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Abstract

The emergence of 5G and the Internet of Things has prompted nations across the
globe to develop smart grids, an advanced electrical grid infrastructure capable of
producing and transporting energy in a more reliable, sustainable, and efficient way.
In addition, smart grids allow monitoring in real-time the energy production, con-
sumption, and distribution with smart meters. The grid’s large amount of data
enables intelligent energy flow management to end-point consumers. With renew-
able energy sources such as solar and wind, this management is crucial to balance
electricity supply and demand efficiently, avoiding energy loss. However, smart grids
face several challenges, such as costs for upgrading current infrastructures, interop-
erability with the traditional energy grids, or privacy and cybersecurity risks due to
the large number of distributed devices providing data to the grid.

This work will focus on cybersecurity risks and, more specifically, anomaly detec-
tion. The proposed solution enables us to detect real-time cyberattacks in the smart
grid through the network traffic between devices. Anomaly detection is performed
through time-series classifiers and by attending to real and frequent problems, such
as data imbalance and causality, using real-world network traffic datasets. To turn
our simulated context more realistic, we decided to simulate a smart grid with a
federated learning environment through the Flower framework. Similar to a con-
ventional smart grid, the system comprises several distributed nodes communicating
between them.

Two approaches are tested in the federated system. The first approach, as a baseline,
only trains a time-series classifier. The second approach uses a data processing
method, which oversamples minority class examples, increases data causality, and
then trains the time-series classifier.

As a result, the proposed approach method presents significant classification per-
formance in comparison to the baseline over datasets such as IEC61850-Security,
NSL-KDD, BOT-IoT, and UNSW-NB15 datasets. Compared to the reviewed liter-
ature, the simulation method and methodology perform better.

Keywords: Smart Grid · Anomaly Detection · Federated Learning · Imbalanced
Data · Causal Inference · Time-Series Classification
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Chapter 1

Introduction

The rapid advancement of technology and the internet of things (IoT) has led to
the development of smart grids, an advanced version of the traditional electrical
power grid, which is designed to improve the reliability, sustainability, and efficiency
of the power grid by detecting, responding, and adapting to changes in the power
system [33]. The current state of the art in smart grids relies heavily on technologies
such as advanced metering infrastructure (AMI), which uses wireless communication
to enable remote meter reading and improve the accuracy and reliability of power
usage data.

The increasing availability of 5G networks offers the potential to support new ap-
plications and capabilities in smart grids, such as improved support for distributed
energy resources (DERs) and enhanced grid automation and control. Typically a
smart grid architecture (Figure 1.1) is composed of three kinds of entities such as:

• Energy production plants are the facilities that generate electricity through
solar, wind, thermal, and nuclear energy;

• Substations are facilities where the voltage of the electricity is increased or
decreased, allowing it to be transmitted over long distances. They also help
to distribute electricity to different parts of the grid;

• Final consumers are the homes, businesses, and industries that receive en-
ergy. They are equipped with smart meters to communicate with the grid to
adjust the real-time energy flow sent to the infrastructure.

Smart grids deal with small distributed generation sources, such as homes with pho-
tovoltaic panels injecting power into the grid, redirecting the energy flow where the
energy is needed. It contrasts with a conventional grid where energy production
is centralized into a unique power plant [118]. To manage all this energy traffic,
the smart grid comprises an AMI, which monitors power consumption, using re-
mote communication to send readings from smart meters. This is one of the key
technologies currently used to improve the accuracy and reliability of power usage
data [34].

In a substation, there are intelligent electronic devices (IEDs), which are devices that
monitor and control electrical equipment, such as circuit breakers and transformers.
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IEDs can be used to automate and optimize the operation of a substation and provide
real-time monitoring and control capabilities of the energy flow. The information
is exchanged using the generic object oriented substation event (GOOSE) protocol.
As the data is sent in real-time, the IEDs can quickly respond to changes in the
substation and make the necessary adjustments to keep the grid stable and reliable.

Figure 1.1: Smart grid structure
[Individual widgets provided by Macrovector [79]]

1.1 Context and Motivation

With the increasing availability of 5G networks, smart grids have the potential to
support new applications and capabilities, such as improved support for DERs and
enhanced grid automation and control [31]. However, smart grids are challenged
with some issues [118] such as:

• The management and synchronization of homemade solar energy production
with the grid;

• The optimization of renewable energy production and storage depending on
the energy demand;

• The management of remote communication between systems and smart me-
ters;

• Their vulnerability to cyberattacks with all the IoT devices;

• The privacy of the data exchanged between devices;

• The storage and processing of large amounts of data.
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The main challenge is developing an efficient intrusion detection system to prevent
anomalies and mitigate consumer consequences. Furthermore, anomaly detection
is crucial in smart grids as it can help detect and mitigate potential threats that
may result from cyberattacks or technical failures conducting, in the worst cases,
into blackouts. Focusing on network traffic generated by the IoT devices of the
grid, these anomalies can be characterized by suspicious communications between
internet protocol (IP) addresses, ports, or unusual network packet information [15].

1.2 Research Goals

In this work, we developed an intrusion detection system for the smart grid context,
capable of detecting in real-time the network traffic anomalies using a distributed
environment. Federated learning (FL) is the key paradigm used in this work since it
enables the distribution of the nodes to simulate the smart grid architecture, where
nodes communicate with each other [81]. However, anomaly detection problems,
such as detecting attacks in a system, are affected by several problems, such as
causality or poor data quality due to imbalanced data.

Despite the good performances delivered by federated-based intrusion detection sys-
tems (IDSs) proposed in the literature, a very small number of these approaches
provide real-time information about data imbalance and causality, enabling the un-
derstanding of poor classification results. Towards a deeper analysis of the system’s
data, the main goal of this work is to:

Develop strategies to predict cyberattacks
in a federated-based context

Following this goal, a federated system was developed to simulate the smart grid,
in which were used two different approaches:

• The first approach (baseline) trains the classifier with the received data and
predicts the cyberattacks;

• The second approach (ours) performs a processing step on the received data,
handling data imbalance and causality problems before training the classifier.

This federated system is monitored by a graphical user interface (GUI), which shows
real-time metrics from each node, such as classification performance, data imbalance,
and causality. The communication between the federated system and the GUI is
done via message queuing telemetry transport (MQTT) protocol [8], which sends
those metrics about the system asynchronously.

The experiments in this work attempt are separated into two phases where:

• The first phase searches for a time-series classifier that fits the need for fast
and efficient classification for the smart grid context, but also for the structural
causal model (SCM) representing dataset’s variables relationships;
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• The second phase evaluates the two approaches in different anomaly detec-
tion scenarios, using the classifier and the SCM from the previous phase. The
first scenario only detects if there is a cyberattack or not using a smart grid-
oriented dataset, IEC61850-Security, and a binary dataset often used in the
literature as NSL-KDD. The second scenario consists in detecting individu-
ally different attacks as denial of service (DoS) attacks present in BOT-IoT,
IEC61850-Security, and UNSW-NB15 datasets, but also message suppression,
data manipulation, or control manipulation attacks present only in IEC61850-
Security dataset.

The results obtained by these experiments enable comparing the two approaches
(baseline and our data processing) and understanding if the proposed approach
surpasses the baseline.

1.3 Research Contributions

The work developed during this thesis resulted in the following works:

• Dylan Perdigão, Tiago Cruz, Paulo Simões, and Pedro Henriques Abreu. "Fed-
erated Intrusion Detection System for Smart Grids using Causality". In Pro-
ceedings of ACM International Conference on Information and Knowledge
Management (CIKM 2023).
– Paper, submitted on the 2nd June 2023

• Dylan Perdigão, Tiago Cruz, and Pedro Henriques Abreu. "Towards An In-
trusion Detection System For Smart Grids: A Federated Approach". In the
22nd European Conference on Cyber Warfare and Security (ECCWS 2023).
– Poster, presented on the 23rd June 2023, "Best Poster Award" [55]

1.4 Document Structure

The remainder of this thesis is organized as follows. Chapter 2 overviews the back-
ground knowledge supporting this work, presenting key concepts such as federated
learning, distance metrics, imbalanced data, causality, and time-series classifiers.
Chapter 3 highlights datasets and research on intrusion detection systems for smart
grids. Chapter 4 describes the architecture of the experimental design for anomaly
detection in the federated-based environment, including the proposed strategies.
Chapter 5 showcases the results and discusses them. Finally, Chapter 6 concludes
the study, highlights the key findings, and suggests directions for future research in
this area.
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Background Knowledge

This chapter introduces the concepts and technologies used in this work. First,
federated learning is described with data partitioning methods, federation scale,
aggregation strategies, privacy mechanisms, and frameworks in Section 2.1. After
that, the section presents distance metrics used for multiple purposes in this work.
Afterward, Section 2.2 discusses imbalanced data, which reviews different approaches
to classify minority classes and treat this problem. Thereafter, causality is another
topic that affects data and is discussed in Section 2.3. Then, different algorithms are
presented in Section 2.4 for classification. Finally, Section 2.5 overviews the whole
chapter.

2.1 Federated Learning

Federated Learning [81] was proposed by Google researchers in 2016. The concept
proposes a system that allows solving machine learning problems in a distributed
way. In particular, the objective is to minimize the function f(w) (typically, it can
be the loss function, but it can be any function that solves a specific problem), with
the model parameters w, over N clients:

min
w

f(w) =
1

N

N∑
i=1

fi(w) =
K∑
k=1

nk

n
Fk(w) (2.1)

where:
Fk(w) =

1

nk

∑
i∈pk

fi(w) (2.2)

First, several local nodes (i.e., client devices) train their model locally to preserve
data privacy. Then the model computed in each local node is aggregated in a central
node (i.e., central server) that will allow updating the local nodes without directly
exchanging data. The advantage of FL is that it is scalable since the training of
the machine learning (ML) model is distributed into multiple devices in contrast
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with centralized learning. This gives FL privacy-preserving capabilities during the
training of the ML model since it is done locally on the local node (in the case of deep
learning (DL), only the weights are shared with the central node). Although IoT
devices like smartphones have, in some cases, little processing power, low bandwidth,
and limited storage, they produce sensitive data that should not be transmitted
to centralized servers. This data serves to train more accurately their local ML
models in a federated system. Note that there is a primary advantage compared
to traditional centralized training since the performance of the ML model is better
where the data is not independent and identically distributed or where the data is
heterogeneous. This means that the data produced in the local node can be utterly
different from node to node, and in a centralized context, it will underfit the model.
Hopefully, FL solves this problem.

Regarding our smart grid context, federated learning enables the grid architecture
simulation, where the model’s distributed training is done through nodes represent-
ing the substations.

The remainder of this section presents the phases of FL in Section 2.1.1. Then,
the concept of data partitioning is explained in Section 2.1.2. Next, the scalability
of the FL system is explained in Section 2.1.3. Afterward, Section 2.1.4 gives an
overview of aggregation strategies. After that, privacy is discussed in Section 2.1.5,
followed by a review of the FL frameworks in Section 2.1.6. Finally, this section is
summarized in Section 2.1.7

2.1.1 Phases of Federated Learning

Federated Learning encompasses three phases [13] exemplified in Figure 2.1, which
are the initialization, the model’s local training, and the clients’ aggregations.

Figure 2.1: Phases of federated learning
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Initialization

The first phase is initialization, where the server selects the clients participating
in the federated learning round. The server sends its global model and an initial
gradient to the participating clients.

Local Training

The second phase is local training, where the clients update their local models (in
the first round, the model will be identical to the global model). Then, each client
trains their local models on its data to send it back to the server.

Aggregation

The third phase is aggregation, where the server aggregates the models from the
clients using a strategy such as FedAvg. For instance, the client model weights are
transmitted to the server using this strategy, averaging all weights received. Finally,
the process begins again for the subsequent federated learning round.

2.1.2 Data Partitioning

A federated system can have its data partitioned in three ways, according to their
feature space (i.e., columns) or sample space (i.e., rows), as shown in Figure 2.2. The
first is horizontal federated learning (HFL), the second is vertical federated learning
(VFL), and the third is transfer federated learning (TFL).

Horizontal Federated Learning

Horizontal federated learning shares the same feature space but has a different sam-
ple space. It is a simple solution to avoid data leaks because only the parameters of
the local and global models are communicated. However, it has the disadvantage of
needing more communication resources, computational power, and storage memory.
Therefore, some research has been done to reduce communication costs [52]. Exam-
ples of HFL include wake-word detection (call voice assistants in smart homes by
voice when saying a sentence but with different voices), next-word prediction, and
recommendation systems.

Vertical Federated Learning

Vertical federated learning shares the same sample space but a different feature
space. Only one client stores all the data labels, this client being a guest party or
passive party client. Unlike the HFL, the guest client receives the model from the
other clients (host party clients) and returns the value of the gradients to update the
local models. The advantage of this system is to use fewer communication resources,
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which depend on the number of data samples, ensuring the same performance. Some
algorithms using VFL are SecureBoost or FedBCD. For example, this system coop-
erates in training a model with their datasets by hospitals and insurance companies
can use or by banks together with e-commerce companies so that from transactions,
they can estimate personalized loans based on online shopping behavior.

Transfer Federated Learning

Transfer federated learning combines HFL and VFL. In this case, the sample and
feature space are different, as shown in Figure 2.2c. In this system, the value of
the different feature spaces is standardized for local training. With encryption, the
system has to use a random mask to guarantee privacy in the gradient exchange. For
example, TFL is used for disease diagnosis in which multiple patients from multiple
hospitals and multiple countries (sample space) using multiple medications (feature
space) are used. The objective is to standardize the data to enrich the model.

(a) Horizontal FL (b) Vertical FL (c) Transfer FL

Figure 2.2: Data partitioning for federated learning

2.1.3 Federation Scale

This section discusses the distinction between cross-device (CD) and cross-silo (CS)
systems, which are two ways of scaling the FL system [59]. This topic is essential
for this work since smart grids are large distributed systems, and the system needs
a federation scale that fits its goals. The main difference between these two types
of systems is their scalability, which leads to various other differences in their char-
acteristics. A summary of the federation scales for FL for both types of systems is
provided in Table 2.1.

Cross-Device

Cross-device is defined by the case that there are many clients but a small amount
of data for training due to the limited computational power. The clients also have
more problems transmitting their models to an aggregation server, making them
more susceptible to failures. For example, on smartphones, in the case of keyboard
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suggestion, clients do not have many resources to train the model, but the server
has the processing power.

Cross-Silo

Cross-silo is defined by the small number of clients in the federation for processing
a large amount of data. Consequently, they require more computational power.
Unlike for cross-device, the clients in cross-silo are referenced. Therefore, it allows
for better control of the clients to avoid failure scenarios. For example, the server
would be a company that owns several data centers worldwide. In this case, each
data center is a client.

Table 2.1: Summary of federation scale

Category Subcategory Cross-Device Cross-Silo

Clients

Scalability >100 <100
Computational Power Low High
Availability Low High
Reliability Low High
Indexing ✗ ✓

Data Partitioning HFL ✓ ✓

VFL ✗ ✓

Example - IoT Device Data Center

2.1.4 Aggregation Strategies for Federated Learning

The aggregation strategies are important since they define how the server aggregates
the clients’ models. Most of the strategies are applied to DL since it works with
weights, but it is possible to adapt them into our context for smart grids. This
section overviews the current state-of-the-art for aggregation strategies for FL.

FedAvg

FedAvg is the first federated aggregation algorithm [81] proposed by the researchers
who developed FL. It averages the model updates from multiple nodes in a FL
setting. The approach is robust for unbalanced, non-independent, and identically
distributed data distributions. Mainly used for deep neural network (DNN), the
weights w⃗ are updated as follows:

w⃗ ← w⃗ −
K∑
k=1

nk

n
∆w⃗k (2.3)

Where nk is the number of examples for the client k, consequently:

n =
K∑
k=1

nk (2.4)
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FedAvgM

FedAvgM (Federated Averaging with Server Momentum) is an extension of the Fe-
dAvg algorithm [51] that introduces momentum β to the model updates to improve
the convergence rate. The weights are computed as follows:

w⃗ ← w⃗ − v⃗ (2.5)

Where v⃗ is:

v⃗ ← βv⃗ +
K∑
k=1

nk

n
∆w⃗k (2.6)

FedAsync

FedAsync (Asynchronous Federated Optimisation) is a federated optimization algo-
rithm [131] that uses an asynchronous approach to train models on non-independent
and identically distributed data, improving flexibility and scalability. It allows the
nodes to update their local models independently and asynchronously for a restricted
family of non-convex problems. The strategy converges quickly and often outper-
forms synchronous optimization algorithms such as FedAvg.

FedBCD

FedBCD (Federated Block Coordinate Descent) is an aggregation algorithm [75] that
performs several gradient updates in client nodes before communication with the
server. It is designed for FL scenarios where the data is partitioned by feature rather
than by sample (HFL). It allows parties to perform multiple local gradient updates,
reducing communication overhead independently. Consequently, the communication
cost decreases while maintaining the performance of the collaborative model.

FedProx

FedProx (Federated Proximal Gradient Descent) is a generalization of FedAvg [71].
It is a federated optimization algorithm that uses a proximal term to the local sub-
problem to limit the impact of local variable updates. The new objective hk to
minimize is:

min
w

hk(w) = Fk(w) +
µ

2

∥∥w − wt
∥∥2 (2.7)

It improves the convergence and demonstrates significantly more stable and accurate
convergence behavior relative to FedAvg.
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SCAFFOLD

SCAFFOLD (Stochastic Controlled Averaging for Federated Learning) is a federated
aggregation algorithm [60] that uses a communication-efficient variant of stochastic
gradient descent (SGD) to train models. It aims to reduce the communication
rounds and is not affected by data heterogeneity, besides being faster than FedAvg.
The update direction for the server model c and the update direction for each client
ci are estimated. The difference between these update directions is the following:

∆ci = c− ci (2.8)

These differences are used to estimate the client drift, which measures how much
the local model updates deviate from the global model updates. This estimation
of the client drift is then used to correct the local updates, helping to improve the
convergence of the model.

FedOpt

FedOpt (Adaptive Federated Optimization) is a general strategy [103] for federated
learning that is compatible with various adaptive optimizers as AdaGrad [105],
Yogi [132], and Adam [62], resulting respectively in the following FedAdaGrad,
FedYogi, FedAdam. Adaptive optimizers adjust their learning rates based on the
knowledge of past iterations, which can improve the convergence of the model.

FedAttOpt

FedAttOpt (Federated Attentive Optimisation) is a federated optimization algo-
rithm [56] that uses attention mechanisms to weight the contribution of each client’s
model parameters to the global model parameters on the central server. The atten-
tion score for each client model ak is:

ak =
n∑

j=1

esk

esj
(2.9)

It is calculated using a scaled dot-product sk of the client model parameters θk and
the global model parameters:

sk =
θT θk√

n
(2.10)

The distance between the two sets of model parameters at time t is calculated using
a p-norm distance metric:

dk =
∥∥θt − θkt+1

∥∥
p

(2.11)

The overall objective is to minimize the loss function, which is a weighted sum of
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the distances between the global model and the client models, with the weights
determined by the attention scores:

L =
m∑
k=1

akdk (2.12)

It performs better than FedAvg in terms of perplexity and communication cost.

FedMA

FedMA (Federated Matched Averaging) is a layer-wise federated aggregation al-
gorithm [125] for neural networkss (NNs) such as convolutional neural networks
(CNNs) and long short-term memories (LSTMs). FedMA gathers the weights of the
first layer of the model from the clients and performs one-layer matching to obtain
the first layer weights of the federated model. The server then broadcasts these
weights to the clients, who train all consecutive layers on their datasets, keeping the
matched federated layers frozen. This process is then repeated up to the last layer,
for which a weighted averaging is performed based on the class proportions of data
points per client. It reduces the variance of the model updates and improves the
convergence rate of the model.

SAFL

SAFL (Simulated Annealing-based Federated Learning) introduces the concept of
simulated annealing [101] to the federated learning process. Simulated annealing is
an optimization technique that allows a device to choose its local model with a high
probability in the early stages of training when the global model is still immature.
As training continues and the global model becomes more mature, the probability
of using the local model decreases. Using simulated annealing, SAFL can improve
the model’s convergence speed and classification accuracy compared to FedAvg.

FedMGDA+

FedMGDA+ (Federated Multiple Gradient Descent Algorithm Plus) aims to opti-
mize multiple objectives [53], including fairness among users and robustness against
malicious adversaries. FedMGDA+ is designed to be simple and has fewer hyperpa-
rameters to tune than other approaches. It is also guaranteed to converge to Pareto
stationary solutions, which are optimal solutions that cannot be improved without
sacrificing the performance of at least one of the participating users.

FedBuff

FedBuff (Federated Learning with Buffered Asynchronous Aggregation) is a novel
method [100] for FL introduced by Meta AI that aims to combine the best prop-
erties of both synchronous and asynchronous FL. It uses a buffer to store client
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updates and aggregates them in a way that is agnostic to the optimizer’s choice.
This allows FedBuff to scale more efficiently than synchronous FL while still being
compatible with privacy-preserving technologies such as Differential Privacy and
Secure Aggregation [12].

2.1.5 Privacy Mechanisms

Federated learning has privacy mechanisms that can be important for the smart grid
context since it is a critical infrastructure. The three mechanisms presented in this
section are the differential privacy (DP), the homographic encryption (HE), and the
secure multiparty computation (SMC).

Differential Privacy

Differential privacy is a privacy-preserving technique used to protect sensitive per-
sonal data. It works by adding noise to the data, which makes it difficult to de-
termine the specific values of any individual’s data. This noise helps protect each
individual’s privacy while allowing the data to be used for statistical analysis. How-
ever, it is essential to note that adding noise to data can also negatively impact
the quality of the statistical analysis. Therefore, balancing the trade-off between
privacy protection and data quality is crucial when using DP [24, 30, 45].

