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Abstract. The search for innovative mitigation solutions that can be 
adopted in urban areas to efficiently reduce the effects of induced 
vibrations by increasing numbers of vehicles has motivated a significant 
number of researchers from different fields. An interesting concept seems 
to be the use of buried elastic inclusions, periodically arranged parallel to 
the ground surface, applying sonic crystal inspired technologies and 
bandgap filtering on adequate frequency ranges. In previous works, 
preliminary numerical results have shown the influence of the presence of 
multiple elastic heterogeneities on the attenuation of the vibration fields in 
receivers located on the opposite side from the traffic vibration source. 
Following this concept, a 2.5D numerical model has been implemented, 
based on the Finite Element Method (FEM) and on the use of a numerical 
absorbing layer. The effects on the vibration levels provided by a set of 
periodic elastic inclusions inserted in the host propagation medium are 
parametrically analysed. In fact, frequency domain results, obtained when 
modelling different configurations of the periodic structure and host soil, 
are used to assess the efficiency of these arrays as a mitigation measure.  

1 Introduction  
Vibration mitigation and protection is an important problem that is related to human 
comfort and that has been accepted as a relevant worldwide societal challenge. Novel 
protection techniques have been investigated, namely a new generation of mitigation 
measures that include the so-called metamaterials [1]. These resources are, in fact, artificial 
materials designed, fabricated or arranged in such a way that they exhibit behaviours not 
found in nature. One practical application for this type of systems is acoustic attenuation, as 
proposed by Umnova et al and Sánchez Dehesa et al [2, 3]. The good results that have been 
registered in noise control applications make it possible to believe that similar concepts 
could successfully be adopted for vibration mitigation in elastic soils, making use of buried 
metamaterial-like structures.  

Some recent research works can be found in the literature, regarding seismic protection 
and vibration mitigation by periodic structures. Alagoz and Alagoz [4] presented numerical 
simulations to show the shielding effect of what they called “seismic crystals”, indicating 
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an effective attenuation of seismic waves and consequent damage reduction in case of an 
earthquake. On the other hand, Kim and Das [5] developed a meta-barrier composed of 
many periodic meta-boxes to reduce the amplitude of seismic waves and create an area of 
protection tested by computer simulation. Brûlé et al [6, 7] reported what is possibly the 
first evidence of the efficiency of periodic buried structures as a shield to seismic waves, 
after performing a controlled seismic test on a soil with a grid of bored vertical, cylindrical 
and empty inclusions. Krodel et al [8] combined the numerical analysis and scaled 
experiments in the study of an array of resonating structures buried around large buildings 
to control the propagation of seismic waves. Preliminary works ([9, 10]) by the authors of 
the present paper have also demonstrated the vibration mitigation properties of arrays of 
elastic scatterers, in a reduced number of scenarios. Consequently, this concept for 
vibration protection based on buried metamaterials may constitute a powerful promising 
future solution that deserves attention. 

In this work, a brief description of the 2.5D implemented numerical model is initially 
given. Then, the numerical example is presented and the solutions for the reference cases 
are illustrated. A parametric study is shortly presented in order to analyse the main features 
of the physical system incorporating periodic elastic inclusions and preliminarily verify its 
mitigation effects under different configurations. The paper ends with some final remarks. 

2 Numerical formulation –2.5D FEM model with absorbing layers  
Consider an elastic medium where a set of inclusions are introduced, representing a multi-
domain elastic system. The wave equation in the space-frequency domain can be written as  

   22 0         u u u  (1) 

where u  represents the displacement vector,   and   correspond to the Lamé’s constants 
of the elastic medium and   the mass density, and   the exciting angular frequency. 

When modelling many civil engineering problems, like transportation infrastructures, 
the physical system and the solid inclusions can be assumed as infinite and with a geometry 
that does not change along the z longitudinal direction. If this physical system is excited by 
a harmonic dilatational point source with an angular frequency  , a 2.5D numerical 
approach can be adopted, after applying a Fourier transformation along the longitudinal 
direction. Hence, the 3D displacement field can be evaluated as a continuous integral of 
simpler 2D solutions in the frequency domain by: 

 0i ( )3 2.5 ( )e dzk z zD D
zk k


 



 u u  (2) 

with zk  representing the longitudinal wavenumber along the z direction. This integral can 
be approximated by a discrete summation (assuming an infinite set of virtual sources 
equally spaced in the z axis) that converges within a finite number of terms [11].  

