fig. 1E). This behaviour is conditioned 
by the presence or absence of calcium in the extracellular environment and the need to mobilize calcium from 
the intracellular stores (e.g. endoplasmic reticulum and mitochondria). This effect is observed when the previous 
experiment is done in a calcium-containing culture medium where the response is sustained for a longer period 
of time (Supplementary Fig. S1F). Under PBS-based conditions, because calcium is absent in the extracellular 
environment, there is an increased physiological impact (Fig. 1E). Another important effect of the hyposmolar 
modulation is the quick drop in ATP levels (Fig. 1F). This effect is not only due to a metabolic effect at the level 
of synthesis but is also due to extrusion of ATP from the cell (Fig. 1F). This is a clear effect for low osmolarity 
where more than 15% of the ATP of the cell is extruded after 15 minutes of modulation (Fig. 1F). This observa-
tion is in agreement with the ATP extrusion hypothesis, where the release of ATP from cells after hyposmotic 
modulation occurs19. Moreover, in parallel to the increased extracellular ATP level, after exposure to hypo4+/
PBS (Fig. 1F) there is a significant decrease of the intracellular ATP (Fig. 1F). The decrease in intracellular levels 
of ATP and increase in intracellular calcium is already described in the literature for several cell types2,7,19,20. UCB 
stem cells are particularly sensitive to the osmotic environment during collection and cryopreservation21,22, and 
these changes can influence their performance and fate. CPDA-1, a calcium-chelator routinely used for UCB 
collection, can induce a hyperosmotic and acidic environment when present in high concentration in collected 
blood. Our studies have shown that the change in osmolarity during UCB collection can have an impact in sur-
vival and stem cell potential (Supplementary Fig. S2).

This safety threshold described for K562 cells has to be determined in different cells subjected to hyposmotic 
modulation. A similar assessment of cell behaviour was done for human fibroblasts and the results differ from the 
ones obtained in K562 cells (Supplementary Fig. S2). Fibroblasts are more sensitive to the hyposmotic modula-
tion and the adhesion to the cell culture substrate is affected. In long-term PBS-based hyposmotic stimulus as well 
as after one hour in hypo2+/PBS, the cells display a round morphology instead of their characteristic elongated 
morphology (Supplementary Fig. S3H). In long-term PBS-based hyposmotic conditions, fibroblasts display a 
morphology that resembles the anoikis process23 (Supplementary Fig. S3H), where the prolonged absence of 
calcium has a crucial role.

Furthermore, the osmotic effect on intracellular calcium regulation enlists mitochondria as one of the targeted 
organelles24. Using time-lapse microscopy and cells carrying fluorescent mitochondria (MitoGreen HeLa cells 
carrying EGFP-mitochondrial localization signal inside the mitochondrial matrix, adapted from25) we observed 
an immediate impact of hyposmotic modulation on mitochondrial morphology (Supplementary Fig. S8D). 
Modulation with hypo2+/PBS induces the immediate appearance of a spotted mitochondrial phenotype which 
is almost completely reverted after some minutes, when mitochondria tend to regain the network features 
(Supplementary Fig. S8D).

Hyposmotic modulation changes the structure of the chromatin and the transcriptional activ-
ity of RNA Pol II. Here we explore the impact of transient hyposmotic swelling on nuclear architecture and 
chromatin structure. Previous studies have shown that altering the physical environment of the chromatin impacts 
the overall chromatin structure and transcriptional activity26–28. Chromatin structure can be assessed in the micro-
scope. Heterochromatic regions correspond to brighter fluorescence spots of DAPI staining and are inactive areas 
of transcription4. On the other hand, euchromatin corresponds to less intense and more homogeneous regions of 
DAPI staining. These are considered transcriptionally active. Figure 2A shows that the exposure of cells to a hyper-
tonic solution increases the heterochromatin spot density and intensity. On the other hand, the exposure to hypos-
motic solutions induces a more homogeneous nuclear DAPI staining, with less heterochromatic spots (Fig. 2A). 
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This can be quantified using as a proxy the coefficient of variation (CV = Standard Deviation/average intensity) of 
the DAPI fluorescence signal. A lower CV of DAPI staining reflects a more homogeneous chromatin (decondensed 
chromatin) and high CV denotes the presence of condensed chromatin. Cells exposed to the hyposmotic condition 
show a low CV and the opposite effect was seen in hyperosmotic condition (Fig. 2A graph). These alterations are 
proportional to the intensity of the stimulus (hypo/PBS, hypo+/PBS, hypo2+/PBS, hypo4+/PBS) (Supplementary 
Fig. S4A). The same experiments done in UCB derived mononuclear cells show similar trends in DAPI staining 
(Supplementary Fig. S4B). In addition, similar experiments in HeLa cells have shown an oscillatory behaviour of 
the nuclear area and the nuclear DAPI staining intensity (Supplementary Fig. S4C to S4F).