Homographic Encryption

Homographic encryption is used to protect the privacy of the trained model by al-
lowing the server to aggregate updates from multiple clients without learning the
contents of the updates. HE can provide strong privacy guarantees in federated
learning, as it ensures that the server cannot learn the contents of the updates.
However, it can also introduce significant overhead in computation and communica-
tion, as the encrypted updates may be larger and more computationally expensive
to work with than their unencrypted counterparts [32, 135].

Secure Multiparty Computation

Secure multiparty computation can secure client updates in the FL system. This is
achieved by encrypting the client updates on the client side, such that the central
server can only perform computations on the encrypted updates but cannot access
the raw data. This ensures no information leakage from the client updates at the
central server [21, 87].

2.1.6 Frameworks for Federated Learning

Several frameworks are available for federated learning, as listed in Table 2.2. These
frameworks vary in compatibility with ML frameworks, scalability, data partition-
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ing, communication protocols, and privacy considerations. Among these options,
Flower stands out for its ongoing development and comprehensive documentation.
Additionally, it is highly customizable and has a supportive community on Slack for
addressing questions and providing suggestions.

Table 2.2: Summary of federated learning frameworks

Name Year Compatibility
Federation

Scale Nodes
Data

Partitioning Topology Proto. Priv. Ref.
pytorch tf sklearn CS CD HFL VFL

TFF 2017 ✗ ✓ ✗ ✗ ✓ - ✓ ✗ Centralized gRPC DP
HE [1]

PySyft 2018 ✓ ✓ ✗ ✓ ✓ - ✓ ✓ Centralized
RPC
WS
HE

DP
SMC [137]

LEAF 2019 ✗ ✓ ✗ ✓ ✓ - ✓ ✗ Centralized - - [17]

PaddleFL 2019 ✗ ✗ ✗ ✓ ✓ >100 ✓ ✓ Centralized
gRPC
ZMQ

DP
HE [78]

FL&DP 2020 ✓ ✓ ✓ ✓ ✗ - ✓ ✗ Centralized - DP [104]

FedML 2020 ✓ ✗ ✗ ✓ ✓ >100 ✓ ✓
Centralized
Distributed
Hierarchical

RPC
MPI
SP

- [48]

FATE 2021 ✓ ✓ ✓ ✓ ✓ - ✓ ✓ Centralized gRPC
DP
HE

SMC
[74]

OpenFed 2021 ✓ ✓ ✗ ✓ ✓ - ✓ ✗
Centralized
Distributed
Hierarchical

- - [23]

Flower 2022 ✓ ✓ ✓ ✓ ✓ 1000 ✓ ✗ Centralized
gRPC
Ray DP [10]

FedLab 2022 ✓ ✗ ✗ ✓ ✓ 100 ✓ ✗
Centralized
Distributed
Hierarchical

- - [134]

OpenFL 2022 ✓ ✓ ✗ ✓ ✗ - ✓ ✓ Centralized gRPC - [36]

FLUTE 2022 ✓ ✗ ✗ ✗ ✓ 50000 ✓ ✗ Centralized Gloo
NCCL DP [43]

2.1.7 Summary

This section presented different aspects of federated learning. First, the federated
process is explained, where the local nodes have their own data and train a model ag-
gregated at the upper nodes. Then the different data partitions, such as horizontal,
vertical, and transfer federated learning, were presented. Afterward, two federa-
tion scales were presented, which are cross-device and cross-silo. Next, different
aggregation strategies were presented, with FedAvg being the most popular. There-
after, privacy mechanisms are presented, such as differential privacy, homographic
encryption, and secure multiparty computation. Finally, different frameworks are
presented with different characteristics.

The system developed in this work enables the simulation of the smart grid’s substa-
tions in a distributed way. In this work, the data used has the same features along
the simulation, which means the simulation uses a horizontal partitioning of the
data. The system is defined as cross-silo for the federation scale since the number
of nodes is relatively small, needs availability, and must be reliable. Regarding the
aggregation strategies, the simulation system will aggregate the node’s data instead
of local models, as done in traditional federated learning. The framework used for
the simulation environment is Flower.
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2.2 Imbalanced Data

Data imbalance is a common issue in ML, which can be particularly challenging when
working with anomaly detection tasks because the classification model suffers from
bias, leading to inappropriate classification results. In anomaly detection tasks,
which detect unexpected events in a system like a smart grid, the positive class
(i.e., the anomalies) are often minoritarian towards the majority class. This can
result in poor performance in the minority class and many classification errors.
One important concept to understand when working with imbalanced data is the
imbalance ratio (IR), which measures the proportion of the number of minority
samples nmin and the total number of samples n (Eq. 2.13).

IR =
nmin

n
(2.13)

Figure 2.3 shows examples of imbalanced data, where an IR of 50% corresponds to
a balanced dataset (i.e., the number of samples of all classes are the same). On the
other hand, the smaller the IR, the smaller the number of samples in the minority
class.

(a) Balanced (IR = 50%) (b) Imbalanced (IR = 25%) (c) Imbalanced (IR = 10%)

Figure 2.3: Examples of imbalanced data over 100 samples

The remainder of this section presents different distance metrics in Section 2.2.1.
Then, the different types of examples of minority classes are explained in Sec-
tion 2.2.2. Next, different methods of handling imbalanced data are described in
Section 2.2.3. Finally, this section is summarized in Section 2.2.4.

2.2.1 Distance Metrics

Distance metric functions are essential in ML for supervised and unsupervised learn-
ing to compute the distance between points (instances) in data. Each distance metric
has better characteristics for a specific task, such as classification or clustering. If
two points are close, then they are similar. On the other side, they are different
if the points are far. Distance metrics are essential for this work to compute the
K-nearest neighbors (KNNs) to classify data [80, 106]. However, for this context,
points can be characterized by continuous (i.e., lengths, temperatures) or nominal
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(i.e., colors, categories) attributes. Consequently, exploring a metric that satisfies
both attribute types is necessary.

Euclidean Distance

The Euclidean distance (Eq. 2.14) is a well-known metric, namely to compare the
similarity between measures using common properties, for instance, height, width,
or depth of parts.

Deuclidean(x⃗, y⃗) =

√√√√ m∑
a=1

(xa − ya)
2 (2.14)

x⃗ and y⃗ are two input vectors to be compared, and m is the number of attributes.

Note that if the square root is removed, another commonly used metric is obtained
called Squared Euclidean distance since the closest point is still the nearest point
with or without the squared root.

Manhattan Distance

The Manhattan distance (Eq. 2.15), also called city-block distance, is preferred for
attributes with different properties, for instance, age, weight, and gender of a patient.

Dmanhattan(x⃗, y⃗) =
m∑
a=1

|xa − ya| (2.15)

It requires less computation than the Euclidean distance since it does not compute
the square root on each iteration.

Minkowski Distance

The Minkowski distance (Eq. 2.16) is a generalization of Euclidean and Manhattan
distances.

Dminkowski(x⃗, y⃗) =

[
m∑
a=1

|xa − ya|r
]1/r

(2.16)

Where p is the distance of order between two points. p = 2 corresponds to the
Euclidean distance, and p = 1 corresponds to the Manhattan distance.

Chebychev Distance

The Chebychev distance (Eq. 2.17) is another specific case of the Minkowski distance
when p→ +∞. It results in the biggest attribute difference.

Dchebychev(x⃗, y⃗) =
m

max
a=1
|xa − ya| (2.17)

Similarly, if p→ −∞, it results in the smallest attribute difference.
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Mahalanobis Distance

The Mahalanobis distance (Eq. 2.18) is a more complex metric, considering the
covariance between dimensions, which makes the distance invariant to scaling oper-
ations.

Dmahalanobis(x⃗, y⃗) =
√

(x⃗− y⃗)TC−1(x⃗− y⃗) (2.18)

C is the covariance matrix, and consequently C−1 is its inverse matrix. Note that
the symbol T means the vector is transposed.

HEOM Distance

The above-presented metrics are more suited for continuous attributes but not
both simultaneously. The heterogeneous euclidean-overlap metric (HEOM) from
Equation 2.19 tries to satisfy this issue, computing a normalized version of the
Euclidean distance for continuous attributes and computing overlaps for nominal
attributes [127].

DHEOM(x⃗, y⃗) =

√√√√ m∑
a=1

d2a (xa, ya) (2.19)

Where da(xa, ya) is:

da(xa, ya) =


1 if xa or ya is undefined
0 if a is nominal and xa = ya
1 if a is nominal and xa ̸= ya

|xa−ya|
max(a)−min(a)

otherwise

(2.20)

Note that HEOM also supports missing data, attributing the value 1 to da(xa, ya).

HVDM Distance

The heterogeneous value difference metric (HVDM) from Equation 2.21 solves the
limitations of HEOM, giving more weight to the nominal attributes [127].

DHVDM(x⃗, y⃗) =

√√√√ m∑
a=1

d2a (xa, ya) (2.21)

Where da(xa, ya) is:

da(xa, ya) =



1 if xa or ya is undefined
0 if xa = ya
1 if a is continuous and σa = 0
|xa−ya|
4σa

if a is continuous and σa ̸= 0[∑C
c=1

∣∣∣Na,x,c

Na,x
− Na,y,c

Na,y

∣∣∣2]1/2 otherwise

(2.22)
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Note that the standard deviation for a (σa) has a degree of freedom equal to 1.
Finally, Na,x,c and Na,y,c are the samples with respective values x and y for the
attribute a and the class c. Consequently, Na,x, for instance, is computed as in
Equation 2.23.

Na,x =
C∑
c=1

Na,x,c (2.23)

2.2.2 Types of Examples in Minority Classes

In an imbalanced data context, it is important to look at the minority class be-
cause there is the possibility of being surrounded by the noise of the majority class,
decreasing classification performances. Napierala et al. [98] proposed a method for
identifying minority class examples into four categories: safe (denoted as S), rare
(denoted as R), borderline (denoted as B), and outlier (denoted as O). The minor-
ity class instances are labeled based on the proportion of their 5-nearest neighbors
that belong to the same class using the HVDM distance from Section 2.2.1. These
proportions permit to classify the instances with the following conditions:

• If there are 5/5 or 4/5 neighbors in the same class, the example is labeled as
a safe example;

• If there are 3/5 or 2/5 neighbors in the same class, the example is labeled as
a borderline. Their neighbors correctly classify these examples but may be
close to the decision boundary between the classes;

• If 1/5 of the example’s neighbors belongs to the same class, and:

- If that neighbor also has 0 or 1/5 neighbors belonging to the same class.
The example is labeled as rare example;

- If the example has other neighbors from the same class in proximity, it
is considered a borderline example instead.

• If none of the neighbors belongs to the same class, the example is labeled
outlier (denoted as O).

Adapting the thresholds can extend this method to more neighbors K. In the case
of Figure 2.4, K = 5 is chosen to classify the instances with the ecoli dataset from
the UCI Machine Learning Repository [29] through the multidimensional scaling
(MDS) visualization [25].
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(a) Before classification (b) After classification

Figure 2.4: MDS visualizations of the minority classes over the Ecoli dataset

2.2.3 Imbalanced Data Processing Methods

There are different ways to deal with imbalanced datasets, such as undersampling,
oversampling, or both. The methods above take into account the nearest neighbors
to sample the data.

Neighborhood Cleaning Rule

Many works have been carried out to improve the classification of minority classes.
For example, the neighborhood cleaning rule (NCR) [69] allows increasing the true
positive rate (TPR) and true negative rate (TNR) up to 30% using algorithms such
as KNN, with K = 3, or C4.5, an extension of the ID3 algorithm. It uses the
HVDM [127] to compute the KNN.

(a) Before NCR (b) After NCR

Figure 2.5: Neighborhood cleaning rule over 1000 samples with K = 3

Figure 2.5 shows the difference before and after applying the NCR algorithm. We
can see in Figure 2.5b that the minority class has fewer points than the majority
class in its neighborhood.
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SPIDER

For handling imbalanced datasets, there is SPIDER [119], which stands for Selective
Preprocessing of Imbalanced Data. The algorithm addresses this problem by selec-
tively preprocessing the data to balance class distribution. The SPIDER algorithm
involves two main phases:

(1) In the first phase, each sample type (safe or borderline) is identified using
KNN with HVDM. Safe examples are defined when the K neighbors of the
same class are in their neighborhood. Otherwise, it will be a noisy example;

(2) In the second phase, the data is preprocessed according to the flags assigned
in the first phase. This involves modifying the minority class to distinguish it
from the majority class. There are three techniques for preprocessing the data
in the second phase:

• Weak amplification, which involves creating copies of the noisy exam-
ples from the minority class and adding them to the data set;

• Weak amplification and relabeling, which involve creating copies of
the noisy examples from the minority class, as in weak amplification.
Then, some of the noisy examples from the majority class are relabeled
by changing their class from the majority class to the minority class;

• Strong amplification, which involves creating copies of both the safe
and the noisy examples from the minority class.

The second version of the algorithm, SPIDER2 [99], has a two-phase preprocess-
ing, where the majority class is processed first, and the minority class is processed
afterward. SPIDER2 includes additional options for preprocessing the data, includ-
ing the ability to relabel noisy examples from the majority class as the minority
class and three options for amplifying noisy examples from the minority class (weak,
strong, and no).

The third version of the algorithm, SPIDER3 [129], is an extension of SPIDER2
that handles multiclass problems and controls the order of the preprocessing by
considering the importance of specific decision classes. It reduces noise near the
minority class and amplifies the examples near the border with the majority class
(see Figure 2.6).
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(a) Before SPIDER3 (b) After SPIDER3

Figure 2.6: SPIDER3 over 1000 samples with K = 5

ADASYN

ADASYN algorithm, which stands for Adapative Synthetic [46], creates minority
class points near the border with the majority class (see Figure 2.7). The algorithm
works as follows:

(1) First, the algorithm finds the nearest neighbors for each minority class point,
denoted as i;

(2) Then, it computes the proportion of majority class neighbors in its neighbor-
hood as a weight, denoted as wi;

(3) Afterward, for each point i with a weight wi > 0, it will generate synthetic n
examples between the point and its minority class neighborhood.

Note that the generated examples are proportional to the weight (the majority class
examples in the neighborhood) of the currently computed neighbor.

(a) Before ADASYN increasing
Nmin

(b) After ADASYN increasing
Nmin by 50%

(c) After ADASYN increasing
Nmin by 100%

Figure 2.7: ADASYN over 1000 samples with K = 5
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SMOTE

SMOTE (Synthetic Minority Oversampling TEchnique) is another popular oversam-
pling algorithm [22] capable of handling imbalanced datasets and creating synthetic
minority class points near safe examples, increasing the proportion of these examples
(see 2.8). The algorithm is modular with parameters like the number of samples to
increase, the number of nearest neighbors to use, and the distance metric to compute
the KNN. The process works as follows:

(1) First, the algorithm randomly chooses one point of the minority class and
computes its nearest neighbors;

(2) Then, SMOTE computes the distance between the current point and one of
its neighbors;

(3) Afterward, a new point is generated between the two points;

(4) Finally, the process is repeated until achieving the desired number of instances.

Note that SMOTE and the other algorithms should be applied only to the training
data due to the generated synthetic data, which can introduce bias in classification
results.

(a) Before SMOTE increasing
Nmin

(b) After SMOTE increasing
Nmin by 50%

(c) After SMOTE increasing
Nmin by 100%

Figure 2.8: SMOTE over 1000 samples with K = 5

2.2.4 Summary

In this section, the problem of imbalanced data was introduced. Then, different
popular distance metrics were presented, such as Minkowski distance derivations
and Mahalanobis distance. However, these metrics must be improved for continuous
and nominal attributes simultaneously. The reason why heterogeneous metrics were
presented, such as HEOM and HVDM. Afterward, a method for classifying minority
class examples is presented, which uses HVDM distance. Finally, four algorithms
that handle imbalanced datasets were explained: the neighborhood cleaning rule,
SPIDER, ADASYN, and SMOTE.

The HVDM distance will be used in this work for computing the KNN for differ-
ent datasets containing continuous and nominal attributes. This distance presents

22



Background Knowledge

better results than HEOM distance in Wilson et al. [127] experimentations. The
SMOTE algorithm is used to handle the imbalanced data in this work due to its
good performance in generating synthetic safe examples.

2.3 Causal Inference

Causal inference allows the understanding of complex behaviors in data, looking
for information about how features in a dataset affect the prediction in a ML algo-
rithm. SCMs defines how the data is represented in a causal context, enabling the
prediction and estimation of what happens to the data in case of changes (called
interventions). In addition, SCMs defines the consequences of these interventions
(called counterfactuals), taking into account what happened [58]. The representa-
tion with SCMs expresses causality into different variables and connections between
them, exemplified in Figure 2.9. These variables are divided into four categories:

• The outcome, denoted as y, is the target variable in data in which the causal
effect is studied. More specifically, the causal effect of variables that cause
changes in the outcome. The outcome is also called the effect ;

• The treatment, denoted as t, is a feature in the data that directly impacts
the target variable. The treatment is also called the cause;

• The confounder is a feature that influences both treatment and outcome,
which can bias the causality effect. The link for this common cause to treat-
ment and outcome is the backdoor path. If the confounder is an observed vari-
able, it is denoted as x. Otherwise, the variable is an unobserved confounder
denoted as z;

• The instrumental variable, denoted as i, is a variable that is not directly
correlated to the outcome. However, this variable is correlated to the treatment
and can indirectly influence the outcome through the treatment.

Figure 2.9: Causal graph presenting the different variables
[Image from Brady Neal [16]]

In causal analysis, there are two types of data studies: the observational and the in-
terventional. Observational studies, where the data is measured without intervention
in the process. Interventional studies are where the data has been manipulated for
a certain purpose. What happens is that observed data may have external factors,
such as confounders, influencing a treatment. If the outcome under a given treat-
ment differs from that under another treatment, then there is a causality effect [49].
In this work, data suffers interventions due to the injection of cyberattacks.
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2.3.1 Causal Discovery

Causal discovery is a complex problem that involves discovering the structural causal
models representing causality in a dataset. This SCMs is composed of directed
acyclic graphs (DAGs) and structural equation models (SEMs).

• The directed acyclic graphs graphical representation of the connections
between variables, also called causality diagrams, in which the nodes are vari-
ables, and the edges define the conditional probability between two variables.

• The structural equation models show the details of each edge between
nodes, namely quantifying the influence that a variable has on another.

The discovery of the DAG can be made through an algorithm called NOTEARS
that allows computing the relationship between nodes. For this, it calculates an
adjacency matrix that aims to minimize a function penalizing the graph’s cycles.
The advantage of this algorithm is that it supports data with high dimensionality,
and it does not need to make assumptions about the data’s features relationship.
This process is called structure learning since it learns the graph’s structure from
the data [136].

2.3.2 Causality Evaluation

The average treatment effect (ATE) is a measure that allows the representation of
the causality in the data. It is calculated by the expected value of the difference
between outcomes for each individual, also called individual treatment effect (ITE).
The formula is presented in Equation 2.24.

ATE = E [y1 − y0] (2.24)

The ATE represents the change in the outcome variable if there is an intervention
in treatments. The higher the value, the more the outcome is susceptible to change
if the treatment has a modification.

Propensity Score

A propensity score is the probability that an instance receives a treatment given a
set of confounders. This score serves, in particular, to compare treatments between
them. The propensity score is calculated by training a logistic regression in which
treatment is the dependent variable [7, 47, 54, 126].

• The propensity matching (Fig. 2.10a) estimates the ATE for treated indi-
viduals. This method joins pairs of instances where one has received a certain
treatment and the other has not. The merge is done with instances whose
propensity score is similar. A difference is made between treated and un-
treated. Finally, the ATE is the average of the results for each group;
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• The propensity-based stratification (Fig. 2.10b) estimates the ATE divid-
ing instances into subsets (usually 5) of identical size, in which the formed
groups have similar propensity scores. The treated and untreated propensity
scores are averaged within each group, and the difference between treated and
untreated is made. Finally, the ATE is the average of the results for each
group;

• The inverse probability of treatment weighting (Fig. 2.10c) estimates the
ATE by attributing for each instance, the respective weight, which is calculated
depending on its propensity score. With the weights, a weighted average is
made for treated and untreated instances. Finally, the ATE is calculated by
the difference between the two weighted means.

(a) Matching (b) Stratification (c) Weighting

Figure 2.10: Different propensity score methods
[Images from Shawhin Talebi [123]]

Linear Regression

Linear regression allows us to find the line that best fits our population with the
Equation 2.25.

y = mt+ b (2.25)

The coefficient b represents the factors that influence the treatment t, and the co-
efficient m is the slope of the regression, allowing the estimation of the expected
value. The distance between the individual and the point in the regression is the
ITE. Consequently, the ATE is the mean of the computed ITEs [16, 102].

2.3.3 Refutation Methods

Refutation methods are indispensable for SCMs assumptions validation. The ATE
obtained with the initial model ATEinit is compared with the ATE obtained applying
the refutation method ATEref defining a null hypothesis H0 [115].

Random Common Cause Refuter

The random common cause refuter generates random variables and performs the
causality analysis again, comparing the results with the initial analysis. This means
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that confounders are added to the data. In order not to reject the null hypothesis
H0 from Equation 2.26, the ATEref cannot vary much from the initial ATEinit.

H0 : ATEinit − ATEref = 0 (2.26)

Placebo Treatment Refuter

The placebo treatment refuter randomly defines a variable as a treatment. To not
reject the null hypothesis H0 from Equation 2.27, the ATEref must approach zero.

H0 : ATEref = 0 (2.27)

Data Subset Refuter

The data subset refuter divides the dataset into subsets s ∈ S as in cross-validation
and measures the variation of the ATE between subsets. The null hypothesis H0

from Equation 2.28 is not rejected if the difference between subsets is minimal.

H0 :
∑
s∈S

ATEs,init − ATEs,ref = 0 (2.28)

2.3.4 Summary

This section reviewed the basic concepts of causal inference, from causal discovery
to causality evaluation. The ATE is the metric which measures causality and can
be estimated through linear regression or propensity scores.

This work uses the ATE computed via linear regression since the propensity score
does not support using multiple treatments simultaneously. The three presented
refutation methods are used to try the model refutation, showing if the model ob-
tained via the NOTEARS algorithm is viable.

2.4 Time-Series Classifiers

Smart Grids produce large amounts of data that can be employed for anomaly
detection or optimization of the grid demand in energy. AMI allows the monitoring
of the transmission line and the power system, producing time-dependent data.
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Time-series classifiers are dedicated to areas using temporal data, such as speech
recognition, financial analysis, or network traffic analysis [121]. Therefore, time-
series classifiers (TSCs) perform better than traditional tabular algorithms since
they use temporal window. Some of these time-series are presented in the following
sections where Table 2.3 defines the notation. In this smart grid context, the data
is composed of network traffic which uses timestamps to track packets over time.

Table 2.3: Notation for time-series classifiers

Variable Meaning

n number of time-series (attributes)
m time-series length (instances)
w window length
r number of trees
k number of intervals
l word length
c number of symbols
q number of kernels

This section is organized as follows. The Section 2.4.1 presents shapelet-based TSCs.
Then, in Section 2.4.2, the distance-based TSCs are shown. Afterward, in Sec-
tion 2.4.3, the interval-based TSCs are discussed. Next, the dictionary-based are
presented in Section 2.4.4 and the hybrid approaches in Section 2.4.5. Finally, an
overview of this section is made in Section 2.4.6.

2.4.1 Shapelet-based

The shapelets are phase-independent subsequences of a time-series. A shapelet is
found by sliding a window across the time-series, minimizing the Euclidean distance
between each subsequence in the time-series and the shapelet.

Shapelet Transform

The shapelet transform classifier (STC) algorithm [50] is a pipeline classifier that
searches the training data for shapelets and transforms the time-series into a vector
of distances. It is a brute-force search algorithm that requires iterating through
all subsequences in the dataset. This process has a training time complexity of
O(n2m4).

ROCKET

ROCKET [26] stands for RandOm Convolutional KErnel Transform. It is a pipeline
classifier using many random convolutional kernels that differ by length, weight, bias,
dilation, and padding. With the convolution operation, these kernels extend the idea
of shapelets applied to the time-series data. With the convolution, ROCKET ex-
tracts a diverse range of features concatenated into a feature vector. The feature
vectors are then used to train a ridge classifier using cross-validation. The training
operation has a time complexity of O(qnm). ROCKET has an optimized variant
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called MiniROCKET [27], making the model more deterministic by removing ran-
dom components.

2.4.2 Distance-based

Distance-based classifiers use specific time-series distance functions to measure the
similarity between time-series as the basis of classification. A precursor in this
domain is the dynamic time wrapping (DTW) algorithm [107] initially developed
for speech recognition. It seeks for the temporal alignment between two time-series,
which matches temporal indexes, such that euclidean distance between aligned series
is minimized (Eq. 2.29).

DTW (x⃗, y⃗) = min
π∈A(x⃗,y⃗)

√ ∑
(a,b)∈π

(xa − yb)
2 (2.29)

Where x and x′ are the two time-series to be compared. π is an alignment path of
length m, composed by the index pairs {(i0, j0), . . . , (im−1, jm−1)}. A is the set of
all admissible paths.

Elastic Ensemble

The elastic ensemble (EE) algorithm [72] is a weighted ensemble composed of eleven
1-nearest neighbor classifiers, each using a different distance metric. First, the fol-
lowing distances are computed:

• Euclidean distance;

• DTW using the full window;

• DTW with a restricted warping
window;

• Weighted DTW;

• Derivative DTW using the full win-
dow;

• Derivative DTW with a restricted
warping window;

• Weighted derivative DTW;

• Longest common subsequence;

• Edit distance with real penalty;

• Time warp edit distance;

• Move-split-merge.

After predicting the data with each model, the weights are updated, considering
the performance of each classification. The process uses cross-validation to iterate
the steps above and reach a final classification. The resulting training complexity is
O(n2m2).

Proximity Forest

The proximity forest (PF) algorithm [77] is an ensemble based on trees. The trees
are randomly generated and use the same 11 distances functions used by EE to
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compute the similarity between series. At each node, there are branches for each
class in the data, where the child node receives randomly selected data from its
parent, then the process is repeated recursively. If the node has only one class in
its data, it becomes a leaf, and the iterative process stops. The resulting training
complexity is O(n log nm2).

2.4.3 Interval-based

Interval-based classifiers divide the time-series into multiple distinct intervals. Then
each interval trains an individual ML classifier.

Time-Series Forest

The time-series forest (TSF) algorithm [28] is an ensemble based on trees, which di-
vides the time-series into

√
m intervals with random positions and lengths. For each

interval, three metrics (mean, variance, and slope) are extracted and concatenated
into a feature vector to build the tree. Then a subset of the features is selected at
each node to compute the entropy gain and the margin that decides the tree’s split
into new nodes. This continues until the entropy gain stops increasing, defining the
node as a leaf. The process has a training complexity of O(rmn log(n)).

Random Interval Spectral Ensemble

The random interval spectral ensemble (RISE) algorithm [73] is an interval-based
tree ensemble that uses spectral features. The ensembles work similarly as TSF to
build trees on random intervals from the data to construct a random forest classifier.
However, RISE selects a single random interval for each base classifier. The process
results in a O(knm2) training complexity.

Canonical Interval Forest

The canonical interval forest (CIF) algorithm [83] is another extension of TSF that
improves its performance by integrating more features and by increasing diver-
sity. Alongside the mean, standard deviation, and slope, the algorithm extracts
the catch22 (CAnonical Time-series CHaracteristics) features [76], resulting in a
total of 25 features, from which each tree selects a subset of them randomly. The
process results in a training complexity of O(rknm1.16). The algorithm has another
extension, diverse representation CIF (DrCIF) which incorporates two new series
representations: the periodograms and first order differences. Phase-dependent in-
tervals are randomly selected and concatenated into the feature vector for each of
the three representations.
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2.4.4 Dictionary-based

Classifiers use sliding windows and discretization techniques to find words in a time-
series. Afterward, the distribution of these words is used to make the classification.

Bag-of-SFA-Symbols

The bag-of-SFA-symbols (BOSS) algorithm [109] is based on symbolic Fourier ap-
proximation (SFA) [110]. It transforms each time-series into discrete Fourier trans-
form approximations. After that, these approximations are discretized with a tech-
nique called multiple coefficients binning. This preprocessing process results in a
symbolic representation called word with the sliding window size for each time-series.
Consecutive windows producing the same word are only counted as a single instance
of the word. Then the nearest neighbor is computed to classify the instances. The
process has a training complexity of O(n2m2). It has another variant called con-
tractable BOSS (cBOSS) [82] with the possibility of defining a time contract. This
reduces the training time. However, it decreases performance.

WEASEL

WEASEL stands for Word ExtrAction for time SErie cLassification algorithm [111].
The classifier computes the discrete Fourier transform for each series. Then statisti-
cal tests (ANOVA-F-test) are computed to separate time-series from different classes
and create histograms with the words. Finally, the number of features is reduced
using a chi-squared test, removing any words that score below a threshold. The
logistic regression classifier is used to make the predictions. The resulting train-
ing complexity is O(min[nm2,mc2l]). A second version was developed (WEASEL
v2) [112] using dilated windows which significantly improves performances compared
to its predecessor.

2.4.5 Hybrid Approaches

Hybrid approaches are made from a combination of the previously seen algorithms.
One example is HIVE-COTE, which stands for HIerarchical VotE of COllective
Transformation-based Ensembles. It is a highly performant algorithm that is de-
clined in two versions (v1 and v2). Despite achieving high accuracy, HIVE-COTE is
hugely computationally expensive and impractical to run in real-time, such as smart
grids.

HIVE-COTE v1

HIVE-COTE version 1 [73] is constituted by a combination of five modules, from
which EE, STC, RISE, TSF and BOSS. The algorithm works with a hierarchical
voting structure, where each module has a weight and produces an estimate of the
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probability of the class variable. The best-normalized probability is then chosen. It
results in a training complexity bounded by the STC, resulting in O(n2m4).

HIVE-COTE v2

HIVE-COTE version 2 [84] works similarly to its first version with the hierarchical
voting structure. However, this version is constituted of new modules such as DrCIF,
STC, temporal dictionary ensemble (TDE), and a group of ROCKET classifiers
called Arsenal. The bottleneck is still the STC from which training time results in
a complexity of O(n2m4).

Table 2.4: Complexity comparison between time-series classifiers

Type Name Year Complexity Ref.

Shapelet-based STC 2014 O(n2m4) [50]
ROCKET 2020 O(qnm) [26]

Distance-based EE 2015 O(n2m2) [72]
PF 2019 O(n log nm2) [77]

Interval-based
TSF 2013 O(rmn log(n)) [28]
RISE 2018 O(knm2) [73]
CIF 2020 O(rknm1.16) [83]

Dictionary-based BOSS 2015 O(n2m2) [109]
WEASEL 2017 O(min[nm2,mc2l]) [111]

Hybrid HIVE-COTE v1 2018 O(n2m4) [73]
HIVE-COTE v2 2021 O(n2m4) [84]

2.4.6 Summary

In this section, different time-series classifiers were presented and are summarized
in Table 2.4. The presented algorithms use different approaches, such as distance-
based, interval-based, dictionary-based, and hybrid approaches. In this work, the
fastest algorithms are compared, and the algorithm which presents better results in
terms of training time, testing time, and classification performance is used for the
remaining experiments.

2.5 Conclusions

This background knowledge chapter presents four important topics used in this
work, such as federated learning, imbalanced data, causal inference, and time-series
classification.

Federated learning is a decentralized machine learning approach allowing distributed
data training. It consists of several phases, different data partitioning, and different
aggregation strategies and can be applied at different scales. Federated learning
also offers privacy benefits by allowing parties to keep their data on their devices.
This work uses federated learning as a smart grid simulation through the flower
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framework. The data is produced by local nodes aggregated to the upper nodes,
enabling each node to train a different model with its data.

Imbalanced data is a challenge that affects machine learning algorithms when the
data is skewed towards one class. This can lead to poor performance for the minority
class. Several techniques have been proposed to address this issue, including the
neighborhood cleaning rule, SPIDER, ADASYN, and SMOTE. Identifying minority
class examples is essential to apply a good algorithm in the data. For this work,
the methodology of minority class points classification is used to see in real-time the
evolution of the minority class. Then the SMOTE algorithm is better for processing
network data traffic mainly composed of noisy examples.

Causality is another challenge that affects the data. Sometimes a couple of features
are correlated, but they are not always implying causation. A method for inferring
the causal structure of the data is NOTEARS which constructs the DAG with few
data examples. Then, it is possible to compute the average treatment effect of the
data using propensity scores or linear regression. For this work, the causal effect
is computed with a linear regression since propensity scores do not support multi-
treatments, which is the case with network data traffic.

Time-series classification is important for anomaly detection since the data often
has temporal components. It makes the classification more performant than usual
machine learning algorithms. However, they have a bigger training complexity.
For this work, the network traffic data is time-dependent, making using time-series
classifiers relevant. The different algorithms are compared to choose the better one
regarding speed and classification performance.
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Literature Review

Due to their interconnected and heterogeneous nature, some research has been con-
ducted on using IDSs for smart grids. However, in the works conducted in this area,
only a few explored the use of FL with real smart grid datasets. In most cases, the
approaches use IoT or industrial internet of things (IIoT) datasets since it is more
similar to the smart grid context.

This chapter will present relevant datasets in Section 3.1. They are used in most
studies about intrusion detection systems applied to the smart grids in Section 3.2.
Finally, Section 3.3 overviews the key points of this literature review.

3.1 Datasets for Intrusion Detection Systems

The datasets studied in this section are commonly used for research in IDS and
anomaly detection. These datasets are categorized into three domains, such as
network-based datasets in Section 3.1.1, IoT-based datasets in Section 3.1.2, and
smart grid-based datasets in Section 3.1.3. These three sections are then summarized
in Section 3.1.4.

3.1.1 Network-based Datasets

KDD99 was created in 1999 for a competition of intrusion detection. The dataset is
simulated using transmission control protocol (TCP) packets. The dataset comprises
several attack scenarios categorized into four main categories: DoS (i.e., smurf,
neptune, land), user-to-root attack (i.e., buffer overflow, perl, rootkit), remote-to-
local attacks (i.e., file transfer protocol (FTP) write, phf, internet message access
protocol (IMAP)), and probing attacks (i.e., IP sweep, port sweep, nmap).

NSL-KDD was created in 2009. It aims to be an improved version of the KDD99
dataset, removing redundant and duplicate instances. However, the dataset is in a
binary scenario, distinguishing only if an attack exists.

ISCX-IDS-2012 was created in 2012, reproducing seven days of real network activity,
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where four of the seven days have attacks, such as DoS, distributed DoS (DDoS),
network infiltration, and brute-force secure shell (SSH) However, the dataset is
limited to one kind of attack per day. This results in a daily binary scenario.

UNSW-NB15 was created in 2015, mixing real network traffic with synthetic data
flows. The dataset comprises nine attack scenarios: fuzzers, analysis, backdoors,
DoS, exploits, generic, reconnaissance, shellcode, and worms attacks.

CIC-IDS-2017 was also created in 2017, which simulates an attack over five days into
a specific network. The dataset is composed of height attack scenarios, which are
brute-force FTP, brute-force SSH, DoS, DDoS, heartbleed, Web-based, infiltration,
and botnet attacks.

CSE-CIC-IDS-2018 was created in 2018, and follows its predecessors ISCX-IDS-
2012, and CIC-IDS-2017. This dataset is constructed on a large-scale testbed,
hosted in Amazon Web Services cloud infrastructure, increasing the number of clients
in networks. The dataset monitors the network traffic for ten days of different
protocols such as hypertext transfer protocol (HTTP), TCP, user datagram protocol
(UDP). The anomalies are divided into seven attack categories: brute-force, DoS,
DDoS, botnet, port scanning, infiltration, and web attacks.

3.1.2 IoT-based Datasets

Bot-IoT was created in 2018, mixing real and simulated IoT network traffic. It
aims to detect and identify botnets in IoT networks. It comprises four main attack
categories: probing, DoS, DDoS, and information theft. This results in six attack
scenarios.

IoT-23 was created in 2020 and is a dataset of network traffic made from IoT de-
vices. The dataset comprises nine attacks, including botnets, malwares, information
gathering, theft, and DDoS attacks.

TON-IoT was created in 2021. It is a real federated dataset, constructed from IoT
network traffic, using a testbed of three-level layers (edge, fog, and cloud). The
dataset is composed of nine categories of attacks, such as DoS, DDoS, scanning,
ransomware, backdoor, injection, cross-site scripting (XSS), password, and man-in-
the-middle (MITM).

Edge-IIoT was created in 2022. It aims to be a dataset for centralized and feder-
ated learning, oriented to IIoT. The dataset monitors network traffic from different
protocols such as such as internet control message protocol (ICMP), TCP, UDP.
The anomalies are divided into five attack categories, which are DoS/DDoS, injec-
tion, MITM, malware, and information gathering attacks. It represents a total of
14 attack types.

3.1.3 Smart Grid-based Datasets

IEC61850-Security was created in 2019. This smart grid-dedicated dataset traces
IEDs network communications in substations trough GOOSE protocol. There are
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nine scenarios divided into three categories (attack, disturbance, and normal). The
four attacks are message suppression, data manipulation, DoS, and composite at-
tack.

3.1.4 Summary

The data presented in Table 3.1 are datasets for anomaly detection and IDS. The
table includes a summary of many datasets, each with unique characteristics. Each
dataset includes the year it was created, the number of instances, features, classes
(normal and attack scenarios), and the domain it pertains to. The domains include
networks, IoT, IIoT, and smart grid.

Table 3.1: Comparison of datasets for intrusion detection systems

Domain Name Year Instances Features Classes Refs.

Networks

KDD99 1999 ≈ 5’200’000 41 5 [120]
NSL-KDD 2009 ≈ 5’200’000 41 2 [37, 124]
ISCX-IDS-2012 2012 ≈ 1’800’000 8 5 [38, 116]

UNSW-NB15 2015 ≈ 2’500’000 48 10 [19, 92, 93, 94,
95, 108]

CIC-IDS-2017 2017 ≈ 55’000’000 79 9 [39, 113]
CSE-CIC-IDS-2018 2018 ≈ 16’000’000 79 7 [18, 40, 113]

Internet
of

Things

Bot-IoT 2018 ≈ 73’000’000 29 7 [20, 63, 64, 65,
66, 67, 68]

IoT-23 2020 ≈ 764’300’000 21 10 [44]

TON-IoT 2021 ≈ 22’000’000 44 9 [4, 5, 14, 89, 90,
91, 96, 97]

Edge-IIoT 2022 ≈ 21’000’000 61 15 [35]

Smart Grids IEC61850-Security 2019 ≈ 10’500 28 9 [11]

3.2 Intrusion Detection Systems in Smart Grids

The state-of-the-art approaches can be divided into distributed and non-distributed
scenarios for anomaly detection in IoT or Industrial IoT contexts like the smart
grids. This section is organized as follows. Section 3.2.1 presents the non-distributed
approaches for intrusion detection, while Section 3.2.2 presents distributed intrusion
detection systems. Finally, an overview of this section is made in Section 3.2.3.

3.2.1 Non-Distributed Approaches

Taghavinejad et al. [122] used a non-distributed approach that involves a hybrid
decision tree for IoT-based intrusion detection in smart grid, achieving 83.1% of
accuracy with NSL-KDD dataset. Their approach surpasses the tested baselines,
which use decision tree (DT), KNN, and support vector machine (SVM) algorithms.

Khan et al. [61] used a non-distributed configuration of four different particle swarm
optimization (PSO) models. PSO was combined with DT, KNN, NN, and random
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forest (RF). Their best results are PSO with NN that achieves 99.5% accuracy with
NSL-KDD dataset and 99.2% accuracy with the KDD99 dataset. Their approach
was compared with other kinds of NN approaches.

Mohanty et al. [85] developed an intelligent intrusion detection system for smart
grids with NSL-KDD dataset. This non-distributed approach uses a generative
model with deep reinforcement learning called CVAE-DDQN (Curiosity-driven Vari-
ational Auto-Encoder – Double Deep Q-Network), which achieves 89.2% of accuracy.
They also tested with a second dataset called ISOT-CID [3], achieving 98.2% accu-
racy.

Siniosoglou et al. [117] developed a model named MENSA, which stands for anoMaly
dEtection aNd claSsificAtion. It was proposed as a non-distributed approach for
anomaly detection in a smart grid. It comprises an auto-encoder (AE) combined
with a generative adversarial network (GAN) that achieves 96.5% accuracy in a
Modbus-based network dataset [41]. Their approach was compared with logistic
regression (LR), DT, SVMs, and DNNs,

3.2.2 Distributed Approaches

Mothukuri et al. [88] proposed a FL-based approach for anomaly detection for IoT
devices using the above-mentioned Modbus-based network dataset. Their algorithm
uses recurrent neural network (RNN) with gated recurrent units (GRUs), achieving
99.5% of accuracy in anomaly detection, a better result than their non-FL approach.

Jithish et al. [57] proposed a FL-based approach with Flower framework for anomaly
detection in smart grids. The approach compares centralized and decentralized
methods with LR, NN, AE, CNN, RNN, and GRU models. Their best model is the
CNN with FL achieving 98.9% of accuracy using the Ausgrid dataset [6].

Li et al. [70] proposed DeepFed is another FL system that uses a CNN-GRU-based
approach for intrusion detection in industrial cyber-physical systems. They achieve
99.2% accuracy with cyber-physical systems datasets [86]. Their approach was com-
pared with other FL approaches.

Abdelkhalek et al. [2] proposed an anomaly detection system for DER communica-
tion in smart grids. Their testbed comprises a 2-tier architecture and reaches 98.47%
of accuracy with a simple artificial NN on CSE-CIC-IDS-2018 dataset. Other clas-
sifiers such as naive Bayes (NB), DT, RF, and SVM were tested with lower results.

Friha et al. [42] proposed a federated approach called 2DF-IDS, which stands for De-
centralized and Deferentially Private Federated Learning-based Intrusion Detection
System, an intrusion detection system for industrial IoT. Their strategy is compared
with centralized learning and focuses on the study of different levels of data privacy.
The system uses DNN on Edge-IIoT dataset, achieving an accuracy of 94.3% for
intrusion detection (without data privacy mechanisms).
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3.2.3 Summary

To sum up, none of the few approaches presented for smart grids simulate the system
with realistic smart grid architecture, despite using federated learning and their
notable results. This is one of the motivations of the proposed smart grid simulation
architecture presented in Chapter 4. On the other hand, the proposed approach in
this work uses TSC with a deeper analysis of data imbalance and causality problems.

Table 3.2: Summary of research for intrusion detection systems

Approach Year Domain ML Algorithm FL Dataset Ref.

Non-Distributed

2020 Smart Grid Triple-DT ✗ NSL-KDD [122]

2021 Smart Grid PSO+{KNN, DT, RF, NN} ✗
KDD99

NSL-KDD [61]

2021 Smart Grid DNN+AE ✗
NSL-KDD
ISOT-CID [85]

2021 Smart Grid DNN (AE+GAN) ✗, Modbus [117]

Distributed

2021 IoT CNN+GRU ✓ CPS [70]
2022 Smart Grid NB, DT, RF, SVM, NN ✗ CSE-CIC-IDS-2018 [2]
2022 IoT RNN+GRU ✓ Modbus [88]
2023 IoT DNN ✓ Edge-IIoT [42]

2023 Smart Grid LR, NN, AE, CNN, RNN,
GRU ✓ Ausgrid [57]

3.3 Conclusions

In summary, research on using IDS for smart grid has focused on using various ML
and DL algorithms to detect and classify cyberattacks in smart grid. One study
used DT classifiers. Another used a combination of an auto-encoder and generative
adversarial network architecture, and another compared several classifiers combined
with a PSO algorithm. In addition, traditional classifiers such as NB, DT, RF, SVM,
and a simple NN approach have been tested in various datasets. These studies have
shown that these IDS methods can effectively detect and classify cyberattacks in
smart grid environments, particularly the ones that use a FL approach. These
studies mainly used the datasets presented in Table 3.1, which describes diverse
scenarios of anomalies in network traffic in distributed and non-distributed contexts.
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Experimental Setup

The primary goal of this work is to develop an efficient intrusion detection system
for smart grids using federated learning to simulate the grid architecture. To do so,
experiments are divided into two phases:

• The first phase is divided into two experiments, where the first consists in
testing different time-series classifiers, and the second consists in inferring the
structural causal model from datasets’ data;

• The second phase is divided into four experiments, which test different cy-
berattack scenarios and compares our data processing strategy with a baseline
that does not process the data.