To study the structure of the chromatin in more detail nuclease enzymatic digestion was used. More accessible 
chromatin is easier to digest29 and this is seen after transient hyposmotic modulation. The pattern of digestion 
with micrococcal nuclease (MNase) denotes differences in chromatin accessibility after hyposmotic modulation 
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Figure 1. Impact of different osmotic environments in K562 cell physiology. (A) to (C) Effect of constant 
osmotic modulation on ATP levels (% normalised by medium condition), mitochondrial membrane potential 
(DiIC1(5)) and intracellular free calcium levels (e-Fluor) (% of fluorescence signal normalised to the control). 
(D) Schematic representation of the safety of the PBS-based hyposmotic modulation strategy. This scheme 
is derived from (A) and highlights the deleterious effect that even PBS by itself has in permanent culturing 
conditions. (E) and (F) Effect of transient osmotic modulation (15 minutes) on intracellular free calcium levels 
(e-Fluor) and intracellular vs extracellular ATP levels (% normalised to the medium/PBS condition). The 
different osmotic modulation protocols are described in the legend of each graph. The variations presented are 
the mean value ± SEM (n ≥ 3) and the changes are statistically significant at the time points highlighted in the 
graphs (*p value < 0.05; **p value < 0.01; ***p value < 0.001; ****p value < 0.0001).
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Figure 2. Impact of different osmotic environments in nuclear structure, chromatin organization and 
transcription. (A) Confocal imaging with DAPI stained K562, fixed and imaged straight after exposure to 
different osmotic modulations (scale bar = 2 μm) and respective coefficient of variance of the DAPI staining 
(approximately 100 cells per condition were analysed). (B) DNA fragmentation pattern after MNase digestion 
(150 gel units) using K562 cells that were transiently in different osmotic conditions (cropped lanes from 
the original gel image provided in Supplementary Fig. S6C). (C) Representative histogram of the DNA 
fragmentation pattern of MNase digestion presented in B. The digestion pattern was analysed in Image J. 
(D) Effect of constant hyposmotic modulation on transcriptional activity assessed by EU incorporation in 
K562 cells. A nonlinear regression was done to each condition. Insert showing the drop in ATP levels for the 
same time point. (E) Effect of transient hyposmotic modulation on transcriptional activity assessed by EUTP 
incorporation in K562 cells. This EUTP protocol is run under fixed/non-limiting ATP concentration conditions. 
A nonlinear regression was done to each condition. The different osmotic modulation protocols are described 
in the legend of each graph. The variations presented are the mean value ± SEM (n ≥ 3) and the changes are 
statistically significant at the time points highlighted in the graphs (****p value < 0.0001).
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that can be observed in Fig. 2B and quantified in Fig. 2C. Additionally, the digestion pattern with deoxyrib-
onuclease I (DNase I) follows the same trend of increased chromatin accessibility after transient hyposmotic 
modulation (Supplementary Fig. S6D). Open chromatin is permissive to transcription29,30 and if the hyposmotic 
modulation induces an increased euchromatic content this should be correlated with increased production of 
RNA. This increase cannot be observed in a classic transcriptional assay, using the artificial precursor EU, where 
the hyposmolarity seems to induce a reduction in EU incorporation into the newly synthetized RNA (Fig. 2D). 
This decrease in production of RNA is associated with the reduction in [ATP] in the hyposmotic environment 
(Fig. 1A,F). We have previously shown that transcription speed is influenced by fluctuations on intracellular ATP 
levels31. When a similar analysis was done this time with EUTP and with constant/ non-limiting [ATP] (similar 
to31) it was possible to observe an increase in transcription under hyposmotic conditions and the opposite in 
hypertonicity. The incorporation of EUTP into the newly synthesised RNA was 54% higher after a transient 
hyposmotic modulation, during the first 50 min of assay (Fig. 2E). Furthermore, these results are consistent with 
the increase of RNA Pol II phosphorylated at Ser2 (a putative marker for RNA Pol II engaged in transcription), 
detected by western blot immediately after the hyposmotic modulation (Supplementary Fig. S6E). Analyses of the 
acetylation of histone H4 at lysine16 (reporter of transcription activity) in UCB cells have shown that hyposmotic 
modulation induces variable acetylation patterns depending on the intensity of the stimulus (Supplementary 
Fig. S6F). The high variability of these measurements suggests that this labelling is fluctuating quickly. Therefore, 
the H4K16ac profile was evaluated in HeLa cells (for practical reasons) along the time. After hyposmotic modu-
lation the changes in the acetylation profile of H4K16 seem to accompany the trend of increased transcriptional 
profile overtime, although an initial drop is noticed right after the hyposmotic modulation (possible ATP effect 
already discussed) (Supplementary Fig. S6G). Interestingly, right after the hyposmotic modulation it was not pos-
sible to observe changes in other relevant histone modifications suggesting that there are different kinetic regimes 
for different histone modifications (Supplementary Fig. S6E).

The impact of osmolarity on chromatin structure and RNA Pol II activity is not specific for cells in suspension. 
Indeed, cells growing attached to substrates, show altered chromatin structure and kinetics of RNA production 
after hyposmotic modulation with different responsiveness when compared to suspension cells. Using an adher-
ent cell line and a classic BrUTP transcription assay it was possible to observe similar transcriptional changes 
described above for K562 cells (Supplementary Figs S6A and S6B).

To complement the analyses of the impact that hyposmotic modulation has on transcription activity in 
attached cells the dynamics of fluorescent RNA pol II (method used in31,32) were measured. In hypo2+/PBS 
conditions (Fig. 3A,B) there is a significant decrease in the free form of RNA Pol II and a significant increase in 
the initiating form of the polymerase (Fig. 3C). Although the hyposmolarity (hypo2+/PBS) does not seem to 
have an impact in the percentage of RNA Pol II in transcriptional elongation (Fig. 3C) it does promote a signifi-
cant increase in the half-life of RNA Pol II engaged in transcription elongation (Fig. 3D). In this experiment, the 
average RNA Pol II half-life in the hyposmotic condition (hypo2+/PBS) is approximately 140 minutes which is 
significantly increased when compared to the isosmolar condition ∼16 minutes (Fig. 3D). These kinetics are in 
agreement with previous studies that assume that a transcription unit in this model cell line has the same length as 
a human gene (median length ∼14 kbp;33), and a polymerization rate of 1.1–2.5 × 103 nucleotides/min34, meaning 
that a typical transcription unit would be copied in 6–13 min in isosmolar conditions35.

Hyposmotic modulation induces a new transcriptional network with increased binding of RNA 
pol II. Changes in the transcription kinetics suggest that the loading of RNA Pol II on the DNA after hypos-
motic modulation may be different. This possibility was studied by RNA Pol II chromatin immunoprecipitation 
and sequencing assays (ChIP-Seq). The binding pattern of the different forms of RNA Pol II: total, initiating 
(PhosphoS5) and elongating (PhosphoS2) was evaluated by using specific antibodies for the phosphorylated 
forms of the RNA Pol II CTD, after transient exposure to hyposmolarity (hypo2+/PBS). These analyses were 
done in two different time points, one immediately after the transient hyposmotic modulation (hypo2+/PBS; 
15 min.) and another one, after 1 hour of recovery in complete growth medium. In the hyposmotic condition, a 
higher amount of DNA was recovered after the ChIP procedure, suggesting an increased binding of RNA Pol II to 
cellular chromatin (Supplementary Fig. S8).

The ChIP-Seq data shows that the hyposmotic modulation has an impact on the RNA Pol II binding profile to 
chromatin (Fig. 4A). The detection of peaks in each condition shows that the number of RNA Pol II PhosphoS5 
peaks is increased almost 1.5-fold right after the modulation when compared to the PBS control (Fig. 4A). 
Moreover, after 1 h of recovery from the transient hyposmotic stimulus, the chromatin is enriched for the RNA 
Pol II PhosphoS2 binding (Fig. 4A). In order to validate the Chip-seq data set, bioinformatics analyses were 
undertaken based on the principle that there should be a high degree of agreement between the peak IDs obtained 
after Chip with different antibodies for RNA pol II for the same condition. Indeed, in all samples (control and 
hypo), at both 0 h and 1 h, roughly 85-95% of the features that appeared in the RNA Pol II PhosphoS5 lists were 
also present in the Total RNA pol II ones (Supplementary Fig. S7). To further complement these results, a very 
stringent analysis was performed to determine whether the hyposmotic modulation was promoting binding of 
RNA Pol II forms to new binding sites or increasing the binding and/or recovery of RNA Pol II at the same bind-
ing sites. For this analysis, we compared the peaks detected, in the samples PBS versus hypo2+/PBS both normal-
ised to the respective IgG controls. Afterwards, we filtered them to have a fold enrichment higher than 30 or 15 
(in the case of RNA Pol II PhosphoS2) and a p-value lower than 1 × 10−9. This analysis generated a list of regions 
called “new peaks” that were only present in the hypo2+/PBS condition. Therefore the hyposmotic modulation 
promotes the binding of RNA Pol II to new sites of the cellular genome (Fig. 4A).

This data demonstrates that after a transient hyposmotic shock, cells have a distinct RNA Pol II binding pro-
file that can enable the cell to change the transcriptional network. Within the list of genes in the neighbourhood 
of the newly bound sites by RNA Pol II, there are numerous targets associated with chromatin modifications, 
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transcription control, calcium homoeostasis, potassium channels, kinases, several RNA genes (non-coding RNA, 
long-non-coding RNA, antisense RNA and others), and microRNAs (Supplementary Table S2). Besides all the 
chromatin and transcription associated hits there is the interesting effect in potassium channels and calcium 
homeostasis which should be expected in response to a hyposmolar stimulus that induce the entrance of water 
and ionic balance compensation fluxes.