Figure 4.1: Experimental phases

In the first phase, the experimentation begins with evaluating time-series classifiers
using 5-fold cross-validation. The following classifiers are pre-selected due to their
low training complexity for evaluation:

• CBOSS;

• CIF;

• MiniROCKET

• RISE

• ROCKET;

• TSF;

• WEASEL version 2.

The second experiment of this first phase uses the NOTEARS algorithm to de-
fine which features are considered confounders or treatments. Then, the structural
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causal model is inferred, defining the relationships between features. Then, the re-
sults are validated with refutation methods such as random common cause, placebo
treatment, and data subset.

The second phase of experimentation consists in detecting attacks by alternating
the injection of attacks every ten rounds, as shown in Figure 4.2. Rounds are
communication cycles in the federated system.

Figure 4.2: Attack injection strategy

There are two scenarios of anomaly detection in this work:

(1) Attack detection, which only detects if there is an attack in the system
without categorizing it;

(2) Specific attack detection, where only one specific attack is injected in the
system (i.e., DoS, message suppression, data manipulation, or control manip-
ulation attack).

The results are then evaluated with the metrics explained and compared with a
baseline method, which does not apply our data processing strategy.

The chapter is organized as follows. Section 4.1 describes the datasets used for
the experimentations and the data collection process. Then, Section 4.2 explains
our data processing strategy. Afterward, Section 4.3 presents the metrics used for
evaluation. Subsequently, Section 4.4 presents the smart grid testbed. Finally,
Section 4.5 overviews the whole chapter.

4.1 Dataset Collection

In the first phase of our experimental study, several datasets commonly used in
anomaly detection were used to evaluate the time-series classifiers. The datasets
employed in this phase are the following:

• BOT-IoT

• CIC-IDS-2017

• CSE-CIC-IDS-2018

• Edge-IIoT

• IEC61850-Security

• IoT-23

• ISCX-IDS-2012

• KDD99

• NSL-KDD

• TON-IoT

• UNSW-NB15
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These datasets provide a diverse range of attack scenarios described in Table 4.1,
and their features are described in Appendix A.

Table 4.1: Description of attacks per dataset

Dataset Instances Attacks (number)

BOT-IoT 3668522 DDoS (1926624), DoS (1650260), Reconnaissance (91082), Normal (477),
Theft (79)

CIC-IDS-2017 2830743

Normal (2273097), DoS-Hulk (231073), Port Scanning (158930),
DDoS (128027), DoS-GoldenEye (10293), FTP-Patator (7938),
SSH-Patator (5897), DoS-Slowloris (5796), DoS SlowHTTPTest (5499),
Botnet (1966), BruteForce (1507), XSS (652), Infiltration (36), SQL
injection (21), Heartbleed (11)

CSE-CIC-IDS-2018 1000000

Normal (469045), DDoS-LOIC-HTTP (99918), FTP-BruteForce (99885),
DDoS-HOIC (96064), DoS-SlowHTTPTestt (91434), Botnet (80182),
DoS-GoldenEye (41508), DoS-Slowloris (10990), DoS-Hulk (8300),
DDoS-LOIC-UDP (1730), BruteForce-Web (611), BruteForce-XSS (230),
SQL Injection (87)

Edge-IIoT 157798

Normal (24301), DDoS-UDP (14498), DDoS-ICMP (14088),
Ransomware (10925), DDoS-HTTP (10561), SQL injection (10311),
Uploading (10269), DDoS-TCP (10247), Backdoor (10195), Vulnerability
scanner (10076), Port Scanning (10071), XSS (10052), Password (9989),
MITM (1214), Fingerprinting (1001)

IEC61850-Security 4558 Message Suppression (1580), Normal (1446), Data Manipulation (813),
DoS (372), Control Manipulation (347)

IoT-23 1444706

Port Scanning (825931), Okiru (262687), Normal (197834),
DDoS (138775), C&C (15107), Attack (3915), C&C Heartbeat (351),
C&C File Download (47), C&C Torii (30), File Download (17), C&C
Heartbeat File Download (11), C&C Mirai (1)

ISCX-IDS-2012 2071657 Normal (2002747), Attack (68910)

KDD99 4898431

Smurf (2807886), Neptune (1072017), Normal (972781), Satan (15892),
IP sweep (12481), Port sweep (10413), Nmap (2316), Backdoor (2203),
Warezclient (1020), Teardrop (979), Pod (264), Password (53), Buffer
overflow (30), Land (21), Warezmaster (20), IMAP (12), Rootkit (10),
Load module (9), FTP-write (8), Multihop (7), Phf (4), Perl (3), Spy (2)

NSL-KDD 148517 Normal (77054), Attack (71463)

TON-IoT 461043
Normal (300000), Port scanning (20000), DoS (20000), SQL
injection (20000), DDoS (20000), Password (20000), XSS (20000),
Ransomware (20000), Backdoor (20000), MITM (1043)

UNSW-NB15 257673
Normal (93000), Generic (58871), Exploits (44525), Fuzzers (24246),
DoS (16353), Reconnaissance (13987), Analysis (2677), Backdoor (2329),
Shellcode (1511), Worms (174)

In the second experimental phase, the focus shifted to the smart grid-oriented
dataset IEC61850-Security, composed of DoS flooding, message suppression, data
manipulation, and control manipulation attacks. Other datasets were used to test
attack detection, such as NSL-KDD, or BOT-IoT and UNSW-NB15 for DoS flood-
ing over domain name system (DNS) service.

For all experimental phases, there is a data collection process consisting of two
main steps: network packet capture extraction for raw datasets and dataset loading.
These steps were crucial for acquiring the necessary data to conduct our experiments.

The step of network packet captures extraction is essential since two datasets
comprise raw data: IEC61850-Security and IoT-23 datasets. This raw data is
presented into PCAP files, which can be analyzed with specific software like Wire-
shark [128]. Hopefully, there is a software called Zeek [133], which can read those

41



Chapter 4

PCAP files and extract protocols communication variables, such as source and desti-
nation IP addresses, port numbers, the protocol used, information about the packets,
and the timestamp of the communication. All these variables are used as features
for this work.

1 $ zeek -C -r file.pcap

Listing 4.1: Extraction of packet captures with Zeek

The extraction is done via a bash command, needing only a PCAP file as input
(file.pcap) as shown in Listing 4.1. On the other hand, the software outputs a CSV
file with the extracted data. The "-r" flag tells Zeek where to find the trace of
interest, and the "-C" flag tells Zeek to ignore any TCP checksum errors.

The second step, for all datasets, consists in preparing the data for prepro-
cessing. First, the data is loaded into DataFrames, setting the data timestamp
as an index and sorting them by timestamps. This is necessary since the datasets
are divided into multiple CSV files organized by attack types. Other datasets have
both raw and prepared CSV datasets, such as Edge-IIoT and TON-IoT datasets.
To avoid the loading of unneeded data, the prepared version of these two datasets
is used for the experiments. The advantage is that they have fewer instances than
the original datasets presented in Table 3.1, and consequently, easier to manipulate.
Note that all the datasets used in this work contain many instances, implying a
folder size with more than 100GB of storage for all datasets combined. The IoT-23
has heavy CSV files, which are difficult to be used with time-series classifiers due to
long time processing. For this reason, the dataset is limited to 100’000 instances per
CSV file read. Then, it is important to look at null variables, which are represented
differently across the datasets, for instance, with a "-" or with a "(empty)" flag. Fi-
nally, columns that are redundant with another column are dropped. For instance,
UNSW-NB15 has a column indicating the attack type and a second indication if
the instance is an attack. In this case, the most specific column is chosen. Then, if
necessary, the column is converted into a binary scenario.

4.2 Proposed Approach

The data on each node is preprocessed to replace values like strings into numerical
values through an ordinal encoder. Then, the data is normalized with values between
−1 and 1. Since this work does not focus on missing data, the undefined values are
replaced by the median value of the feature.

The experimental data processing consists of classifying the minority class examples,
oversampling the minority classes, and computing the causality of the data as shown
in Figure 4.3.

Then the minority classes are classified via the algorithm proposed by Napier-
ala et al. [98]. The implementation used in this work is described in detail in
Algorithm 2, which uses the HVDM distance of Algorithm 1, computed with the
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distance da from Equation 2.22. The datasets from the UCI Machine Learning
Repository [29] were used to validate the implementations with the paper’s results.

Algorithm 1 HVDM distance
1: procedure hvdm(data)
2: n, m← shape(data)
3: matrix← zeros(n,n)
4: for x← 0 to n− 1 do
5: for y ← x+ 1 to n do
6: d← 0
7: for a← attribute in data do
8: d← d+ d2a (data[x,a], data[y,a])
9: matrix[x,y] ← matrix[y,x] ←

√
d

10: return matrix

Algorithm 2 Classification of minority class examples
1: procedure taxonomy(matrix, data_target, K)
2: S ← B ← R← O ← 0
3: knn← KNN(matrix, data_target, K)
4: for i← neighbour in knn do
5: nni ← nearest neighbours of the minority class for i
6: sumi ← length(nni)
7: if sumi ≥ ⌊0.8 ·K⌋ then
8: S ← S + 1
9: else if sumi ≥ ⌊0.5 ·K⌋ then

10: B ← B + 1
11: else if sumi ≥ ⌊0.2 ·K⌋ then
12: j ← nearest neighbour of the minority class of i
13: nnj ← nearest neighbours of the minority class for j
14: sumj ← length(nnj)
15: if sumj = 0 then
16: R← R + 1
17: else if sumj = 1 and nni is nnj then
18: R← R + 1
19: else
20: B ← B + 1

21: else
22: O ← O + 1

23: return S, B, R, O

The minority classes are oversampled with the SMOTE algorithm by increasing
their number by 30% each, helping the system increase the percentage of safe and
borderline examples.

Finally, the causality is computed through a linear regression since propensity scores
cannot deal with multiple treatments. The moving average is also computed for a
sliding window of size seven. The ATE is compared between the data with 10%
fewer examples and the moving average. If the data with fewer samples have an
ATE smaller than the moving average, the original data continues into the system.
Otherwise, these are chosen by the system.
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Figure 4.3: Preprocessing and processing flow

4.3 Evaluation Metrics

Experimental results are mainly expressed with accuracy (Eq. 4.1) for binary clas-
sification, but precision (Eq. 4.2), recall (Eq. 4.3) and F1-score (Eq. 4.4) are also
computed:

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1-Score = 2 · Precision · Recall
Precision + Recall

(4.4)

Where TP corresponds to the true positives (the number of positive examples cor-
rectly classified), FP denotes the false positives (the number of positive examples
wrongly classified), TN corresponds to the true negatives (the number of negative
examples correctly classified), and FN denotes the false negatives (the number of
negatives examples wrongly classified).

Since this work mainly uses imbalanced datasets, macro-metrics are preferred instead
of micro-metrics. macro-metrics give each class equal importance, while micro-
metrics gives equal importance to each instance. The metrics mentioned above are
computed for each class c, but instead, the Macro Average (Eq. 4.5) is computed by
taking the arithmetic mean of the chosen metric M .

Mmacro_avg =
1

N

∑
c∈C

Mc (4.5)

Where M ∈ {Accuracy,Precision,Recall,F1-Score}, N is the number of classes, C
is the set containing all classes, and Mc is the metric for the class c.

Receiver operating characteristic (ROC) curves compare the experimental approach
with the baseline. For that, it is necessary to compute the TPR (Eq. 4.6), also
known as Sensitivity (note that it is the same formula as Recall), and the false
positive rate (FPR), which is the inverse of the Specificity (Eq. 4.7).

TPR = Sensitivity = Recall =
TP

TP + FN
(4.6)
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FPR = 1− Specificity =
FP

FP + TN
(4.7)

4.4 Federated System

The system for the experiments is constructed through federated learning, which
allows having a distributed system simulating the smart grid substations.

The implemented system consists of a three-layer hierarchical architecture as shown
in Figure 4.4. The system uses the Flower framework presented in Section 2.1.6 for
the federated communication between the system’s nodes. The framework allows
the accurate distribution of the clients and servers into physical or virtual machines,
defining real IP addresses from each node.

Figure 4.4: Representation of the three-level architecture

The monitoring system generates the data, which sends each second data via MQTT
protocol. The data is formatted into a JSON to send column names as a key. Even
though the data is generated externally, the local nodes begin the federation with a
small amount of data to avoid problems with the system’s initialization.

[{ "id.orig_h":"fe80::c806:7e6d:928b:8e0d", "id.orig_p":143, "id.resp_h":"ff02::16",
"id.resp_p":0, "proto":"icmp", "service":null, "duration":137.856511, "orig_bytes":400.0,
"resp_bytes":0.0, "conn_state":"OTH", "local_orig":null, "local_resp":null,
"missed_bytes":0, "history":null, "orig_pkts":16, "orig_ip_bytes":1296, "resp_pkts":0,
"resp_ip_bytes":0, "tunnel_parents":null, "label":1 }]

↪→
↪→
↪→
↪→

Listing 4.2: Generated data sent via MQTT protocol

• The low-voltage or LV substation is the local node at the system’s bottom,
which transmits low-voltage power to our homes. The dataset’s data feed
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the LV substation with a stream injecting a new instance of the dataset each
second into the system. In this work, the LV substations are organized in
pairs for each distribution substation due to computational limitations. In a
realistic case, more substations are linked to the distribution substation.

• The distribution substation is the central local node that simultaneously
acts as a server and a client. The server part receives and aggregates the data
from LV substations. On the other hand, the client part connects to the HV
substation and sends its data. This substation handles high-voltage power to
the LV substations.

• The high-voltage or HV substation provides a natural location for deploying
the central node, being at the system’s top level and acting as a server, receiv-
ing the distribution substation’s data. The HV substation is located near the
power plant, transforming extra high-voltage into high-voltage. Alternatively,
the topmost layer could also be co-located with the grid dispatch center (or
its computing infrastructure point of presence locations), which controls grid
operations, thus constituting a potential strategic deployment point.

The monitoring system presents in real-time the evolution of the proportion of minor-
ity class examples. This data is published in real-time by nodes from the federated
system through the MQTT broker, as shown in Figure 4.5. The monitoring system
is subscribed to the MQTT broker to receive all information relative to the metrics
of each node of the system, such as the proportion of safe, borderline, rare, and out-
lier examples, accuracy, precision, recall, F1-score, ATE, and the moving average of
the ATE. Despite being shown in real-time, this information is also stored in a CSV
file for each round.

Figure 4.5: Representation of the whole system

The second role of the monitoring system is to publish data from the dataset
database to the MQTT broker, which is read by the local nodes of the federated
system. The data is picked from the dataset by its timestamp and published to the
broker ordered.
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4.5 Conclusions

This chapter presented the experiments in two phases, the first testing the time-
series classifiers and the structural causal model for each dataset. Then, our data
processing approach, which uses data imbalance and causality, was presented. This
processing approach will be compared with a baseline in the second experimental
phase, which only applies the classifier to the data. More concretely, the second
phase detects the injected attacks with the two approaches.

Afterward, this chapter presented the data collection methods, such as raw data
preparation with Zeek software, which extracts network traffic in PCAP files into
features as a CSV file. Then, the datasets are preprocessed to work with a well-
formatted DataFrame.

The last part of the chapter presents the smart grid testbed, with a three-level archi-
tecture through the Flower framework, distinguishing three types of nodes: local,
central local, and central nodes. These nodes represent the LV substation, the distri-
bution substation, and the HV substation. These nodes act as clients and servers to
enable federated communication hierarchically. The federated system is controlled
by a GUI, which shows the data in real-time the metrics and generates reports from
them. The monitoring system also generates the data sent to the federated system.
All the communications between the two systems are done by the MQTT protocol,
which works in a Subscribe-Publish manner. Then, the experimental processing of
the data is done by oversampling the minority class with SMOTE algorithm and
looking for the causality of the data through the average treatment effect.
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Results and Discussion

The experiments performed in this work are presented and discussed in this chapter.
As illustrated in the previous chapter, the experiments are separated into two phases:

• The first phase in Section 5.1 consists in gaining sensibility to the performance
of time-series classifiers and structural causal models in federated learning
contexts;

• The second phase in Section 5.2 tests different attack scenarios to compare
our proposed data processing method with the baseline, which only classifies
with the time-series classifier.

5.1 First Experimental Phase

The process of choosing an efficient classifier is essential for anomaly detection. This
section is organized as follows. Section 5.1.1, all the datasets presented in Section 3.1
were chosen to assess a selection of classifiers. Then, Section 5.1.2 tests the structural
causal model of these datasets and validates with three different refutation methods.
Finally, Section 5.1.3 overviews the key findings for this first experimental phase.

5.1.1 Time-Series Classifier Selection

This experiment consists in searching for a fast and efficient time-series classifier.
For that, datasets were sampled with 10’000 samples, conserving class proportion
distribution. This threshold was defined due to memory limitations on heavier
algorithms. A few models were tested, such as cBOSS, CIF, MiniROCKET, RISE,
ROCKET, TSF, and WEASEL-v2. Other algorithms were excluded since they take
more than one day to train. The results for the binary scenario are in Table 5.1 (full
tables are available in Appendix B).

Regarding training and testing time, TSF performs the classification process faster.
Considering classification results, all classifiers present globally similar performances,
where we can conclude that TSF is more adequate for real-time classification since
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it is the best trade-off in terms of time and performance. For some datasets, TSF
presents no difficulty in detecting attacks except on two datasets (IEC61850-Security
and UNW-NB15 ), which seems more difficult to classify.

Table 5.1: Time-series classification in binary scenario

Dataset Model Train Time [s] Test Time [s] Accuracy Precision Recall F1-Score

BOT-IoT

CIF 1011.44 ± 10.09 44.98 ± 5.49 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
MiniROCKET 83.32 ± 1.24 2.68 ± 0.07 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RISE 93.09 ± 2.27 18.72 ± 0.5 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ROCKET 210.4 ± 0.98 18.09 ± 0.85 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
TSF 8.48 ± 0.4 2.89 ± 0.16 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
WEASEL-v2 265.55 ± 5.41 13.83 ± 0.13 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
cBOSS 244.35 ± 1.36 207.68 ± 1.4 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

IEC61850-Security

CIF 295.58 ± 4.39 370.4 ± 17.06 0.73 ± 0.01 0.73 ± 0.0 0.95 ± 0.02 0.83 ± 0.01
MiniROCKET 17.63 ± 0.43 0.72 ± 0.02 0.78 ± 0.01 0.8 ± 0.01 0.91 ± 0.01 0.85 ± 0.01
RISE 45.51 ± 0.84 7.97 ± 0.13 0.76 ± 0.01 0.8 ± 0.01 0.86 ± 0.01 0.83 ± 0.01
ROCKET 46.77 ± 1.01 3.44 ± 0.11 0.77 ± 0.01 0.79 ± 0.01 0.9 ± 0.01 0.84 ± 0.01
TSF 4.56 ± 0.49 1.64 ± 0.42 0.77 ± 0.01 0.81 ± 0.01 0.86 ± 0.02 0.83 ± 0.01
WEASEL-v2 75.34 ± 0.71 3.53 ± 0.13 0.72 ± 0.02 0.77 ± 0.01 0.86 ± 0.02 0.81 ± 0.01
cBOSS 21.92 ± 0.41 78.93 ± 0.11 0.75 ± 0.01 0.77 ± 0.01 0.9 ± 0.01 0.83 ± 0.01

NSL-KDD

CIF 1219.44 ± 14.56 754.62 ± 16.63 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
MiniROCKET 112.91 ± 1.64 2.87 ± 0.31 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
RISE 133.79 ± 2.9 18.5 ± 0.25 0.99 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 0.99 ± 0.0
ROCKET 245.0 ± 3.14 16.76 ± 0.92 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
TSF 11.05 ± 0.71 2.97 ± 0.31 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
WEASEL-v2 309.22 ± 6.22 13.64 ± 0.47 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
cBOSS 229.07 ± 1.09 232.35 ± 0.57 0.98 ± 0.0 0.98 ± 0.01 0.99 ± 0.0 0.98 ± 0.0

UNSW-NB15

CIF 1255.72 ± 34.07 1966.39 ± 38.18 0.93 ± 0.01 0.94 ± 0.0 0.95 ± 0.01 0.95 ± 0.0
MiniROCKET 103.44 ± 1.1 2.79 ± 0.16 0.92 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01
RISE 127.81 ± 1.67 18.48 ± 0.33 0.92 ± 0.0 0.92 ± 0.0 0.96 ± 0.01 0.94 ± 0.0
ROCKET 232.56 ± 2.33 16.61 ± 0.58 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.0
TSF 12.59 ± 0.36 3.03 ± 0.23 0.93 ± 0.0 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.0
WEASEL-v2 292.77 ± 6.08 13.08 ± 0.61 0.92 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.0
cBOSS 297.98 ± 3.84 234.07 ± 0.98 0.91 ± 0.0 0.93 ± 0.01 0.93 ± 0.0 0.93 ± 0.0