With respect to water, there are a few examples in the literature of TF binding to DNA to be dependent on the 
specific hydration of DNA sequences. One example is the pioneer factor PU.1. Therefore, we decided to evaluate 
in silico using a bioinformatics approach based on the Chip-Seq results, if this is a general characteristic of pioneer 
TFs. TFs that are affected by the levels of hydration of DNA should have their binding affinities influenced by the 
hyposmotic modulation and one readout would be the binding of RNA Pol II to specific genes in their regulatory 
network. Additionally, as there is no extensive list of pioneer factors described in the literature, we decided to 
evaluate the impact of hyposmolarity on the ability of pioneer TFs to bind the DNA using the list of pioneer TFs 
available in36. We used the ChIP-Seq results to evaluate the different capacity of recognition and binding of RNA 
Pol II under hyposmotic modulation. To identify the TFs that might promote that specific RNA Pol II binding 
profile we used PASTAA, a tool from Max Planck Institute (http://trap.molgen.mpg.de/cgi-bin/pastaa.cgi). This 
method detects TFs that are associated with particular functional categories of genes. PASTAA stands for: pre-
dicting associated transcription factors from annotated affinities, because as a first step it ranks all genes by the 
predicted affinity of the TF to the genes’ promoters. We used the association scores computed by PASTAA (-log 
of the most significant hypergeometric p-value) as a readout for the binding/affinity probability of a TF to be 
involved in the regulation of a set of genes enriched in the ChIP-Seq of the different forms of RNA Pol II. When 
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the list of enriched genes in the ChIP-Seq experiment of RNA Pol II Total, PhosphoS5 and PhosphoS2 forms were 
analysed in PASTAA we could only get scores for the pioneer TFs: PU.1, GATA1, CLOCK:BMAL1 and p53, as 
presented in Fig. 4B, probably meaning that the other pioneer TFs are not expressed in K562 cells. For instance, 
the GATA4 promoter is hypermethylated in K562 cells and the levels of expression of GATA4 are low37. If this is 
the case it is expectable that genes that are regulated by this pioneer TF are not enriched for RNA Pol II binding 
as our analyses show.

It is interesting to note that the great majority of the TFs show higher scores in the hyposmotic condition than 
in the PBS condition (Fig. 4B). Also, most TFs show a drop at 1 hour, except for PU.1, Ets1 and CLOCK:BMAL1. 
From these, only PU.1 has been shown to have specific needs of hydration in its binding sequences38,39. Indeed, 
in the hyposmotic modulatory condition PU.1 shows a higher association score when compared with Ets1 
(non-pioneer TF of the same family of PU.1) for total RNA Pol II particularly at time 1 hour (Fig. 4B). This is 
mainly due to the contribution of the elongating form of RNA Pol II and suggests that PU.1 may be a co-factor 
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Figure 4. Impact of hyposmotic modulation in RNA Pol II binding profile and transcription. (A) Total number 
of ChIP-Sequencing peaks detected after background noise subtraction, done in K562 cells. (B) and (C) 
Relevant transcription factors association scores. Association scores were computed with PASTAA (http://trap.
molgen.mpg.de/cgi-bin/pastaa.cgi) as an in silico approach to infer the binding/affinity of transcription factors 
involved in the regulation of genes enriched in the ChIP-Seq assays for the different forms of RNA Pol II.

http://trap.molgen.mpg.de/cgi-bin/pastaa.cgi
http://trap.molgen.mpg.de/cgi-bin/pastaa.cgi


www.nature.com/scientificreports/

8SCieNtiFiC REPORts | (2018) 8:7210 | DOI:10.1038/s41598-018-25517-2

for transcription in the body of genes that are more expressed in the hyposmotic condition. For CLOCK:BMAL1 
there is no description on hydration influencing binding affinities for this pioneer TF, but it has been recently 
shown that cellular mechano-environment regulates these circadian clock genes in the mammary and pulmonary 
systems40. Under a softer mechano-environment these genes are up-regulated. What our results suggest is that 
CLOCK:BMAL1 has a high association score with the hyposmotic condition particularly again for the elongation 
form of RNA Pol II (Fig. 4B).

Next we tried to validate our in silico analyses looking at genes that are referenced in the literature as being 
affected by hyposmotic modulation. This was a difficult task as most of the literature is available for hypertonic 
stress. Therefore, we looked at the Human Osmotic Stress RT2 Profiler PCR Array from SABiosciences for a 
reference on validated TFs that are affected by osmotic stress. This array profiles the expression of 84 key genes 
involved in the cellular response to changes in osmolarity and identifies the TFs TonEBP, ATF4, DDIT3, EGR1, 
EGR3, FOS, JUN, PAX2, SNAI1, TP53 and ZFP36L1 as important regulators of the osmotic stress response. Based 
on this list we ran our ChIP-Seq data in PASTAA and looked for association scores of these TFs in hyposmotic 
or PBS conditions and the respective results are presented in Fig. 4C. Again, most TFs show higher scores in the 
hyposmotic condition and these are maintained 1 hour after stimuli. No association scores were found for SNAI1, 
DDIT3 and ZFP66L1 probably meaning that these proteins are not expressed in K562 cells. The most interesting 
effects of the hyposmotic condition were seen in the gene regulatory networks of EGR1, EGR3, Jun and ATF4. The 
presence of EGR1 was an interesting hit because it is reported in the literature as having activity impairment with 
increasing amounts of osmolytes41. One of the first events after the hyposmotic stimulus is the exit of osmolytes 
from the cell to balance the extracellular hyposmotic environment. Also, under hyposmotic stimulus, osmolytes 
leave the interaction pockets of proteins; so this type of effect renders the EGR1 freedom to interact with the 
DNA. To further explore this in silico approach and understand if these TFs could be associated with the “new 
peaks” that are significantly enriched in the hyposmotic modulation condition we ran the list of “new peaks” for 
RNA Pol II PhosphoS5 (0 and 1 hours) in PASTAA. Surprisingly, immediately after the hyposmotic stimulus (0 h) 
eight out of the ten higher ranked TFs whose binding motifs were found to be associated with the “new peaks” 
ChIP-Seq data of the initiating form of RNA Pol II, belong to the superclass of “zinc-coordinating DNA-binding 
domains” (Supplementary Fig. S8C). This high prevalence of zinc-finger (ZF) TFs is not seen anymore 1 hour after 
hyposmotic modulation (Supplementary Fig. S8C) or in the Iso condition ChIP-Seq for RNA Pol II PhosphoS5 
(where the percentage of ZF TFs in the top 10 is lower than 10% - data not shown). These results suggest that 
under hyposmotic modulation ZF TFs are the first class of TFs that bind new open chromatin regions.

Reprogramming cell fate kinetics and efficiency are improved with hyposmotic modula-
tion. Several strategies, with variable efficiencies, have been proposed in the last years for the generation of 
iPSCs from different cell sources. There are several reports that even sub-compartments of the same cell source 
show different reprogramming efficiency (Supplementary Fig. S9B)42–44. This is believed to be due to chromatin 
structure and most reprogramming protocols include the use of inhibitors of chromatin modulating enzymes. 
These approaches induce an open chromatin state that increases the plasticity of the target cell allowing the access 
of the reprogramming factors to new genomic locations so that the transcriptional repertoire can be changed and 
the pluripotent state can be achieved. The fact that several reprogramming cocktails have used different chroma-
tin modulating drugs (CMDs) depending on the cell source used to generate iPSCs indicates that these drugs 
show some type of bias towards some mechanistic specificity inherent to the CMDs or genomic location45–49. 
There is still no method that can open chromatin irrespective of the molecular players involved, something purely 
physical that can quickly modulate the players involved in transcription. We devised a method that uses a hypos-
motic stimulus that transiently swells the cells and opens the chromatin. With this method we have observed that 
CD34+-UCB cells acquire a pluripotent stem cell phenotype quicker than using regular iPSC-derivation condi-
tions (based on valproic acid (VPA) and BayK a calcium agonist) (Fig. 5A,B). Briefly, the hyposmotic modulation 
was done during the first week of reprogramming and we have used a lentiviral vector developed by Warlich et 
al., which has a fluorescent reporter protein (dTomato) that denotes the occurrence of epigenetic remodelling 
within the cell genome50 (further details in the Supplementary experimental procedures). Therefore this feature 
also allowed us to analyse the kinetics of the epigenetic remodelling by analysing the presence of the fluorescent 
reporter protein, because during active epigenetic remodelling the viral promoter leading the expression of the 
fluorescent reporter is inactivated. This kinetic profile shows a significant increase of non-reprogrammed colonies 
in the conditions where small molecules have been used and not in the hypo2+/M condition (Supplementary 
Fig. S9C). The epigenetic reprogramming when using chromatin modulating drugs happens later probably mean-
ing that these molecules have a long lasting chromatin effect, when compared with the osmotic modulatory 
condition (Supplementary Fig. S9C).

Hyposmotic modulation impacts in the reprogramming efficiency output, (Fig. 5A–D) and depending on the 
target population the results are distinct. The same type of modulation used in human dermal fibroblast repro-
grams more efficiently (with less noise) than the heterogeneous population of UCB cells (Fig. 5E,F).