5.1.2 Structural Causal Model Discovery

This experiment consists in discovering the dependency between dataset variables
inferred by the NOTEARS algorithm from CausalNex [9]. The DAG is constructed
by removing edges with a weak relation. NOTEARS needs only a few examples to
learn the structure of the model and is not supposed to evolve with more examples.
Consequently, having the structural causal model precomputed avoids computa-
tional overhead in the federated system for the second experimental phase. The
treatment variables for the dataset used in the second experimental phase are de-
scribed in Table 5.2. Afterward, the structural causal models are validated by trying
to refute the null hypothesis H0 for each refutation method using the DoWhy [114].
The results are presented in Table 5.3. All datasets present p-values greater than
the significance level of 0.05, concluding that the refutation hypothesis cannot be
rejected.
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Table 5.2: Treatment variables inferred from NOTEARS

Dataset Treatment Variables

BOT-IoT

dbytes, stime, pkts, ltime, tnp-pdstip, tnp-per-dport, ar-p-proto-p-dstip, drate, daddr, spkts,
ar-p-proto-p-dport, ar-p-proto-p-srcip, dpkts, proto, mean, flgs-number,
pkts-p-state-p-protocol-p-destip, stddev, min, state, sport, dport, tnp-perproto, max,
ar-p-proto-p-sport, n-in-conn-p-srcip, n-in-conn-p-dstip, pkts-p-state-p-protocol-p-srcip, rate, flgs,
dur, tnp-psrcip, saddr, state-number, srate, proto-number, sum

IEC61850-Security orig-bytes

NSL-KDD

land, srv-rerror-rate, dst-host-diff-srv-rate, dst-host-srv-diff-host-rate, dst-host-srv-serror-rate,
diff-srv-rate, src-bytes, dst-host-srv-rerror-rate, urgent, num-failed-logins, dst-host-rerror-rate,
dst-bytes, is-guest-login, rerror-rate, num-shells, srv-serror-rate, su-attempted, root-shell,
srv-diff-host-rate, num-access-files, num-file-creations, wrong-fragment, serror-rate,
dst-host-serror-rate

UNSW-NB15

ct-src-ltm, dttl, service, trans-depth, ct-dst-src-ltm, state, dinpkt, spkts, djit, smean,
response-body-len, ct-ftp-cmd, ct-srv-dst, synack, dloss, sload, tcprtt, ct-src-dport-ltm,
is-sm-ips-ports, sjit, swin, dpkts, ct-flw-http-mthd, sloss, ct-srv-src, dtcpb, dwin, ct-dst-ltm, stcpb,
proto, ackdat, dmean, sttl, sinpkt, dur, ct-state-ttl, ct-dst-sport-ltm, is-ftp-login

Table 5.3: Refutation of structural causal models

Dataset Refuter ATEinit ATEref Result

BOT-IoT
Random Common Cause -0.8058 -0.8058 No Significant Difference
Placebo Treatment -0.8058 0 No Significant Difference
Data Subset -0.8058 -0.9378 No Significant Difference

IEC61850-Security
Random Common Cause -0.0135 -0.0137 No Significant Difference
Placebo Treatment -0.0135 0 No Significant Difference
Data Subset -0.0135 -0.0053 No Significant Difference

NSL-KDD
Random Common Cause 3.2465 3.2465 No Significant Difference
Placebo Treatment 3.2465 0 No Significant Difference
Data Subset 3.2465 3.0592 No Significant Difference

UNSW-NB15
Random Common Cause 0.2823 0.2812 No Significant Difference
Placebo Treatment 0.2823 0 No Significant Difference
Data Subset 0.2823 0.2323 No Significant Difference

5.1.3 Summary

This section discussed the results from the preliminary experimentations. The best
classifier found is the TSF which offers good results compared to the other classifiers
but is extremely fast to train and test. The three refutation methods do not reject
the structural causal models, which means they are acceptable.

5.2 Second Experimental Phase

This section presents a different evaluation of attacks in the proposed federated
system. Section 5.2.1 presents the obtained results in attack detection attacks.
Section 5.2.2 discusses the results relative to DoS attack detection. Then, the other
smart grid attacks are tested and discussed in Section 5.2.3. Finally, key findings
are summarized in Section 5.2.4.
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5.2.1 Attack Detection

The results for attack detection were assessed for IEC61850-Security and NSL-KDD
datasets. IEC61850-Security is composed by 68/32 of attacks and normal instances.
On the other hand, NSL-KDD is more balanced with 52/48 of attacks and normal
instances. As expected, in Table 5.4, IEC61850-Security has more difficulties in
detecting attacks than NSL-KDD due to the different proportion of classes. This
table also shows that our approach surpasses the baseline approach for each metric.

Table 5.4: Performance in detecting attacks

Dataset Round Strategy Safe [%] Borderline [%] Accuracy Recall Precision F1-Score AUC

IEC61850-Security

1-25 baseline 27.55 ± 10.33 53.13 ± 7.67 0.64 ± 0.08 0.63 ± 0.09 0.63 ± 0.09 0.62 ± 0.09 0.63 ± 0.09
ours 31.25 ± 8.53 52.58 ± 8.36 0.67 ± 0.09 0.67 ± 0.09 0.67 ± 0.09 0.66 ± 0.09 0.67 ± 0.09

1-50 baseline 30.12 ± 8.68 52.69 ± 6.39 0.65 ± 0.1 0.64 ± 0.1 0.64 ± 0.1 0.63 ± 0.1 0.64 ± 0.1
ours 30.36 ± 7.24 55.88 ± 8.69 0.66 ± 0.09 0.66 ± 0.1 0.66 ± 0.1 0.66 ± 0.1 0.66 ± 0.1

1-75 baseline 29.25 ± 8.0 54.34 ± 7.02 0.64 ± 0.11 0.63 ± 0.11 0.64 ± 0.11 0.63 ± 0.11 0.63 ± 0.11
ours 27.42 ± 8.05 59.4 ± 9.41 0.65 ± 0.11 0.65 ± 0.11 0.65 ± 0.11 0.64 ± 0.11 0.65 ± 0.11

1-100 baseline 26.65 ± 8.47 57.66 ± 8.57 0.63 ± 0.12 0.63 ± 0.12 0.63 ± 0.12 0.63 ± 0.12 0.63 ± 0.12
ours 26.58 ± 7.7 59.55 ± 8.58 0.65 ± 0.11 0.65 ± 0.12 0.65 ± 0.12 0.64 ± 0.12 0.65 ± 0.12

NSL-KDD

1-25 baseline 80.21 ± 4.78 7.45 ± 3.5 0.93 ± 0.05 0.92 ± 0.06 0.93 ± 0.05 0.92 ± 0.05 0.92 ± 0.06
ours 86.28 ± 6.23 8.06 ± 4.18 0.96 ± 0.04 0.95 ± 0.05 0.96 ± 0.04 0.95 ± 0.04 0.95 ± 0.05

1-50 baseline 79.74 ± 4.59 9.02 ± 3.6 0.94 ± 0.04 0.93 ± 0.05 0.94 ± 0.04 0.93 ± 0.05 0.93 ± 0.05
ours 88.2 ± 5.51 7.55 ± 3.55 0.97 ± 0.03 0.96 ± 0.04 0.97 ± 0.03 0.96 ± 0.04 0.96 ± 0.04

1-75 baseline 80.83 ± 4.79 9.91 ± 3.66 0.94 ± 0.04 0.94 ± 0.05 0.95 ± 0.04 0.94 ± 0.04 0.94 ± 0.05
ours 89.71 ± 5.04 6.89 ± 3.1 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03

1-100 baseline 82.63 ± 5.34 9.31 ± 3.53 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.04
ours 90.52 ± 4.62 6.52 ± 2.79 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03

Statistical tests are performed to confirm if there is a significant difference be-
tween the two approaches. In Table 5.5, the normal distribution is checked with
the Kolmogorov-Smirnov test for both datasets. The table shows no scenario with
data following a normal distribution, so a non-parametrical test is chosen, such as
the Wilcoxon signed-rank test.

Table 5.5: Kolmogorov-Smirnov normality test for attack scenarios

Dataset Metric Strategy Statistic p-value Result

IEC61850-Security

Accuracy baseline 0.475 2.80e-21 Not Normally Distributed
ours 0.459 9.49e-20 Not Normally Distributed

Precision baseline 0.434 1.22e-17 Not Normally Distributed
ours 0.451 4.51e-19 Not Normally Distributed

Recall baseline 0.420 1.70e-16 Not Normally Distributed
ours 0.455 1.84e-19 Not Normally Distributed

F1-Score baseline 0.419 2.01e-16 Not Normally Distributed
ours 0.452 3.36e-19 Not Normally Distributed

AUC baseline 0.420 1.70e-16 Not Normally Distributed
ours 0.455 1.84e-19 Not Normally Distributed

NSL-KDD

Accuracy baseline 0.492 7.07e-23 Not Normally Distributed
ours 0.569 3.51e-31 Not Normally Distributed

Precision baseline 0.484 4.82e-22 Not Normally Distributed
ours 0.581 1.24e-32 Not Normally Distributed

Recall baseline 0.492 8.18e-23 Not Normally Distributed
ours 0.621 9.70e-38 Not Normally Distributed

F1-Score baseline 0.490 1.08e-22 Not Normally Distributed
ours 0.614 8.93e-37 Not Normally Distributed

AUC baseline 0.492 8.18e-23 Not Normally Distributed
ours 0.621 9.70e-38 Not Normally Distributed
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The results of the Wilcoxon test in Table 5.6 show that in all cases, the hypothesis
that there is no significant difference is rejected (p < 0.05). Therefore, it is possible
to conclude that our approach performs better than the baseline for both datasets.

Table 5.6: Wilcoxon signed-rank test for attack scenarios

Dataset Metric Statistic p-value Result Effect Size

IEC61850-Security

Accuracy 1240.0 9.95e-06 Significant Difference 0.442
Precision 1191.0 4.50e-06 Significant Difference 0.459
Recall 1150.0 2.27e-06 Significant Difference 0.473
F1-Score 1128.0 1.56e-06 Significant Difference 0.480
AUC 1150.0 2.27e-06 Significant Difference 0.473

NSL-KDD

Accuracy 0.0 3.90e-18 Significant Difference 0.868
Precision 18.0 6.70e-18 Significant Difference 0.862
Recall 8.0 4.96e-18 Significant Difference 0.865
F1-Score 0.0 3.90e-18 Significant Difference 0.868
AUC 8.0 4.96e-18 Significant Difference 0.865

5.2.2 Denial of Service Detection

The results for DoS detection were assessed for BOT-IoT, IEC61850-Security and
UNSW-NB15 datasets, which use DNS flooding. BOT-IoT is composed by 95/5
of DoS attacks and normal instances, IEC61850-Security is composed by 80/20 of
DoS attacks and normal instances, UNSW-NB15 is more unbalanced with 15/85 of
attacks and normal instances. In Table 5.7, BOT-IoT easily detects DoS due to its
large number of attack examples, and we cannot compare the two approaches on this
dataset. Overall, the reminder datasets present better results with our approach,
except the accuracy in IEC61850-Security dataset, which is better with the baseline.

Table 5.7: Performance in detecting DoS attacks

Dataset Round Strategy Safe [%] Borderline [%] Accuracy Recall Precision F1-Score AUC

BOT-IoT

1-25 baseline 99.43 ± 3.59 0.57 ± 3.59 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ours 99.17 ± 3.83 0.61 ± 3.79 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

1-50 baseline 99.67 ± 2.56 0.33 ± 2.56 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ours 99.19 ± 2.73 0.41 ± 2.7 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

1-75 baseline 99.78 ± 2.09 0.22 ± 2.09 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ours 99.16 ± 2.26 0.41 ± 2.22 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

1-100 baseline 99.83 ± 1.81 0.17 ± 1.81 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ours 99.23 ± 1.97 0.34 ± 1.93 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

IEC61850-Security

1-25 baseline 1.48 ± 2.58 29.23 ± 13.51 0.77 ± 0.09 0.58 ± 0.1 0.61 ± 0.15 0.57 ± 0.11 0.58 ± 0.1
ours 5.97 ± 6.39 49.05 ± 12.97 0.77 ± 0.09 0.63 ± 0.1 0.66 ± 0.13 0.63 ± 0.1 0.63 ± 0.1

1-50 baseline 2.57 ± 3.62 42.33 ± 16.55 0.74 ± 0.12 0.61 ± 0.13 0.63 ± 0.15 0.61 ± 0.14 0.61 ± 0.13
ours 8.13 ± 6.68 55.46 ± 11.91 0.73 ± 0.11 0.64 ± 0.11 0.66 ± 0.13 0.64 ± 0.11 0.64 ± 0.11

1-75 baseline 5.08 ± 5.72 47.32 ± 15.61 0.72 ± 0.13 0.63 ± 0.14 0.64 ± 0.16 0.63 ± 0.15 0.63 ± 0.14
ours 11.23 ± 7.25 58.72 ± 11.15 0.71 ± 0.12 0.65 ± 0.12 0.66 ± 0.13 0.64 ± 0.12 0.65 ± 0.12

1-100 baseline 7.18 ± 6.43 51.55 ± 15.55 0.71 ± 0.14 0.64 ± 0.14 0.65 ± 0.16 0.63 ± 0.15 0.64 ± 0.14
ours 14.06 ± 8.09 60.84 ± 10.42 0.69 ± 0.12 0.64 ± 0.12 0.66 ± 0.13 0.64 ± 0.12 0.64 ± 0.12

UNSW-NB15

1-25 baseline 59.83 ± 20.37 20.5 ± 13.11 0.95 ± 0.04 0.85 ± 0.13 0.91 ± 0.12 0.87 ± 0.12 0.85 ± 0.13
ours 66.18 ± 18.8 19.04 ± 14.58 0.96 ± 0.03 0.88 ± 0.11 0.94 ± 0.11 0.9 ± 0.11 0.88 ± 0.11

1-50 baseline 70.76 ± 18.25 15.15 ± 11.09 0.96 ± 0.03 0.89 ± 0.1 0.94 ± 0.09 0.91 ± 0.1 0.89 ± 0.1
ours 75.85 ± 16.68 14.55 ± 11.49 0.96 ± 0.03 0.92 ± 0.09 0.95 ± 0.08 0.93 ± 0.08 0.92 ± 0.09

1-75 baseline 75.59 ± 16.55 13.21 ± 9.56 0.96 ± 0.03 0.91 ± 0.09 0.95 ± 0.07 0.93 ± 0.08 0.91 ± 0.09
ours 80.76 ± 15.38 12.18 ± 10.07 0.97 ± 0.03 0.94 ± 0.08 0.96 ± 0.07 0.94 ± 0.07 0.94 ± 0.08

1-100 baseline 79.02 ± 15.52 11.81 ± 8.66 0.96 ± 0.03 0.93 ± 0.08 0.96 ± 0.07 0.94 ± 0.08 0.93 ± 0.08
ours 83.8 ± 14.36 10.6 ± 9.19 0.97 ± 0.02 0.95 ± 0.07 0.97 ± 0.06 0.95 ± 0.06 0.95 ± 0.07

Statistical tests are performed to confirm if there is a significant difference between
the two approaches. In Table 5.8, the normal distribution is checked with the
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Kolmogorov-Smirnov test for the two datasets presenting differences between the
two approaches. The table shows no scenario with data following a normal dis-
tribution, so a non-parametrical test is chosen, such as the Wilcoxon signed-rank
test.

Table 5.8: Kolmogorov-Smirnov normality test for DoS attack scenarios

Dataset Metric Strategy Statistic p-value Result

IEC61850-Security

Accuracy baseline 0.548 9.30e-29 Not Normally Distributed
ours 0.535 2.85e-27 Not Normally Distributed

Precision baseline 0.453 3.06e-19 Not Normally Distributed
ours 0.488 1.84e-22 Not Normally Distributed

Recall baseline 0.505 3.75e-24 Not Normally Distributed
ours 0.424 7.52e-17 Not Normally Distributed

F1-Score baseline 0.534 3.45e-27 Not Normally Distributed
ours 0.435 1.05e-17 Not Normally Distributed

AUC baseline 0.505 3.75e-24 Not Normally Distributed
ours 0.424 7.52e-17 Not Normally Distributed

UNSW-NB15

Accuracy baseline 0.434 1.11e-17 Not Normally Distributed
ours 0.527 1.88e-26 Not Normally Distributed

Precision baseline 0.693 2.05e-48 Not Normally Distributed
ours 0.613 1.16e-36 Not Normally Distributed

Recall baseline 0.606 8.85e-36 Not Normally Distributed
ours 0.597 1.33e-34 Not Normally Distributed

F1-Score baseline 0.618 2.29e-37 Not Normally Distributed
ours 0.596 2.19e-34 Not Normally Distributed

AUC baseline 0.606 8.85e-36 Not Normally Distributed
ours 0.597 1.33e-34 Not Normally Distributed

The results of the Wilcoxon test in Table 5.9 show no significant difference for
IEC61850-Security dataset metrics except accuracy. However, for UNSW-NB15,
there is a significant difference between the baseline and our approach.

Table 5.9: Wilcoxon signed-rank test for DoS attack scenarios

Dataset Metric Statistic p-value Result Effect Size

IEC61850-Security

Accuracy 986.0 1.21e-07 Significant Difference 0.529
Precision 2379.0 6.16e-01 No Significant Difference 0.050
Recall 2285.0 4.09e-01 No Significant Difference 0.083
F1-Score 2258.0 3.59e-01 No Significant Difference 0.092
AUC 2285.0 4.09e-01 No Significant Difference 0.083

UNSW-NB15

Accuracy 763.0 1.38e-09 Significant Difference 0.606
Precision 866.0 1.17e-08 Significant Difference 0.570
Recall 522.0 5.70e-12 Significant Difference 0.689
F1-Score 548.0 1.06e-11 Significant Difference 0.680
AUC 522.0 5.70e-12 Significant Difference 0.689

5.2.3 Detection of Other Attacks

The results for other IEC61850-Security dataset attacks were presented in Ta-
ble 5.10. Control manipulation scenario has a proportion of 19/81 attacks and
normal examples, message suppression is composed of 52/48 attacks and normal
instances, and finally, data manipulation is composed of 36/64 attacks and normal
instances. The table shows that overall our approach is better, except for accuracy
in control and data manipulation attacks.
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Table 5.10: Performance in detecting other IEC61850-Security attacks

Attack Round Strategy Safe [%] Borderline [%] Accuracy Recall Precision F1-Score AUC

Control Manipulation

1-25 baseline 2.63 ± 5.06 33.61 ± 12.6 0.77 ± 0.11 0.56 ± 0.12 0.56 ± 0.14 0.55 ± 0.11 0.56 ± 0.12
ours 7.82 ± 7.82 46.52 ± 11.77 0.77 ± 0.09 0.63 ± 0.12 0.65 ± 0.13 0.62 ± 0.11 0.63 ± 0.12

1-50 baseline 5.0 ± 5.08 45.75 ± 16.52 0.73 ± 0.14 0.59 ± 0.15 0.59 ± 0.17 0.58 ± 0.15 0.59 ± 0.15
ours 10.58 ± 7.26 55.95 ± 14.17 0.71 ± 0.14 0.62 ± 0.14 0.64 ± 0.15 0.62 ± 0.14 0.62 ± 0.14

1-75 baseline 4.91 ± 4.37 54.36 ± 18.99 0.69 ± 0.17 0.58 ± 0.17 0.59 ± 0.18 0.58 ± 0.17 0.58 ± 0.17
ours 11.36 ± 6.37 62.88 ± 15.44 0.66 ± 0.16 0.6 ± 0.15 0.61 ± 0.16 0.6 ± 0.15 0.6 ± 0.15

1-100 baseline 7.02 ± 5.82 58.76 ± 18.35 0.66 ± 0.18 0.58 ± 0.18 0.58 ± 0.18 0.57 ± 0.18 0.58 ± 0.18
ours 12.97 ± 6.58 65.08 ± 14.19 0.64 ± 0.17 0.6 ± 0.15 0.6 ± 0.16 0.59 ± 0.15 0.6 ± 0.15

Data Manipulation

1-25 baseline 11.93 ± 7.89 43.68 ± 11.39 0.72 ± 0.1 0.63 ± 0.1 0.65 ± 0.11 0.63 ± 0.11 0.63 ± 0.1
ours 15.84 ± 7.44 55.21 ± 10.43 0.71 ± 0.1 0.65 ± 0.1 0.67 ± 0.11 0.65 ± 0.1 0.65 ± 0.1

1-50 baseline 12.79 ± 6.33 51.14 ± 12.22 0.7 ± 0.13 0.64 ± 0.13 0.65 ± 0.14 0.64 ± 0.13 0.64 ± 0.13
ours 18.88 ± 7.04 59.49 ± 9.3 0.68 ± 0.12 0.65 ± 0.12 0.66 ± 0.12 0.65 ± 0.12 0.65 ± 0.12

1-75 baseline 15.72 ± 7.04 54.39 ± 11.29 0.69 ± 0.13 0.64 ± 0.13 0.65 ± 0.14 0.64 ± 0.14 0.64 ± 0.13
ours 22.86 ± 8.57 59.56 ± 8.16 0.67 ± 0.12 0.65 ± 0.12 0.66 ± 0.12 0.65 ± 0.12 0.65 ± 0.12

1-100 baseline 18.5 ± 7.88 54.29 ± 9.97 0.68 ± 0.14 0.64 ± 0.14 0.65 ± 0.14 0.64 ± 0.14 0.64 ± 0.14
ours 23.94 ± 8.47 60.45 ± 8.38 0.67 ± 0.12 0.65 ± 0.12 0.66 ± 0.12 0.65 ± 0.12 0.65 ± 0.12

Message Suppression

1-25 baseline 9.03 ± 7.69 62.55 ± 10.01 0.64 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.59 ± 0.1 0.6 ± 0.1
ours 17.96 ± 7.99 61.15 ± 10.23 0.67 ± 0.1 0.65 ± 0.1 0.66 ± 0.1 0.65 ± 0.1 0.65 ± 0.1

1-50 baseline 6.81 ± 6.1 67.77 ± 10.37 0.62 ± 0.15 0.59 ± 0.15 0.59 ± 0.15 0.58 ± 0.15 0.59 ± 0.15
ours 14.75 ± 6.95 67.9 ± 10.42 0.63 ± 0.14 0.62 ± 0.13 0.63 ± 0.14 0.62 ± 0.13 0.62 ± 0.13

1-75 baseline 6.96 ± 5.49 71.88 ± 10.57 0.59 ± 0.17 0.57 ± 0.16 0.57 ± 0.17 0.57 ± 0.17 0.57 ± 0.16
ours 15.57 ± 6.35 69.25 ± 9.16 0.62 ± 0.15 0.61 ± 0.14 0.61 ± 0.15 0.61 ± 0.14 0.61 ± 0.14

1-100 baseline 8.43 ± 5.46 72.45 ± 9.43 0.59 ± 0.18 0.57 ± 0.17 0.57 ± 0.18 0.57 ± 0.17 0.57 ± 0.17
ours 15.59 ± 6.14 70.2 ± 8.54 0.61 ± 0.15 0.61 ± 0.15 0.61 ± 0.15 0.61 ± 0.15 0.61 ± 0.15

Table 5.11: Kolmogorov-Smirnov normality test for other IEC61850-Security attack
scenarios

Attack Metric Strategy Statistic p-value Result

Control Manipulation

Accuracy baseline 0.482 6.95e-22 Not Normally Distributed
ours 0.580 2.05e-32 Not Normally Distributed

Precision baseline 0.463 3.85e-20 Not Normally Distributed
ours 0.540 8.59e-28 Not Normally Distributed

Recall baseline 0.438 5.59e-18 Not Normally Distributed
ours 0.507 2.40e-24 Not Normally Distributed

F1-Score baseline 0.441 3.41e-18 Not Normally Distributed
ours 0.496 3.35e-23 Not Normally Distributed

AUC baseline 0.438 5.59e-18 Not Normally Distributed
ours 0.507 2.40e-24 Not Normally Distributed

Data Manipulation

Accuracy baseline 0.461 6.05e-20 Not Normally Distributed
ours 0.540 8.38e-28 Not Normally Distributed

Precision baseline 0.450 5.04e-19 Not Normally Distributed
ours 0.429 3.16e-17 Not Normally Distributed

Recall baseline 0.418 2.39e-16 Not Normally Distributed
ours 0.419 2.04e-16 Not Normally Distributed

F1-Score baseline 0.405 2.40e-15 Not Normally Distributed
ours 0.419 2.08e-16 Not Normally Distributed

AUC baseline 0.418 2.39e-16 Not Normally Distributed
ours 0.419 2.04e-16 Not Normally Distributed

Message Suppression

Accuracy baseline 0.519 1.58e-25 Not Normally Distributed
ours 0.491 9.37e-23 Not Normally Distributed

Precision baseline 0.459 9.03e-20 Not Normally Distributed
ours 0.502 7.47e-24 Not Normally Distributed

Recall baseline 0.461 6.34e-20 Not Normally Distributed
ours 0.502 7.41e-24 Not Normally Distributed

F1-Score baseline 0.467 1.80e-20 Not Normally Distributed
ours 0.503 5.64e-24 Not Normally Distributed

AUC baseline 0.461 6.34e-20 Not Normally Distributed
ours 0.502 7.41e-24 Not Normally Distributed
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Statistical tests are performed to confirm if there is a significant difference between
the two approaches. Table 5.11 checks the normal distribution with the Kolmogorov-
Smirnov test for the three attack scenarios. The table shows no scenario with data
following a normal distribution, so a non-parametrical test is chosen, such as the
Wilcoxon signed-rank test.

The results of the Wilcoxon test in Table 5.12 show a significant difference between
the two approaches for all scenarios. There is an exception for the precision of the
data manipulation attack.

Table 5.12: Wilcoxon signed-rank test for other IEC61850-Security attack scenarios

Attack Metric Statistic p-value Result Effect Size

Control Manipulation

Accuracy 1296.0 2.38e-05 Significant Difference 0.423
Precision 1419.0 1.43e-04 Significant Difference 0.380
Recall 1449.0 2.16e-04 Significant Difference 0.370
F1-Score 1347.0 5.11e-05 Significant Difference 0.405
AUC 1449.0 2.16e-04 Significant Difference 0.370

Data Manipulation

Accuracy 1305.0 2.73e-05 Significant Difference 0.419
Precision 2062.0 1.11e-01 No Significant Difference 0.159
Recall 1713.0 5.24e-03 Significant Difference 0.279
F1-Score 1891.0 2.93e-02 Significant Difference 0.218
AUC 1713.0 5.24e-03 Significant Difference 0.279

Message Suppression

Accuracy 627.0 6.76e-11 Significant Difference 0.653
Precision 198.0 1.23e-15 Significant Difference 0.800
Recall 139.0 2.33e-16 Significant Difference 0.820
F1-Score 139.0 2.33e-16 Significant Difference 0.820
AUC 139.0 2.33e-16 Significant Difference 0.820

5.2.4 Summary

In this section, different attack scenarios were tested using different datasets. These
scenarios are attack, denial of service, message suppression, data manipulation, and
control manipulation detection. Our approach shows better results than the baseline
for all metrics, except for the DoS attack in the IEC61850-Security dataset, which
presents no significant difference from the baseline. It can be explained by the No
Free Lunch Theorem [130], where finding an algorithm that fits all situations is
difficult.

5.3 Conclusions

This chapter begins with analyzing the time-series classifier, which fits better into
the smart grid context and our need for a fast and efficient classifier. From all tested
classifiers, only the TSF is the fastest for training in all datasets and present good
classification results.

After that, structure learning was applied to each dataset to discover the structural
causal model and, more precisely, the treatment and confounder features. Then, this
SCM was validated with three refutation methods: random common cause, placebo
treatment, and data subset.

Afterward, the second experimental phase involves testing our data processing ap-
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proach in different scenarios, such as attack detection (without categorizing them).
But also the denial of service, message suppression, data manipulation, and control
manipulation detection. Overall, in each attack scenario studied, our approach is
always better than the baseline scenario due to the augmentation of safe examples.
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Conclusion

This work examined the potential for using FL to simulate an intrusion detection
system for smart grids, looking for imbalanced data and causality problems. While
there have been previous efforts in this direction, only some have explored using
data processing techniques in a federated context as a key component, which solves
these two issues.

To address this gap in the literature, a three-level hierarchical system was proposed
using the Flower framework. The system is divided into three kinds of nodes rep-
resenting the different types of substations in a smart grid: the local node at the
bottom level, the central local node at the second level, and the central node at
the top level. The system is then controlled by a monitoring system, which com-
municates with the system through the MQTT protocol. This monitoring system
generates the data sent to the federated system while the system retrieves metrics
about its performance. The monitoring system displays real-time metrics informa-
tion through a GUI and generates simulation reports.

The proposed system evaluates different kinds of cyberattacks from well-known net-
work traffic datasets. In this work, two approaches were compared: the first, as a
baseline, only apply time-series classifiers, and the second considers the proportion
of minority class examples and the causality of the data.

The experiments in this work were separated into two phases. The first phase chooses
the best time-series classifier which best fits this smart grid context and the con-
struction of the structural causal model. The second phase tested different datasets
in detecting anomalies without categorizing them. Then, other experiments were
conducted to detect specific categories of attacks, such as DoS, message suppression,
data manipulation, and control manipulation.

The results show that the best time-series classifier for this smart grid problem is the
TSF. Overall in each experiment, the proposed approach significantly improves the
classification result, enabling this work to compete with other works in the literature.

In future work, this federated system can conduct experiments simulating the smart
grid with large-scale cloud infrastructure such as Azure or Amazon Web Services for
more realistic scenarios. This deportation to cloud infrastructures solves hardware
limitations, namely in processing large datasets over long periods, which was not
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possible in the context of this work. However, there is also a limitation to public
datasets, which may not represent the reality of a large-scale smart grid network
traffic communication. This work approaches this reality with network traffic from
small infrastructures. One of the key directions passes to develop real large-scale
smart grid network communication datasets to evaluate with more confidence ap-
proaches developed by the scientific community.

In summary, this research has provided an overview of a federated-based simulation
and its potential application in smart grids for anomaly detection. A novel data
processing approach that considers data imbalance and causality problems, which
performs better than using only a time-series classifier. The foundations for future
work are laid for more realistic large-scale testbeds.
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Appendix A

Table A.1: BOT-IoT Dataset Description

Name Type Unique
Values

Missing
Values Description

stime Float 392259 0 Record start time
flgs Categorical 9 0 Flow state flags seen in transactions
flgs-number Integer 9 0 Numerical representation of feature flags
proto Categorical 5 0 Protocols present in network flow (TCP, UDP, ICMP, ICMP/IPv6)
proto-number Integer 5 0 Numerical representation of the protocol feature
saddr Categorical 21 0 Source IP address
sport Integer 65541 0 Source port number
daddr Categorical 84 0 Destination IP address
dport Integer 7698 0 Destination port number
pkts Integer 123 0 Number of packets in transaction
bytes Integer 1633 0 Number of bytes in transaction
state Categorical 11 0 Transaction state
state-number Integer 11 0 Numerical representation of feature state
ltime Float 383624 0 Record last time
seq Integer 262212 0 Argus sequence number
dur Float 612509 0 Record total duration
mean Float 507089 0 Average duration of aggregated records
stddev Float 421379 0 Standard deviation of aggregated records
sum Float 934972 0 Total duration of aggregated records
min Float 271147 0 Minimum duration of aggregated records
max Float 594525 0 Maximum duration of aggregated records
spkts Integer 91 0 Source-to-destination packet count
dpkts Integer 62 0 Destination-to-source packet count
sbytes Integer 1052 0 Source-to-destination byte count
dbytes Integer 472 0 Destination-to-source byte count
rate Float 139677 0 Total packets per second in transaction
srate Float 119709 0 Source-to-destination packets per second
drate Float 20714 0 Destination-to-source packets per second
tnbpsrcip Integer 8639 0 Total number of bytes per source IP
tnbpdstip Integer 7631 0 Total number of bytes per destination IP
tnp-psrcip Integer 1522 0 Total number of packets per source IP
tnp-pdstip Integer 1587 0 Total number of packets per destination IP
tnp-perproto Integer 1560 0 Total number of packets per protocol
tnp-per-dport Integer 1582 0 Total number of packets per dport
ar-p-proto-p-srcip Float 46289 0 Average rate per protocol per source IP
ar-p-proto-p-dstip Float 39186 0 Average rate per protocol per destination IP
n-in-conn-p-dstip Integer 100 0 Number of inbound connections per destination IP
n-in-conn-p-srcip Integer 100 0 Number of inbound connections per source IP
ar-p-proto-p-sport Float 136207 0 Average rate per protocol per sport
ar-p-proto-p-dport Float 42237 0 Average rate per protocol per dport
pkts-p-state-p-protocol-p-destip Integer 1595 0 Number of packets grouped by the state of flows and protocols per destination IP
pkts-p-state-p-protocol-p-srcip Integer 1526 0 Number of packets grouped by the state of flows and protocols per source IP
label Numeric 5 0 Attack class label
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Datasets

Table A.2: CIC-IDS-2017 Dataset Description

Name Type Unique
Values

Missing
Values Description

destination-port Integer 53805 0 Destination port
flow-duration Integer 1050899 0 Flow duration [ms]
total-fwd-packets Integer 1432 0 Total forward packets
total-backward-packets Integer 1747 0 Total backward packets
total-length-of-fwd-packets Integer 17928 0 Total length of forward packets
total-length-of-bwd-packets Integer 64698 0 Total length of backward packets
fwd-packet-length-max Integer 5279 0 Forward packet maximum length
fwd-packet-length-min Integer 384 0 Forward packet minimum length
fwd-packet-length-mean Float 99716 0 Average length of forward packet
fwd-packet-length-std Float 253909 0 Standard deviation of forward packet length
bwd-packet-length-max Integer 4838 0 Backward packet maximum length
bwd-packet-length-min Integer 583 0 Backward packet minimum length
bwd-packet-length-mean Float 147614 0 Average length of backward packet
bwd-packet-length-std Float 248869 0 Standard deviation of backward packet length
flow-bytes/s Float 1593908 1358 Number of flow bytes per second
flow-packets/s Float 1240164 0 Number of flow packet per second
flow-iat-mean Float 1166311 0 Average time between two packets sent in the flow
flow-iat-std Float 1056642 0 Standard deviation of time between two packets sent in the flow
flow-iat-max Integer 580289 0 Maximum time between two packets sent in the flow
flow-iat-min Integer 136316 0 Minimum time between two packets sent in the flow
fwd-iat-total Integer 493098 0 Total time between two forward packets
fwd-iat-mean Float 737737 0 Average time between two forward packets
fwd-iat-std Float 700313 0 Standard deviation of time between two forward packets
fwd-iat-max Integer 437316 0 Maximum time between two forward packets
fwd-iat-min Integer 110631 0 Minimum time between two forward packets
bwd-iat-total Integer 414928 0 Total time between two backward packets
bwd-iat-mean Float 670824 0 Average time between two backward packets
bwd-iat-std Float 709042 0 Standard deviation of time between two backward packets
bwd-iat-max Integer 368285 0 Maximum time between two backward packets
bwd-iat-min Integer 66074 0 Minimum time between two backward packets
fwd-psh-flags Integer 2 0 Number of times the PSH flag was set in forward packets
bwd-psh-flags Integer 1 0 Number of times the PSH flag was set in backward packets
fwd-urg-flags Integer 2 0 Number of times the URG flag was set in forward packets
bwd-urg-flags Integer 1 0 Number of times the URG flag was set in backward packets
fwd-header-length Integer 3771 0 Forward header length
bwd-header-length Integer 3945 0 Backward header length
fwd-packets/s Float 1220423 0 Forward packets per second
bwd-packets/s Float 1107886 0 Backward packets per second
min-packet-length Integer 215 0 Minimum packet length
max-packet-length Integer 5708 0 Maximum packet length
packet-length-mean Float 215826 0 Average packet length
packet-length-std Float 412246 0 Standard deviation of packet length
packet-length-variance Float 405565 0 Variance of packet length
fin-flag-count Integer 2 0 Number of packets with FIN flag
syn-flag-count Integer 2 0 Number of packets with SYN flag
rst-flag-count Integer 2 0 Number of packets with RST flag
psh-flag-count Integer 2 0 Number of packets with PSH flag
ack-flag-count Integer 2 0 Number of packets with ACK flag
urg-flag-count Integer 2 0 Number of packets with URG flag
cwe-flag-count Integer 2 0 Number of packets with CWE flag
ece-flag-count Integer 2 0 Number of packets with ECE flag
down/up-ratio Float 31 0 Download and upload ratio
average-packet-size Float 212207 0 Average packet size
avg-fwd-segment-size Float 99716 0 Average forward segment size observed
avg-bwd-segment-size Float 147611 0 Average backward segment size observed
fwd-avg-bytes/bulk Float 1 0 Average forward number of bytes bulk rate
fwd-avg-packets/bulk Float 1 0 Average number of forward packets bulk rate
fwd-avg-bulk-rate Float 1 0 Average number of forward bulk rate
bwd-avg-bytes/bulk Float 1 0 Average number of backward bytes bulk rate
bwd-avg-packets/bulk Float 1 0 Average number of backward packets bulk rate
bwd-avg-bulk-rate Float 1 0 Average number of backward bulk rate
subflow-fwd-packets Integer 1432 0 Total number of forward packets in a subflow
subflow-fwd-bytes Integer 17928 0 Total number of forward bytes in a subflow
subflow-bwd-packets Integer 1747 0 Total number of backward packets in a subflow
subflow-bwd-bytes Integer 64738 0 Total number of backward bytes in a subflow
init-win-bytes-forward Integer 12151 0 Total number of forward bytes sent in the initial window
init-win-bytes-backward Integer 13112 0 Total number of backward bytes sent in the initial window
act-data-pkt-fwd Integer 1093 0 Count of forward packets with at least one byte of TCP data payload
min-seg-size-forward Integer 28 0 Minimum forward segment size observed
active-mean Float 326325 0 Average time a flow was active before becoming idle
active-std Float 202826 0 Standard deviation time a flow was active before becoming idle
active-max Integer 299565 0 Maximum time a flow was active before becoming idle
active-min Integer 175670 0 Minimum time a flow was active before becoming idle
idle-mean Float 222016 0 Average time a flow was idle before becoming active
idle-std Float 197616 0 Standard deviation time a flow was idle before becoming active
idle-max Integer 149737 0 Maximum time a flow was idle before becoming active
idle-min Integer 223888 0 Minimum time a flow was idle before becoming active
label Categorical 15 0 Attack class label
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Table A.3: CSE-CIC-IDS-2018 Dataset Description

Name Type Unique
Values

Missing
Values Description

src-port Integer 10879 900000 Source port number
dst-port Integer 32939 0 Destination port number
protocol Integer 7 0 Numerical representation of the protocol name
flow-duration Integer 423968 0 Flow duration [ms]
tot-fwd-pkts Integer 2429 0 Total forward packets
tot-bwd-pkts Integer 1046 0 Total backward packets
totlen-fwd-pkts Integer 9916 0 Total length of forward packets
totlen-bwd-pkts Integer 18003 0 Total length of backward packets
fwd-pkt-len-max Integer 2633 0 Forward packet maximum length
fwd-pkt-len-min Integer 248 0 Forward packet minimum length
fwd-pkt-len-mean Float 22475 0 Average length of forward packet
fwd-pkt-len-std Float 31956 0 Standard deviation of forward packet length
bwd-pkt-len-max Integer 1682 0 Backward packet maximum length
bwd-pkt-len-min Integer 535 0 Backward packet minimum length
bwd-pkt-len-mean Float 26774 0 Average length of backward packet
bwd-pkt-len-std Float 30207 0 Standard deviation of backward packet length
flow-byts/s Float 472359 2940 Number of flow bytes per second
flow-pkts/s Float 461702 1551 Number of flow packet per second
flow-iat-mean Float 441698 0 Average time between two packets sent in the flow
flow-iat-std Float 453905 0 Standard deviation of time between two packets sent in the flow
flow-iat-max Integer 351520 0 Maximum time between two packets sent in the flow
flow-iat-min Integer 95069 0 Minimum time between two packets sent in the flow
fwd-iat-tot Integer 278728 0 Total time between two forward packets
fwd-iat-mean Float 303571 0 Average time between two forward packets
fwd-iat-std Float 228918 0 Standard deviation of time between two forward packets
fwd-iat-max Integer 261649 0 Maximum time between two forward packets
fwd-iat-min Integer 120554 0 Minimum time between two forward packets
bwd-iat-tot Integer 302173 0 Total time between two backward packets
bwd-iat-mean Float 318048 0 Average time between two backward packets
bwd-iat-std Float 376760 0 Standard deviation of time between two backward packets
bwd-iat-max Integer 260687 0 Maximum time between two backward packets
bwd-iat-min Integer 86938 0 Minimum time between two backward packets
fwd-psh-flags Integer 5 0 Number of times the PSH flag was set in forward packets
bwd-psh-flags Integer 3 0 Number of times the PSH flag was set in backward packets
fwd-urg-flags Integer 4 0 Number of times the URG flag was set in forward packets
bwd-urg-flags Integer 3 0 Number of times the URG flag was set in backward packets
fwd-header-len Integer 3041 0 Forward header length
bwd-header-len Integer 2031 0 Backward header length
fwd-pkts/s Float 458364 0 Forward packets per second
bwd-pkts/s Float 381144 0 Backward packets per second
pkt-len-min Integer 174 0 Minimum packet length
pkt-len-max Integer 2113 0 Maximum packet length
pkt-len-mean Float 39719 0 Average packet length
pkt-len-std Float 45332 0 Standard deviation of packet length
pkt-len-var Float 44982 0 Variance of packet length
fin-flag-cnt Integer 5 0 Number of packets with FIN flag
syn-flag-cnt Integer 5 0 Number of packets with SYN flag
rst-flag-cnt Integer 5 0 Number of packets with RST flag
psh-flag-cnt Integer 5 0 Number of packets with PSH flag
ack-flag-cnt Integer 5 0 Number of packets with ACK flag
urg-flag-cnt Integer 5 0 Number of packets with URG flag
cwe-flag-count Integer 4 0 Number of packets with CWE flag
ece-flag-cnt Integer 5 0 Number of packets with ECE flag
down/up-ratio Float 75 0 Download and upload ratio
pkt-size-avg Float 40410 0 Average packet size
fwd-seg-size-avg Float 22475 0 Average forward segment size observed
bwd-seg-size-avg Float 26774 0 Average backward segment size observed
fwd-byts/b-avg Float 3 0 Average forward number of bytes bulk rate
fwd-pkts/b-avg Float 3 0 Average number of forward packets bulk rate
fwd-blk-rate-avg Float 3 0 Average number of forward bulk rate
bwd-byts/b-avg Float 3 0 Average number of backward bytes bulk rate
bwd-pkts/b-avg Float 3 0 Average number of backward packets bulk rate
bwd-blk-rate-avg Float 3 0 Average number of backward bulk rate
subflow-fwd-pkts Integer 2429 0 Total number of forward packets in a subflow
subflow-fwd-byts Integer 9916 0 Total number of forward bytes in a subflow
subflow-bwd-pkts Integer 1046 0 Total number of backward packets in a subflow
subflow-bwd-byts Integer 18003 0 Total number of backward bytes in a subflow
init-fwd-win-byts Integer 4638 0 Total number of forward bytes sent in the initial window
init-bwd-win-byts Integer 4547 0 Total number of backward bytes sent in the initial window
fwd-act-data-pkts Integer 1943 0 Count of forward packets with at least one byte of TCP data payload
fwd-seg-size-min Integer 20 0 Minimum forward segment size observed
active-mean Float 68459 0 Average time a flow was active before becoming idle
active-std Float 47568 0 Standard deviation of the time a flow was active before becoming idle
active-max Integer 67548 0 Maximum time a flow was active before becoming idle
active-min Integer 51339 0 Minimum time a flow was active before becoming idle
idle-mean Float 93401 0 Average time a flow was idle before becoming active
idle-std Float 53341 0 Standard deviation of the time a flow was idle before becoming active
idle-max Integer 82800 0 Maximum time a flow was idle before becoming active
idle-min Integer 89464 0 Minimum time a flow was idle before becoming active
label Categorical 14 0 Attack class label
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Table A.4: Edge-IIoT Dataset Description