Next, to complement these proof-of-principle studies, a well-characterised cell fate switch system of transdif-
ferentiation was used. The effect of hyposmotic modulation was tested in a B-cell line with a β-estradiol-inducible 
form of C/EBPα, where the original cells can be converted into macrophage-like cells with high efficiency51.  
C/EBPα has been described as a pioneer factor and therefore this transdifferentiation system has a high and 
robust efficiency which can be related to the ability of this TF to bind to DNA even in packed chromatin areas51,52. 
The detailed description of this experiment is provided in the supplementary experimental procedures, but 
briefly, the experimental layout consisted in the induction of transdifferentiation by the addition of 100 nM of 
β-estradiol and the transient osmotic modulation (once a day) started one day after this point.

The hyposmotic stimulus promotes an increase in the percentage of cells expressing CD11b along the trans-
differentiation process, a macrophage-specific marker as shown in Fig. 6. Within the transdifferentiation process, 
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Figure 5. Effect of hyposmotic modulation in cell fate reprogramming. (A) and (B) Reprogramming efficiency 
and kinetics, measured as the number of alkaline phosphatase positive colonies, with different modulation 
protocols in UCB CD34+CD133+ cells (normalised to the hESC medium condition). Two small molecules 
(VAP and BayK) with proven activity as reprogramming boosters were used for comparison with hyposmotic 
condition. Valproic Acid (VPA), is a chromatin modulating small molecule and BayK is a calcium agonist. 
(C) and (D) Fold increase in reprogramming with different hyposmotic modulation protocols in UCB 
CD34+CD133+ cells (normalised to the PBS condition). (E), (F) Percentage of alkaline phosphatase positive 
cell culture area with different hyposmotic modulation reprogramming protocols in NDHF (normalised to 
the PBS condition). The different osmotic modulation protocols are described in the legend of each graph. The 
variations presented are the mean value ± SEM (n ≥ 3) and the changes are statistically significant at the time 
points highlighted in the graphs (*p value < 0.05; **p value < 0.01).
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the HAFTL C10 cell line during the transdifferentiation. Although the images provided are from a single 
experiment, the same experiment was done at least two more times with similar results. (C) CD11b 
expression (% of cells expressing CD11b relative to PBS-control) by the HAFTL C10 cell line at day 4 of 
transdifferentiation. (D) CD11b expression (Geo MFI, geometric mean fluorescence intensity) by the HAFTL 
C10 cell line at day 4 of transdifferentiation. (E) Transcriptional characterization of CEBP-family genes assessed 
at day 4 of transdifferentiation in HAFTL C10 cell line by qRT-PCR (ratio between the expression levels (2−
ΔΔCT) in the two transdifferentiation conditions) (ANOVA test used). (F) Gene expression of CEBP-related 
transcription factors assessed at day 4 of transdifferentiation in HAFTL C10 cell line by qRT-PCR (ratio between 
the expression levels (2−ΔΔCT) in the two transdifferentiation conditions) (ANOVA test used). The different 
osmotic modulation protocols are described in the legend of each graph. The data presented corresponds to 
the mean value ± SEM (n ≥ 3) and the changes are statistically significant at the time points highlighted in the 
graphs (*p value < 0.05).
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when β-estradiol is added to the cell culture media, the hyposmotic modulation (hypo2+/PBS) has a significant 
impact in the percentage of cells expressing the macrophage-related marker CD11b at day 4 when compared to 
the control (Fig. 6C,D) and respective negative controls (Supplementary Fig. S9G).

The hyposmotic modulation has a significant positive effect on the expression of CEBPα during the trans-
differentiation but interestingly it also promotes the expression of CEBPβ and CEBPΔ (Fig. 6E,F). Moreover, 
some of the genes, shown to be increased by a previous independent microarray analysis51, were also significantly 
increased after the transdifferentiation with hyposmotic transient modulation when compared to the control 
group. These genes included FOS, FOSL2, JUN and NFIL3 (Fig. 6E,F).

Discussion
Osmotic regulation is very important in several physiological and pathological events. The great majority of 
studies in the literature have focused on the effect induced by hypertonicity but has shown in this study the 
hyposmotic modulation provides exciting and underexplored avenues to change chromatin architecture and tran-
scription activity.