Name Type Unique
Values

Missing
Values Description

ip.src-host Categorical 19088 0 Source IP address
ip.dst-host Categorical 8084 0 Destination IP address
arp.dst.proto-ipv4 Categorical 8 0 Target IP address
arp.opcode Integer 3 0 Opcode
arp.hw.size Integer 2 0 Hardware size
arp.src.proto-ipv4 Categorical 8 0 Sender IP address
icmp.checksum Integer 13186 0 ICMP checksum
icmp.seq-le Integer 13823 0 ICMP sequence number
icmp.transmit-timestamp Integer 84 0 Transmit timestamp
icmp.unused Categorical 1 0 Unused
http.file-data Categorical 496 0 File data
http.content-length Integer 33 0 Content length
http.request.uri.query Categorical 1665 0 Request uniform resource identifier (URI) query
http.request.method Categorical 6 0 Request method
http.referer Categorical 4 0 Referrer
http.request.full-uri Categorical 4073 0 Full request URI
http.request.version Categorical 8 0 HTTP request version
http.response Boolean 2 0 If response, it will be set as 1; otherwise, 0
http.tls-port Integer 1 0 Unencrypted HTTP protocol
tcp.ack Integer 27929 0 Acknowledgment number
tcp.ack-raw Integer 94716 0 Row acknowledgment number
tcp.checksum Integer 55513 0 TCP checksum
tcp.connection.fin Boolean 2 0 If connection finish (FIN ), it will be set as 1; otherwise, 0
tcp.connection.rst Boolean 2 0 If connection reset (RST ), it will be set as 1; otherwise, 0
tcp.connection.syn Boolean 2 0 If connection establish request (SYN ), it will be set as 1; otherwise, 0
tcp.connection.synack Boolean 2 0 If connection establish acknowledge (SYN-ACK ), it will be set as 1; otherwise, 0
tcp.dstport Integer 23188 0 Destination port
tcp.flags Integer 9 0 Flags
tcp.flags.ack Boolean 2 0 If TCP acknowledgment, it will be set as 1; otherwise, 0
tcp.len Integer 786 0 TCP segment length
tcp.options Categorical 73139 0 TCP options
tcp.payload Categorical 27369 0 TCP payload
tcp.seq Integer 18199 0 TCP sequence number
tcp.srcport Integer 32186 0 Source port
udp.port Integer 32 0 UDP source or destination port
udp.stream Integer 14492 0 Stream index
udp.time-delta Integer 39 0 Time since previous frame
dns.qry.name Categorical 8 0 Query name
dns.qry.name.len Integer 1430 0 Query name length
dns.qry.qu Integer 66 0 Query QU question
dns.qry.type Integer 1 0 Query type
dns.retransmission Integer 4 0 Retransmission
dns.retransmit-request Boolean 2 0 If DNS query retransmission, it will be set as 1; otherwise, 0
dns.retransmit-request-in Integer 1 0 DNS query retransmission frame number
mqtt.conack.flags Integer 3 0 MQTT acknowledgment flags
mqtt.conflag.cleansess Boolean 2 0 If clean session flag, it will be set as 1; otherwise, 0
mqtt.conflags Integer 2 0 Connection flags
mqtt.hdrflags Integer 5 0 Header flags
mqtt.len Integer 4 0 MQTT message length
mqtt.msg-decoded-as Integer 1 0 MQTT message decoded
mqtt.msg Categorical 117 0 MQTT message
mqtt.msgtype Integer 5 0 MQTT message type
mqtt.proto-len Integer 2 0 MQTT protocol name length
mqtt.protoname Categorical 3 0 MQTT protocol name
mqtt.topic Categorical 3 0 MQTT topic
mqtt.topic-len Integer 2 0 MQTT topic length
mqtt.ver Integer 2 0 MQTT version
mbtcp.len Integer 1 0 Modbus/TCP length
mbtcp.trans-id Integer 1 0 Modbus/TCP transaction identifier
mbtcp.unit-id Integer 1 0 Modbus/TCP unit identifier
label Categorical 15 0 Attack class label

Table A.5: IEC61850-Security Dataset Description

Name Type Unique
Values

Missing
Values Description

id.orig-h Categorical 57 0 Source IP address
id.orig-p Integer 8 0 Source port number
id.resp-h Categorical 41 0 Destination IP address
id.resp-p Integer 9 0 Destination port number
proto Categorical 2 0 Protocol name (UDP, ICMP)
service Categorical 2 1931 Service name (DHCP, DNS)
duration Float 3604 909 Duration of the connection [s]
orig-bytes Integer 654 909 Number of payload bytes originator sent
resp-bytes Integer 1 909 Number of payload bytes responder sent
conn-state Categorical 2 0 Connection state
local-orig Boolean 0 4558 If the connection originated locally, it will be set as 1;
local-resp Boolean 0 4558 If the connection responded locally, it will be set as 1;
missed-bytes Integer 1 0 Number of bytes missed (packet loss)
history Categorical 1 1889 Connection state history
orig-pkts Integer 98 0 Number of packets originator sent
orig-ip-bytes Integer 696 0 Number of originator IP bytes (via IP total-length header field)
resp-pkts Integer 1 0 Number of packets responder sent
resp-ip-bytes Integer 1 0 Number of responder IP bytes (via IP total-length header field)
tunnel-parents Categorical 0 4558 If tunneled, connection UID value of encapsulating parent(s)
label Categorical 5 0 Attack class label
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Table A.6: IoT-23 Dataset Description

Name Type Unique
Values

Missing
Values Description

id.orig-h Categorical 3266 0 Source IP address
id.orig-p Integer 62278 0 Source port number
id.resp-p Integer 29263 0 Destination port number
proto Categorical 3 0 Protocol name (TCP, UDP, ICMP)

service Categorical 6 1434046 Service name (dynamic host configuration protocol (DHCP), DNS, secure sockets
layer (SSL), HTTP, SSH)

duration Float 46584 900109 Duration of the connection [s]
orig-bytes Integer 279 900109 Number of payload bytes originator sent
resp-bytes Integer 509 900109 Number of payload bytes responder sent
conn-state Categorical 13 0 Connection state
local-orig Boolean 0 1444706 If the connection originated locally, it will be set as 1;
local-resp Boolean 0 1444706 If the connection responded locally, it will be set as 1;
missed-bytes Integer 21 0 Number of bytes missed (packet loss)
history Categorical 144 3651 Connection state history
orig-pkts Integer 176 0 Number of packets originator sent
orig-ip-bytes Integer 928 0 Number of originator IP bytes (via IP total-length header field)
resp-pkts Integer 134 0 Number of packets responder sent
resp-ip-bytes Integer 932 0 Number of responder IP bytes (via IP total-length header field)
label Categorical 12 0 Attack class label

Table A.7: ISCX-IDS-2012 Dataset Description

Name Type Unique
Values

Missing
Values Description

appname Categorical 107 0 Application name
totalsourcebytes Integer 28029 0 Number of bytes at source
totaldestinationbytes Integer 146732 0 Number of bytes at destination
totaldestinationpackets Integer 3317 0 Number of packets at destination
totalsourcepackets Integer 2430 0 Number of packets at source
sourcepayloadasbase64 Categorical 528277 1098051 Source payload in base 64
sourcepayloadasutf Categorical 356549 1182855 Source payload
destinationpayloadasbase64 Categorical 688095 1188626 Destination payload in base 64
destinationpayloadasutf Categorical 671783 1188687 Destination payload
direction Categorical 4 0 Flow Direction (L2L, L2R, R2R, R2L)
sourcetcpflagsdescription Categorical 23 430943 TCP flags at source
destinationtcpflagsdescription Categorical 27 493422 TCP flags at destination
source Categorical 2478 0 Source IP address
protocolname Categorical 6 0 Protocol name (UDP/IP, TCP/IP, ICMP/IP, ICMP/IPv6, IP, IGMP)
sourceport Integer 64482 0 Source port number
destination Categorical 34555 0 Destination IP address
destinationport Integer 24238 0 Destination port number
startdatetime Timestamp 314360 0 Connection start (date and time)
stopdatetime Timestamp 339485 0 Connection end (date and time)
starttime Float 171970 1888689 Connection start
sensorinterfaceid Integer 1 1879616 Sensor Interface ID
label Boolean 2 0 If is an attack, it will be set as 1; otherwise, 0
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Table A.8: KDD99 Dataset Description

Name Type Unique
Values

Missing
Values Description

duration Integer 9883 0 Time’s duration of the connection [s]
protocol-type Categorical 3 0 Protocol used (TCP, UDP, ...)
service Categorical 70 0 Network service on the destination (HTTP, TELNET, ...)
flag Categorical 11 0 Status of the connection (Error or Normal)
src-bytes Integer 7195 0 Number of data bytes transferred from source to destination
dst-bytes Integer 21493 0 Number of data bytes transferred from destination to source
land Boolean 2 0 If the source and destination are the same, it will be set as 1; otherwise, 0
wrong-fragment Integer 3 0 Number of wrong fragments in a connection
urgent Integer 6 0 Number of urgent packets, which means packets with urgent bit activated
hot Integer 30 0 Number of hot indicators, which means entering in a system directory
num-failed-logins Integer 6 0 Number of failed login attempts
logged-in Boolean 2 0 If successful login, it will be set as 1; otherwise, 0
num-compromised Integer 98 0 Number of compromised conditions
root-shell Boolean 2 0 If the root shell is obtained, it will be set as 1; otherwise, 0
su-attempted Boolean 2 0 If su root command is attempted, it will be set as 1; otherwise, 0
num-root Integer 93 0 Number of operations performed as root
num-file-creations Integer 42 0 Number of file creation operations
num-shells Integer 3 0 Number of shell prompts in a connection
num-access-files Integer 10 0 Number of operations on access control files
num-outbound-cmds Integer 1 0 Number of outbound commands in a FTP session
is-host-login Boolean 2 0 If login as root or admin, it will be set as 1; otherwise, 0
is-guest-login Boolean 2 0 If login as guest, it will be set as 1; otherwise, 0
count Integer 512 0 Number of connections to the same destination host
srv-count Integer 512 0 Number of connection to the same service

serror-rate Float 96 0 Percentage of connections that have activated flag s0, s1, s2 or s3, among the
connections aggregated in count

srv-serror-rate Float 87 0 Percentage of connection that have activated flag s0, s1, s2 or s3, among the
connections aggregated in srv count

rerror-rate Float 89 0 Percentage of connections that have activated flag REJ, among the connections,
aggregated in count

srv-rerror-rate Float 76 0 Percentage of connections that have activated flag REJ, among the connections
aggregated in srv count

same-srv-rate Float 101 0 Percentage of connections that were to the same services, among the connections
aggregated in count

diff-srv-rate Float 95 0 Percentage of connections that were to the different services, among the
connections aggregated in count

srv-diff-host-rate Float 72 0 Percentage of connections that were different destination machines among the
connections aggregated in srv count

dst-host-count Integer 256 0 Number of connections having the same destination host IP address
dst-host-srv-count Integer 256 0 Number of connections having same port number

dst-host-same-srv-rate Float 101 0 Percentage of connections that were to the same service among the connections
aggregated in dst host count

dst-host-diff-srv-rate Float 101 0 Percentage of connections that were different services among the connections
aggregated in dst host count

dst-host-same-src-port-rate Float 101 0 Percentage of connections that were to the same source port among the
connections aggregated in dst host srv count

dst-host-srv-diff-host-rate Float 76 0 Percentage of connections that were to the different destination machines among
the connections aggregated in dst host srv count

dst-host-serror-rate Float 101 0 Percentage of connections that have activated flag s0, s1, s2 or s3, among the
connections aggregated in dst host count

dst-host-srv-serror-rate Float 100 0 Percentage of connections that have activated flag s0, s1, s2 or s3, among the
connections aggregated in dst host srv count

dst-host-rerror-rate Float 101 0 Percentage of connections that have activated flag REJ, among the connections,
aggregated in dst host count

dst-host-srv-rerror-rate Float 101 0 Percentage of connections that have activated flag REJ, among the connections,
aggregated in dst host srv count

label Categorical 23 0 Attack class label
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Table A.9: NSL-KDD Dataset Description

Name Type Unique
Values

Missing
Values Description

duration Integer 3424 0 Time’s duration of the connection [s]
protocol-type Categorical 3 0 Protocol used (TCP, UDP, ...)
service Categorical 70 0 Network service on the destination (HTTP, TELNET, ...)
flag Categorical 11 0 Status of the connection (Error or Normal)
src-bytes Integer 3601 0 Number of data bytes transferred from source to destination
dst-bytes Integer 10401 0 Number of data bytes transferred from destination to source
land Boolean 2 0 If the source and destination are the same, it will be set as 1; otherwise, 0
wrong-fragment Integer 3 0 Number of wrong fragments in a connection
urgent Integer 4 0 Number of urgent packets, which means packets with urgent bit activated
hot Integer 29 0 Number of hot indicators, which means entering in a system directory
num-failed-logins Integer 6 0 Number of failed login attempts
logged-in Boolean 2 0 If successful login, it will be set as 1; otherwise, 0
num-compromised Integer 96 0 Number of compromised conditions
root-shell Boolean 2 0 If the root shell is obtained, it will be set as 1; otherwise, 0
su-attempted Boolean 2 0 If su root command is attempted, it will be set as 1; otherwise, 0
num-root Integer 91 0 Number of operations performed as root
num-file-creations Integer 36 0 Number of file creation operations
num-shells Integer 4 0 Number of shell prompts in a connection
num-access-files Integer 10 0 Number of operations on access control files
num-outbound-cmds Integer 1 0 Number of outbound commands in a FTP session
is-host-login Boolean 2 0 If login as root or admin, it will be set as 1; otherwise, 0
is-guest-login Boolean 2 0 If login as guest, it will be set as 1; otherwise, 0
count Integer 512 0 Number of connections to the same destination host
srv-count Integer 512 0 Number of connection to the same service

serror-rate Float 99 0 Percentage of connections that have activated flag s0, s1, s2 or s3, among the
connections aggregated in count

srv-serror-rate Float 94 0 Percentage of connection that have activated flag s0, s1, s2 or s3, among the
connections aggregated in srv count

rerror-rate Float 98 0 Percentage of connections that have activated flag REJ, among the connections,
aggregated in count

srv-rerror-rate Float 95 0 Percentage of connections that have activated flag REJ, among the connections
aggregated in srv count

same-srv-rate Float 101 0 Percentage of connections that were to the same services, among the connections
aggregated in count

diff-srv-rate Float 101 0 Percentage of connections that were to the different services, among the
connections aggregated in count

srv-diff-host-rate Float 87 0 Percentage of connections that were different destination machines among the
connections aggregated in srv count

dst-host-count Integer 256 0 Number of connections having the same destination host IP address
dst-host-srv-count Integer 256 0 Number of connections having same port number

dst-host-same-srv-rate Float 101 0 Percentage of connections that were to the same service among the connections
aggregated in dst host count

dst-host-diff-srv-rate Float 101 0 Percentage of connections that were different services among the connections
aggregated in dst host count

dst-host-same-src-port-rate Float 101 0 Percentage of connections that were to the same source port among the
connections aggregated in dst host srv count

dst-host-srv-diff-host-rate Float 75 0 Percentage of connections that were to the different destination machines among
the connections aggregated in dst host srv count

dst-host-serror-rate Float 101 0 Percentage of connections that have activated flag s0, s1, s2 or s3, among the
connections aggregated in dst host count

dst-host-srv-serror-rate Float 101 0 Percentage of connections that have activated flag s0, s1, s2 or s3, among the
connections aggregated in dst host srv count

dst-host-rerror-rate Float 101 0 Percentage of connections that have activated flag REJ, among the connections,
aggregated in dst host count

dst-host-srv-rerror-rate Float 101 0 Percentage of connections that have activated flag REJ, among the connections,
aggregated in dst host srv count

label Categorical 2 0 Attack class label
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Table A.10: TON-IoT Dataset Description

Name Type Unique
Values

Missing
Values Description

src-ip Categorical 11536 0 Source IP addresses which originate endpoints’ IP addresses
src-port Integer 53671 0 Source port which originate endpoint’s TCP/UDP ports
dst-ip Categorical 5268 0 Destination IP addresses which respond to endpoint’s IP addresses
dst-port Integer 2666 0 Destination ports which respond to endpoint’s TCP/UDP ports
proto Categorical 3 0 Transport layer protocols of flow connections (TCP, UDP, ICMP)
service Categorical 9 280216 Dynamically detected protocols (DNS, HTTP, SSL, ...)

duration Float 124727 0 The time of the packet connections, which is estimated by subtracting time of last
packet seen and time of first packet seen

src-bytes Integer 3056 0 Source bytes which are originated payload bytes of TCP sequence numbers
dst-bytes Integer 3511 0 Destination bytes which are responded payload bytes from TCP sequence numbers

conn-state Categorical 13 0 Various connection states, such as SO (connection without replay), SI (connection
established), REJ (connection rejected), and OTH (other)

missed-bytes Integer 929 0 Number of missing bytes in content gaps
src-pkts Integer 414 0 Number of original packets which is estimated from source systems

src-ip-bytes Integer 4549 0 Number of original IP bytes which is the total length of IP header field of source
systems

dst-pkts Integer 332 0 Number of destination packets which is estimated from destination systems

dst-ip-bytes Integer 4577 0 Number of destination IP bytes which is the total length of IP header field of
destination systems

dns-query Categorical 14148 366019 Domain name subjects of the DNS queries
dns-qclass Integer 3 0 Value which specifies the DNS query classes
dns-qtype Integer 12 0 Value which specifies the DNS query types
dns-rcode Integer 5 0 Response code values in the DNS response
dns-aa Boolean 2 365158 If authoritative answers of DNS, it will be set as True; otherwise, False
dns-rd Boolean 2 365158 If recursion desired of DNS, it will be set as True; otherwise, False
dns-ra Boolean 2 365158 If recursion available of DNS, it will be set as True; otherwise, False
dns-rejected Boolean 2 365158 If there is a DNS rejection, it will be set as True; otherwise, False
ssl-version Categorical 3 460737 SSL version which is offered by the server
ssl-cipher Categorical 5 460737 SSL cipher suite which the server chose

ssl-resumed Boolean 2 460352 If session that can be used to initiate new connections, it will be set as True;
otherwise, False

ssl-established Boolean 2 460352 If connection between two parties is established, it will be set as True; otherwise,
False

ssl-subject Categorical 5 461034 Subject of the X.509 cert offered by the server
ssl-issuer Categorical 4 461034 Trusted owner/originator of the SSL and digital certificate (certificate authority)
http-trans-depth Integer 10 460796 Pipelined depth into the HTTP connected
http-method Categorical 3 460809 HTTP request methods (GET, POST, HEAD)
http-uri Categorical 73 460809 URIs used in the HTTP request
http-version Float 1 460801 The HTTP version utilized
http-request-body-len Integer 6 0 Actual uncompressed content sizes of the data transferred from the HTTP client
http-response-body-len Integer 68 0 Actual uncompressed content sizes of the data transferred from the HTTP server
http-status-code Integer 8 0 Status codes returned by the HTTP server
http-user-agent Categorical 35 460809 Values of the User-Agent header in the HTTP protocol
http-orig-mime-types Categorical 2 461029 Ordered vectors of mime types from source system in the HTTP protocol
http-resp-mime-types Categorical 9 460883 Ordered version of mime types from destination system in the HTTP protocol
weird-name Categorical 11 459749 Names of anomalies/violations related to protocols that happened
weird-addl Categorical 3 460290 Additional information is associated to protocol anomalies/violations

weird-notice Boolean 1 459749 If the violation/anomaly was turned into a notice, it will be set as True; otherwise,
False

label Categorical 10 0 Attack class label
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Table A.11: UNSW-NB15 Dataset Description