Hyposmotic modulation induces numerous cellular changes such as: the increase in cell size, decrease in 
intracellular levels of ATP, and increase in intracellular calcium. The hyposmotic modulation is a powerful tool 
that enables the manipulation of two of the most powerful molecules in the cell, ATP and calcium. Fluctuations 
in these molecules can have a tremendous role in cellular function and phenotype. Particularly, in the stem cell 
manipulation field, alterations in the calcium signalling can have a great impact in stem cell potency53. Also, ATP 
is not only an important extracellular signalling molecule but is crucial for most intracellular kinetic reactions; 
the impact of ATP levels on transcription rate observed upon osmotic modulation is in line with previous obser-
vations31 and may be crucial for some of the transcription changes observed. These may have a profound effect 
in the splicing repertoire produced by the cell31,54 and may impact in stem cell fate decisions31,55. This side-effect 
induced by hyposmotic modulation has to be considered when longer/multiple hyposmotic stimuli are required, 
and in these scenarios transcription speed can be rescued or modulated by providing ATP and stabilising agents 
to the cells after hyposmotic modulation. Nevertheless, the fact that the hyposmotic modulation enabled the 
recruitment of more RNA Pol II into chromatin is a main result that opens avenues of new possibilities to mod-
ulate transcription and cell fate. One of such strategies is to introduce high levels of exogenous TFs inside the 
cell and therefore favour the recruitment of RNA Pol II to the binding sites of these TFs, in excess within the 
cell nucleus, and promote the transcription of specific target transcripts. To understand the biological meaning 
of RNA Pol II binding is not a straightforward or easy task, but in this study we show that the hyposmotic mod-
ulation promotes a general significant increase of the different forms of RNA Pol II bound to chromatin. We 
believe that this is a combined effect of chromatin relaxation and recruitment of RNA Pol II by different TFs. The 
biophysical impact of the entrance of water into the cell might play a crucial role in the nuclear architecture and 
chromatin structural modifications. Technically it is difficult to prove such theory but some studies have shown 
that the physical impairment of chromatin structure plays a role in the overall chromatin structure and transcrip-
tional activity26–28. For instance, the increase in H4K16 acetylation is synonym of transcriptional activity31,55–58. 
It can be argued that the results obtained with hyposmotic modulation could be achieved by the use of drugs and 
small molecules that promote chromatin remodelling. But the biophysical strategy here described presents the 
advantage of a broader action, avoids expensive reagents and can be easily tailored for application in all cellular 
scenarios.

Changing the water content of the cell may have an impact in the hydration state of the DNA, condition the 
methylation state of different genomic areas, and also favour the binding of specific TFs. The specific access of 
TFs to cell’s DNA is a crucial step for fate determination. In this study, we conducted in silico analyses to look 
for TFs that could be working as “osmotic sensors”. Although we cannot provide at this time experimental val-
idation for most of this in silico analyses we would like to highlight that eight out of the top ten TFs, computed 
by PASTAA, are classified as Zinc Finger TFs. Further studies are needed to assess the importance of this class 
of TFs in osmotic regulation in mammals but from an evolutionary perspective this makes sense. The osmotic 
stress response is mediated by ZF proteins in Arabidopsis (AtRZF protein), Festuca arundinacea (FaZF protein), 
and the rice plant (ZF protein 36)59,60. Therefore, although not very explored in humans, the osmotic modulation 
response might be also mediated by ZF proteins. From a bioengineering perspective, this ZF-TF effect can hold 
a huge potential for future application in engineered ZF-protein strategies for gene-editing and differentiation, 
dedifferentiation and transdifferentiation protocols with various applications in cell therapy and cancer research.

Here we show in a series of proof-of-principle experiments that under specific hyposmotic stimulation it is 
possible to improve the kinetics and efficiency of transdifferentiation and iPSC-reprogramming protocols. The 
changes in the efficiency of cell fate modulation are modest but this may be related to the fact that these processes 
are mainly dependent on pioneer factors which do not need chromatin to be accessible to bind the DNA target 
sites. This knowledge also opens other possibilities for the hyposmotic modulation as a methodological tool for 
discovery of new pioneer TFs; that in theory would not have their binding ability impaired by chromatin hypos-
motic induced relaxation. Additionally, it could be an interesting tool to unveil characteristics of pioneer (such as 
PU.1) and non-pioneer TFs that are affected by the hydration state of the DNA.

Therefore, the full power of the impact of hyposmotic modulation on chromatin structure and transcriptional 
changes might be shadowed by the action of the pioneer factors, which are present in a stoichiometric advantage 
within the cell nucleus.

Nevertheless, there was a significant impact in the reprogramming efficiency in fibroblasts and we believe that 
the kinetic changes seen in UCB cell reprogramming also show the ability of the osmotic stimulus to modulate the 
speed of the process. In the case of the transdifferentiation experiment, CEBPα can also have a pioneer activity51,52 
and mask the full potential of hyposmotic modulation.
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These results show that hyposmotic modulation impacts in the kinetics and efficiency of cell fate alteration 
protocols but there is certainly room for further developments. To unveil the full potential of the hyposmotic 
modulation would be very interesting to use models where cell fate changes are especially hard, like the mature 
B-cell reprogramming scenario. In this context, a pulse of CEBPα expression followed by induction of Yamanaka 
factors expression reached a high fold increase (>100) in the reprogramming efficiency61. We believe that in this 
challenging system it would be possible to understand if the CEBPα pulse has a role in chromatin opening, to 
allow the access of the pluripotency-related TFs, and if this effect could be mimicked by an hyposmotic transient 
modulation scheme.