Name Type Unique
Values

Missing
Values Description

dur Float 109945 0 Connection duration [ms]
proto Categorical 133 0 Protocol name (TCP, UDP, ...)
service Categorical 13 0 Service name (HTTP, FTP, ...)
state Categorical 11 0 Connection state (CON, CLO, ...)
spkts Integer 646 0 Source to destination packet count
dpkts Integer 627 0 Destination to source packet count
sbytes Integer 9382 0 Source to destination bytes
dbytes Integer 8653 0 Destination to source bytes
rate Float 115763 0 Packets transmission flow rate
sttl Integer 13 0 Source to destination time to live
dttl Integer 9 0 Destination to source time to live
sload Float 121356 0 Source bits per second
dload Float 116380 0 Destination bits per second
sloss Integer 490 0 Source packets retransmitted or dropped
dloss Integer 476 0 Destination packets retransmitted or dropped
sinpkt Float 114318 0 Source inter-packet arrival time [ms]
dinpkt Float 110270 0 Destination inter-packet arrival time [ms]
sjit Float 117101 0 Source jitter [ms]
djit Float 114861 0 Destination jitter [ms]
swin Integer 22 0 Source TCP window advertisement
stcpb Integer 114473 0 Source TCP sequence number
dtcpb Integer 114187 0 Destination TCP sequence number
dwin Integer 19 0 Destination TCP window advertisement
tcprtt Float 63878 0 The sum of synack and ackdat of the TCP
synack Float 57366 0 The time between the SYN and the SYN_ACK packets of the TCP
ackdat Float 53248 0 The time between the SYN_ACK and the ACK packets of the TCP
smean Integer 1377 0 Mean of the flow packet size transmitted by the source
dmean Integer 1362 0 Mean of the flow packet size transmitted by the destination
trans-depth Integer 14 0 The depth into the connection of HTTP request/response transaction
response-body-len Integer 2819 0 The content size of the data transferred from the server’s HTTP service

ct-srv-src Integer 57 0 Number of connections that contain the same service and source address in 100
connections according to the last time

ct-state-ttl Integer 7 0 Number for each state according to the specific range of values for
source/destination time to live

ct-dst-ltm Integer 52 0 Number of connections of the same destination address in 100 connections
according to the last time

ct-src-dport-ltm Integer 52 0 Number of records of the same source IP and the destination port in 100 records
according to the last time

ct-dst-sport-ltm Integer 35 0 Number of records of the same destination IP and the source port in 100 records
according to the last time

ct-dst-src-ltm Integer 58 0 Number of records of the same source IP and the destination IP in 100 records
according to the last time

is-ftp-login Boolean 2 0 If user and password access the FTP session, it will be set as 1; otherwise, 0
ct-ftp-cmd Integer 4 0 Number of flows with a command in FTP session
ct-flw-http-mthd Integer 11 0 Number of flows with methods like GET and POST in HTTP service

ct-src-ltm Integer 52 0 Number of connections of the same source address in 100 connections according to
the last time

ct-srv-dst Integer 57 0 Number of connections that contain the same service and destination address in
100 connections according to the last time

is-sm-ips-ports Boolean 2 0 If source equals to destination IP addresses and port numbers are equal, it will be
set as 1; otherwise, 0

label Categorical 10 0 Attack class label
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Table B.1: Time-Series Classification in Binary Scenario (Full Table)

Dataset Model Train Time [s] Test Time [s] Accuracy Precision Recall F1-Score

BOT-IoT

CIF 1011.44 ± 10.09 44.98 ± 5.49 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
MiniROCKET 83.32 ± 1.24 2.68 ± 0.07 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RISE 93.09 ± 2.27 18.72 ± 0.5 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ROCKET 210.4 ± 0.98 18.09 ± 0.85 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
TSF 8.48 ± 0.4 2.89 ± 0.16 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
WEASEL-v2 265.55 ± 5.41 13.83 ± 0.13 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
cBOSS 244.35 ± 1.36 207.68 ± 1.4 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

CIC-IDS-2017

CIF 1517.43 ± 18.25 445.15 ± 20.86 0.99 ± 0.0 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
MiniROCKET 103.92 ± 0.77 4.79 ± 0.36 0.99 ± 0.0 0.98 ± 0.0 0.98 ± 0.01 0.98 ± 0.0
RISE 161.51 ± 4.86 21.71 ± 0.55 0.99 ± 0.0 0.98 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
ROCKET 322.14 ± 4.25 28.23 ± 0.7 0.99 ± 0.0 0.98 ± 0.0 0.98 ± 0.01 0.98 ± 0.0
TSF 16.2 ± 0.41 3.8 ± 0.33 0.99 ± 0.0 0.99 ± 0.0 0.98 ± 0.01 0.99 ± 0.01
WEASEL-v2 393.05 ± 5.65 29.89 ± 1.5 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.01 0.99 ± 0.01
cBOSS 635.86 ± 2.3 255.31 ± 1.93 0.99 ± 0.0 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

CSE-CIC-IDS-2018

CIF 1821.9 ± 32.73 369.25 ± 16.55 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
MiniROCKET 118.57 ± 0.92 4.26 ± 0.12 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RISE 163.95 ± 2.41 22.18 ± 0.5 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
ROCKET 360.21 ± 4.11 29.97 ± 0.81 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
TSF 18.17 ± 0.22 3.94 ± 0.09 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
WEASEL-v2 425.71 ± 2.26 28.35 ± 0.94 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
cBOSS 1079.63 ± 5.91 278.11 ± 2.89 0.99 ± 0.0 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.0

Edge-IIoT

CIF 1227.35 ± 9.49 38.77 ± 2.3 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
MiniROCKET 98.77 ± 0.48 3.66 ± 0.2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RISE 105.04 ± 0.87 18.87 ± 0.34 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ROCKET 265.91 ± 2.24 22.26 ± 0.94 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
TSF 9.48 ± 0.62 3.48 ± 0.18 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
WEASEL-v2 330.02 ± 2.26 19.47 ± 0.8 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
cBOSS 422.55 ± 17.64 244.51 ± 6.46 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

IEC61850-Security

CIF 295.58 ± 4.39 370.4 ± 17.06 0.73 ± 0.01 0.73 ± 0.0 0.95 ± 0.02 0.83 ± 0.01
MiniROCKET 17.63 ± 0.43 0.72 ± 0.02 0.78 ± 0.01 0.8 ± 0.01 0.91 ± 0.01 0.85 ± 0.01
RISE 45.51 ± 0.84 7.97 ± 0.13 0.76 ± 0.01 0.8 ± 0.01 0.86 ± 0.01 0.83 ± 0.01
ROCKET 46.77 ± 1.01 3.44 ± 0.11 0.77 ± 0.01 0.79 ± 0.01 0.9 ± 0.01 0.84 ± 0.01
TSF 4.56 ± 0.49 1.64 ± 0.42 0.77 ± 0.01 0.81 ± 0.01 0.86 ± 0.02 0.83 ± 0.01
WEASEL-v2 75.34 ± 0.71 3.53 ± 0.13 0.72 ± 0.02 0.77 ± 0.01 0.86 ± 0.02 0.81 ± 0.01
cBOSS 21.92 ± 0.41 78.93 ± 0.11 0.75 ± 0.01 0.77 ± 0.01 0.9 ± 0.01 0.83 ± 0.01

ISCX-IDS-2012

CIF 679.57 ± 7.77 162.68 ± 9.05 1.0 ± 0.0 1.0 ± 0.01 0.97 ± 0.02 0.98 ± 0.01
MiniROCKET 80.64 ± 0.89 1.84 ± 0.32 1.0 ± 0.0 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
RISE 102.57 ± 2.56 17.57 ± 0.44 1.0 ± 0.0 1.0 ± 0.01 0.95 ± 0.02 0.98 ± 0.01
ROCKET 153.89 ± 1.99 9.02 ± 0.52 1.0 ± 0.0 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
TSF 7.01 ± 0.66 2.11 ± 0.08 1.0 ± 0.0 1.0 ± 0.0 0.98 ± 0.02 0.99 ± 0.01
WEASEL-v2 205.36 ± 5.72 9.23 ± 0.18 1.0 ± 0.0 0.99 ± 0.01 0.98 ± 0.02 0.98 ± 0.01
cBOSS 104.99 ± 10.16 187.85 ± 2.33 1.0 ± 0.0 0.99 ± 0.01 0.98 ± 0.02 0.98 ± 0.01

IoT-23

CIF 719.16 ± 9.11 447.6 ± 51.05 0.95 ± 0.01 0.94 ± 0.01 1.0 ± 0.0 0.97 ± 0.0
MiniROCKET 82.01 ± 2.01 1.62 ± 0.24 0.99 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RISE 98.58 ± 0.83 17.21 ± 0.45 0.95 ± 0.0 0.97 ± 0.0 0.97 ± 0.0 0.97 ± 0.0
ROCKET 145.03 ± 0.58 8.0 ± 0.59 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
TSF 5.28 ± 0.15 2.23 ± 0.2 0.98 ± 0.0 0.98 ± 0.0 1.0 ± 0.0 0.99 ± 0.0
WEASEL-v2 197.36 ± 2.15 8.25 ± 0.42 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
cBOSS 105.37 ± 11.74 186.05 ± 0.53 0.99 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

KDD99

CIF 1104.15 ± 13.03 118.08 ± 8.11 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
MiniROCKET 93.45 ± 0.89 2.81 ± 0.26 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RISE 102.88 ± 0.96 18.28 ± 0.2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
ROCKET 217.18 ± 2.88 15.79 ± 1.19 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
TSF 8.76 ± 0.66 2.87 ± 0.29 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
WEASEL-v2 277.8 ± 4.68 12.97 ± 0.32 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
cBOSS 180.16 ± 1.82 228.96 ± 1.73 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

NSL-KDD

CIF 1219.44 ± 14.56 754.62 ± 16.63 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
MiniROCKET 112.91 ± 1.64 2.87 ± 0.31 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
RISE 133.79 ± 2.9 18.5 ± 0.25 0.99 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 0.99 ± 0.0
ROCKET 245.0 ± 3.14 16.76 ± 0.92 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
TSF 11.05 ± 0.71 2.97 ± 0.31 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
WEASEL-v2 309.22 ± 6.22 13.64 ± 0.47 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
cBOSS 229.07 ± 1.09 232.35 ± 0.57 0.98 ± 0.0 0.98 ± 0.01 0.99 ± 0.0 0.98 ± 0.0

TON-IoT

CIF 1175.99 ± 11.89 405.78 ± 15.59 0.99 ± 0.0 0.97 ± 0.01 0.99 ± 0.0 0.98 ± 0.01
MiniROCKET 97.52 ± 1.97 2.95 ± 0.34 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RISE 106.22 ± 0.77 18.37 ± 0.32 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.0
ROCKET 227.18 ± 2.55 16.07 ± 0.87 1.0 ± 0.0 0.99 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
TSF 8.17 ± 0.1 2.84 ± 0.16 0.99 ± 0.0 0.99 ± 0.01 0.99 ± 0.0 0.99 ± 0.0
WEASEL-v2 274.38 ± 2.67 12.58 ± 0.45 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
cBOSS 171.55 ± 0.65 225.36 ± 2.89 0.99 ± 0.0 0.98 ± 0.0 0.99 ± 0.0 0.98 ± 0.0

UNSW-NB15

CIF 1255.72 ± 34.07 1966.39 ± 38.18 0.93 ± 0.01 0.94 ± 0.0 0.95 ± 0.01 0.95 ± 0.0
MiniROCKET 103.44 ± 1.1 2.79 ± 0.16 0.92 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01
RISE 127.81 ± 1.67 18.48 ± 0.33 0.92 ± 0.0 0.92 ± 0.0 0.96 ± 0.01 0.94 ± 0.0
ROCKET 232.56 ± 2.33 16.61 ± 0.58 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.0
TSF 12.59 ± 0.36 3.03 ± 0.23 0.93 ± 0.0 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.0
WEASEL-v2 292.77 ± 6.08 13.08 ± 0.61 0.92 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.0
cBOSS 297.98 ± 3.84 234.07 ± 0.98 0.91 ± 0.0 0.93 ± 0.01 0.93 ± 0.0 0.93 ± 0.0
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Table B.2: Time-Series Classification in Multiclass Scenario (Full Table)

Dataset Model Train Time [s] Test Time [s] Accuracy Precision Recall F1-Score

BOT-IoT

CIF 1209.81 ± 13.77 517.18 ± 25.96 1.0 ± 0.0 1.0 ± 0.0 0.94 ± 0.05 0.96 ± 0.04
MiniROCKET 114.43 ± 2.28 2.71 ± 0.46 1.0 ± 0.0 0.96 ± 0.09 0.92 ± 0.08 0.93 ± 0.08
RISE 137.08 ± 0.18 18.68 ± 0.33 1.0 ± 0.0 0.96 ± 0.09 0.92 ± 0.08 0.93 ± 0.08
ROCKET 248.0 ± 4.92 15.81 ± 0.79 1.0 ± 0.0 0.92 ± 0.11 0.9 ± 0.1 0.91 ± 0.1
TSF 14.68 ± 0.89 2.86 ± 0.33 1.0 ± 0.0 1.0 ± 0.0 0.94 ± 0.05 0.96 ± 0.04
WEASEL-v2 313.04 ± 3.82 13.42 ± 0.56 1.0 ± 0.0 0.96 ± 0.09 0.92 ± 0.08 0.93 ± 0.08
cBOSS 272.37 ± 3.36 223.1 ± 0.86 1.0 ± 0.0 0.96 ± 0.09 0.92 ± 0.08 0.93 ± 0.08

CIC-IDS-2017

CIF 1559.61 ± 28.39 621.43 ± 13.92 0.98 ± 0.0 0.72 ± 0.03 0.65 ± 0.05 0.67 ± 0.04
MiniROCKET 107.35 ± 1.88 4.69 ± 0.57 0.99 ± 0.0 0.74 ± 0.08 0.67 ± 0.04 0.69 ± 0.05
RISE 206.45 ± 3.16 22.61 ± 0.19 0.99 ± 0.0 0.76 ± 0.09 0.67 ± 0.09 0.7 ± 0.08
ROCKET 322.1 ± 1.81 28.2 ± 0.58 0.99 ± 0.0 0.76 ± 0.07 0.73 ± 0.06 0.74 ± 0.06
TSF 21.79 ± 0.5 4.22 ± 0.29 0.99 ± 0.0 0.76 ± 0.04 0.7 ± 0.06 0.72 ± 0.05
WEASEL-v2 391.83 ± 4.73 26.6 ± 0.94 0.99 ± 0.0 0.77 ± 0.05 0.72 ± 0.06 0.73 ± 0.05
cBOSS 615.52 ± 1.13 243.92 ± 2.08 0.99 ± 0.0 0.75 ± 0.05 0.75 ± 0.03 0.74 ± 0.02

CSE-CIC-IDS-2018

CIF 1884.56 ± 21.53 540.22 ± 8.61 0.98 ± 0.0 0.92 ± 0.07 0.86 ± 0.04 0.88 ± 0.05
MiniROCKET 125.37 ± 2.35 5.23 ± 0.77 1.0 ± 0.0 0.91 ± 0.06 0.86 ± 0.03 0.88 ± 0.04
RISE 165.32 ± 1.52 22.26 ± 0.38 0.99 ± 0.0 0.91 ± 0.06 0.85 ± 0.03 0.87 ± 0.04
ROCKET 371.63 ± 5.88 29.8 ± 0.44 1.0 ± 0.0 0.91 ± 0.06 0.87 ± 0.03 0.88 ± 0.04
TSF 23.41 ± 0.66 4.15 ± 0.28 1.0 ± 0.0 0.91 ± 0.05 0.89 ± 0.04 0.9 ± 0.04
WEASEL-v2 435.14 ± 5.14 27.33 ± 0.74 1.0 ± 0.0 0.92 ± 0.06 0.88 ± 0.05 0.89 ± 0.05
cBOSS 1064.73 ± 6.55 282.97 ± 2.19 0.99 ± 0.0 0.9 ± 0.07 0.88 ± 0.05 0.89 ± 0.05

Edge-IIoT

CIF 1615.61 ± 26.54 1099.32 ± 58.52 0.99 ± 0.0 0.98 ± 0.01 0.96 ± 0.01 0.97 ± 0.01
MiniROCKET 264.62 ± 2.68 3.73 ± 0.41 1.0 ± 0.0 0.99 ± 0.0 0.99 ± 0.01 0.99 ± 0.0
RISE 143.8 ± 1.21 19.3 ± 0.25 0.99 ± 0.0 0.99 ± 0.0 0.94 ± 0.01 0.95 ± 0.01
ROCKET 348.58 ± 2.35 21.78 ± 1.18 0.99 ± 0.0 0.99 ± 0.0 0.98 ± 0.01 0.98 ± 0.0
TSF 18.49 ± 0.48 3.57 ± 0.13 0.99 ± 0.0 0.99 ± 0.0 0.96 ± 0.01 0.97 ± 0.01
WEASEL-v2 433.37 ± 4.71 18.47 ± 0.98 0.99 ± 0.0 0.99 ± 0.0 0.99 ± 0.01 0.99 ± 0.0
cBOSS 538.06 ± 5.83 253.78 ± 1.64 0.98 ± 0.0 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

IEC61850-Security

CIF 327.87 ± 5.18 487.33 ± 17.35 0.44 ± 0.01 0.48 ± 0.09 0.3 ± 0.02 0.28 ± 0.03
MiniROCKET 20.09 ± 0.41 0.71 ± 0.02 0.44 ± 0.01 0.46 ± 0.04 0.31 ± 0.01 0.31 ± 0.02
RISE 52.17 ± 0.57 8.13 ± 0.25 0.44 ± 0.01 0.35 ± 0.01 0.34 ± 0.01 0.34 ± 0.01
ROCKET 52.68 ± 1.51 3.37 ± 0.07 0.43 ± 0.01 0.42 ± 0.03 0.31 ± 0.01 0.3 ± 0.02
TSF 5.51 ± 0.12 1.56 ± 0.15 0.45 ± 0.01 0.35 ± 0.01 0.34 ± 0.01 0.34 ± 0.01
WEASEL-v2 84.51 ± 1.31 3.71 ± 0.11 0.42 ± 0.02 0.44 ± 0.05 0.29 ± 0.01 0.28 ± 0.02
cBOSS 26.51 ± 0.45 79.5 ± 0.36 0.42 ± 0.01 0.39 ± 0.05 0.3 ± 0.01 0.3 ± 0.01

IoT-23

CIF 798.55 ± 18.4 558.06 ± 34.92 0.93 ± 0.01 0.94 ± 0.05 0.82 ± 0.04 0.86 ± 0.05
MiniROCKET 104.12 ± 1.48 1.61 ± 0.12 1.0 ± 0.0 0.98 ± 0.03 0.93 ± 0.05 0.94 ± 0.04
RISE 109.85 ± 1.71 17.74 ± 0.15 0.92 ± 0.01 0.92 ± 0.02 0.89 ± 0.02 0.89 ± 0.01
ROCKET 170.96 ± 2.1 8.24 ± 0.51 1.0 ± 0.0 0.96 ± 0.03 0.92 ± 0.03 0.93 ± 0.03
TSF 6.51 ± 0.26 2.2 ± 0.15 0.99 ± 0.0 0.96 ± 0.03 0.92 ± 0.04 0.93 ± 0.04
WEASEL-v2 230.43 ± 2.97 8.43 ± 0.22 1.0 ± 0.0 0.98 ± 0.02 0.93 ± 0.05 0.95 ± 0.04
cBOSS 117.08 ± 1.22 202.2 ± 0.92 0.99 ± 0.0 0.95 ± 0.04 0.9 ± 0.04 0.91 ± 0.04

KDD99

CIF 1221.2 ± 21.68 277.62 ± 9.7 1.0 ± 0.0 0.97 ± 0.03 0.92 ± 0.02 0.94 ± 0.02
MiniROCKET 113.13 ± 2.4 2.76 ± 0.08 1.0 ± 0.0 0.96 ± 0.02 0.93 ± 0.02 0.94 ± 0.02
RISE 126.25 ± 1.97 19.74 ± 0.45 1.0 ± 0.0 0.94 ± 0.02 0.84 ± 0.05 0.87 ± 0.03
ROCKET 254.05 ± 4.95 16.61 ± 1.05 1.0 ± 0.0 0.95 ± 0.03 0.93 ± 0.03 0.93 ± 0.02
TSF 12.34 ± 0.78 3.08 ± 0.18 1.0 ± 0.0 0.96 ± 0.04 0.91 ± 0.03 0.92 ± 0.04
WEASEL-v2 324.65 ± 11.53 13.32 ± 0.56 1.0 ± 0.0 0.96 ± 0.03 0.93 ± 0.03 0.93 ± 0.02
cBOSS 208.35 ± 29.39 237.06 ± 6.41 1.0 ± 0.0 0.95 ± 0.03 0.92 ± 0.04 0.93 ± 0.04

TON-IoT

CIF 1177.48 ± 28.05 603.26 ± 36.37 0.96 ± 0.01 0.89 ± 0.04 0.84 ± 0.02 0.86 ± 0.03
MiniROCKET 100.23 ± 0.62 2.92 ± 0.29 0.99 ± 0.0 0.96 ± 0.03 0.94 ± 0.0 0.94 ± 0.01
RISE 107.71 ± 2.14 18.53 ± 0.63 0.98 ± 0.0 0.93 ± 0.03 0.88 ± 0.01 0.89 ± 0.01
ROCKET 229.52 ± 2.97 16.41 ± 0.43 0.98 ± 0.0 0.94 ± 0.03 0.9 ± 0.02 0.91 ± 0.02
TSF 9.38 ± 0.33 3.03 ± 0.19 0.98 ± 0.0 0.91 ± 0.04 0.89 ± 0.01 0.89 ± 0.02
WEASEL-v2 282.56 ± 6.82 13.07 ± 0.25 0.98 ± 0.0 0.93 ± 0.04 0.9 ± 0.02 0.91 ± 0.03
cBOSS 177.88 ± 0.77 220.39 ± 2.26 0.97 ± 0.0 0.85 ± 0.01 0.86 ± 0.02 0.85 ± 0.02

UNSW-NB15

CIF 1566.41 ± 22.12 4522.62 ± 49.73 0.78 ± 0.01 0.5 ± 0.07 0.46 ± 0.07 0.47 ± 0.07
MiniROCKET 122.67 ± 1.52 3.2 ± 0.28 0.78 ± 0.0 0.52 ± 0.07 0.43 ± 0.02 0.44 ± 0.03
RISE 136.93 ± 2.11 18.84 ± 0.22 0.78 ± 0.01 0.49 ± 0.07 0.44 ± 0.03 0.45 ± 0.04
ROCKET 261.55 ± 1.97 15.65 ± 0.59 0.78 ± 0.01 0.52 ± 0.04 0.47 ± 0.06 0.48 ± 0.06
TSF 18.95 ± 0.74 3.39 ± 0.13 0.79 ± 0.0 0.53 ± 0.04 0.47 ± 0.03 0.49 ± 0.03
WEASEL-v2 335.34 ± 4.91 13.92 ± 0.96 0.78 ± 0.01 0.48 ± 0.07 0.43 ± 0.03 0.44 ± 0.04
cBOSS 330.51 ± 2.01 236.65 ± 2.01 0.74 ± 0.01 0.45 ± 0.05 0.44 ± 0.05 0.44 ± 0.05
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