To use hyposmotic modulation as a cellular modulation tool, several variables need to be considered such 
as the cell type, and particularly, the time and intensity of the stimulus need to be specifically tailored to each 
cell type. The susceptibility of the different cell types to different hyposmotic modulation schemes is also highly 
dependent on biophysical characteristics. Cells in suspension or adherent to cell culture substrates have differ-
ent cytoskeleton structures and therefore respond differently to increased water content and cell size changes62. 
Another aspect that probably influences the process is the previous contact with specific extracellular matrix 
components. In this case the memory of the physical characteristics of the environment can alter the efficiency or 
the kinetics of the process.

Future work with water homoeostasis and the ionic balance will certainly provide fruitful knowledge for the 
understanding of normal and pathological cell behaviour in specific contexts. In our opinion, osmotic mod-
ulation provides a cheap, easy and scalable strategy that withholds a huge potential for future development of 
targeted therapeutic approaches either by the impact on cellular function, cellular fate determination, and metab-
olism but especially by its ability to influence transcription.

Materials and Methods
Cell collection and culture. Cord-blood cells were collected from donors after signed informed consent 
and ethical approval was granted by the ethics committee of Hospital Infante D. Pedro Aveiro in Portugal. All 
experiments were performed in accordance with relevant, approved guidelines and regulations. The experimental 
protocols were also approved by the ethics committee of Hospital Infante D. Pedro Aveiro in Portugal. Several cell 
lines were used and maintained at 37 °C in humidified incubators with 5% CO2 in specific growth culture condi-
tions as further described within the supplementary experimental procedures.

Osmotic modulation. The cells were exposed to different osmotic conditions for different times at 37 °C 
with 5% CO2. In Supplementary Table S1 the specific conditions used are described.

Cell imaging and cytometry. For cell imaging, a confocal LSM 710 (Carl Zeiss) and a high content imaging 
platform IN Cell 2200 Analyzer (GE Healthcare) were used. For analysis of the images from fluorescence and 
confocal microscopy, ImageJ and ZEN software were used. For a specific analysis of mitochondrial morphology 
a specific plugin was used in ImageJ and references for this tool are described in the results. For IN Cell 2200 
Analyzer image data analysis, the equipment software was used.

For cell cytometry, GalliosTM (Beckman Coulter), BD FACSVerse (Becton Dickinson Biosciences), BD 
FACSARIA II (Becton Dickinson Biosciences) and BD Accuri C6 (Becton Dickinson Biosciences) flow cytom-
etry machines were used. For analysis of the acquired data, Kaluza Analysis 1.5, and FlowJo software were used.

RNA Pol II transcription analyses. To assess transcription, Click-iT RNA Alexa Fluor 488 Imaging Kit 
(Molecular Probes) was used as per the manufacturer’s protocol. Flow cytometry was used to assess the fluores-
cent signal (GalliosTM). Different time points for 5-Ethynyl Uridine (EU) incorporation were evaluated.

The number of active molecules of RNA polymerase II (RNA Pol II) was also measured after “run on” experi-
ments using 5-Ethynyl-UTP (EUTP) as detailed supplementary experimental procedures.

Enzymatic digestions. DNase I assay and MNase test were performed in 5 × 105 K562 nuclei and the diges-
tions were carried out as further explored in the supplementary experimental procedures.

Chromatin immunoprecipitation Sequencing. K562 cells were grown in complete growth medium and 
after osmotic modulation the cross-link was done with formaldehyde. Chromatin immunoprecipitation was car-
ried out using antibodies against RNA Pol II different forms.

Fluorescence Loss in Photobleaching – FLIP. Briefly, in FLIP experiments a nuclear area is continuously 
photobleached (Fig. 3A), and the fluorescence intensity is a measure of the amount of RNA Pol II-GFP molecules 
in the unbleached area. The decay in fluorescence is then due to the free RNA Pol II-GFP molecules entering the 
bleached area. Different dynamic regimes in the fluorescence decay thus indicate the presence of different disso-
ciation kinetics (Hieda et al.32). The simple kinetic model shown in Supplementary Fig. S5 can be used to estimate 
the reaction rate constants. Further details are provided in Supporting info.

Lentiviral production. The viral packaging was performed in 293 T with the appropriate amounts of trans-
fection agent Lipofectamine 2000 and plasmids of interest with a third generation lentiviral vector system63.

Reprogramming protocol. The cell reprogramming protocol used was based on the report in43 and is 
detailed in supplementary experimental procedures. Briefly, after viral transduction with the reprogramming 
TFs, the hyposmotic modulation schemes were done in the first week of reprogramming and the assessment of 
alkaline positive colonies was done 2 weeks after viral infection.
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Transdifferentiation protocol. The transdifferentiation protocol used was based on51, whom kindly 
donated the HAFTL-C10 cell line. The protocol used is detailed in the supplementary experimental procedures. 
Briefly the transdifferentiation was induced by addition of 100 nM of β-estradiol and the osmotic modulation was 
done one day after the induction of transdifferentiation (daily transient hyposmotic modulation until the end 
point day).

All data generated or analyzed during this study are included in this manuscript and its Supplementary 
Information files.
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