The solution of the 2.5D problem is obtained in this work by the Finite Element Method 
(FEM), with the different elastic domains being discretised, namely, the host medium (or 
media) and the elastic inclusions periodically organized and embedded in the host soil(s). In 
this 2.5D FEM approach, the modelling domain is discretised along the cross-section of the 
physical problem while the solution in the remaining (longitudinal) direction is determined 
by the above referred Fourier transformation, with the numerical problem being solved in 
the wavenumber-frequency domain.  
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Following the classic finite elements approach, the equilibrium of the domain can be 
established by the following equation, given in terms of nodal variables [12, 13]: 

      2 , ,z zk k   K M u F  (3) 

where K  and M  represent the stiffness and mass matrices, and vectors u  and F  
correspond to the nodal displacements and to the external nodal forces in the transformed 
domain, given in [13]. In order to improve the computational efficiency, the stiffness matrix 
K  can be divided into three sub-matrices, independent of the wavenumber and frequency, 
and equation (3) can then be substituted by the global equation to be solved:  

      2 2
1 2 3i , ,z z z zk k k k     K K K M u F  (4) 

Analyses of the 3D results, both in the frequency domain and in the time domain, can be 
performed after the application of one or two inverse Fourier transformations to the 
obtained FEM results. This procedure can be very efficient in comparison to a classical 3D 
FEM approach and also reveals to be very useful in the interpretation of different observed 
phenomena in longitudinally invariant physical systems. 

Additionally, in the present work, an alternative method suggested by Semblat et al [14] 
has been implemented in order to efficiently avoid spurious wave reflections in the artificial 
mesh boundaries. Therefore, numerical absorbing layers (with spatially variable damping 
coefficients) have been defined in the outer part of the elastic domain being modelled 
where the unbounded soil is truncated. This simple procedure has demonstrated to be easy 
to implement and very efficient for elastic waves with different incidence directions. 

The 2.5D FEM model has been successfully verified by comparing with analytical 
solutions and other numerical methods previously proposed by the authors [11, 15], but in 
the context of the present text, for the sake of brevity, these results are not presented. 

3 Parametric studies 
The proposed 2.5D FEM model is a useful numerical tool that is now applied to a set of 
parametric analyses of the wave propagation patterns and physical behaviour of the 
modelled systems, composed by different geometric configurations and numbers of buried 
inclusions. A very limited selection of the extensive sets of results is here presented for 
distinct geometries, arrangements of circular cylindrical inclusions and materials 
characterizing the diverse elastic media. In Table 1, the material properties used in this 
work are summarized, as well as the correspondent wave propagation velocities. The results 
are analysed for a range of frequencies (from 10 to 100 Hz) and a range of phase velocity 
values (from 100 to 500 m/s), defined by zc k , and the amplitude values represented 
in the illustrated figures are determined by the displacement norm, combining the 3 

orthogonal directions (x, y and z) and numerically evaluated by 2 2 2
x y zu u u u   . 

Table 1. Material properties adopted in the studies and wave propagation velocities. 

Material 
Young 

modulus 
E (GPa) 

Poisson 
coeff. 

Density 
ρ (kg/m3) 

P wave 
cp (m/s) 

S wave 
cs (m/s) 

Rayleigh 
wave 

cR (m/s) 
Host soil (Ω1) 116 0.33 1700 318.0 160.2 149.1 

Ballast (Ω3) 97 0.12 1591 251.1 165.0 147.1 
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Sub-ballast (Ω3) 212 0.30 1913 386.2 206.5 191.2 
Hard Inclusions 
– Concrete (Ω2) 30 0.30 2500 4019.2 2148.3 1989.7 

3.1 Examples definition and reference solutions  

In the examples used for the parametric studies, a symmetric model is considered along the 
cross-sectional plane, with symmetry in respect to a vertical axis crossing the origin of the 
(x,y) axes, which allows the efficient application of the FEM formulation previously 
described (for a schematic representation, see Figure 1). A set of two rows with four solid 
inclusions (4×2) is buried in an elastic half-space soil (referred in Table 1 and Figure 1 as 
material/domain Ω1), which is excited by a harmonic load applied along the vertical 
direction on the surface of the host soil, at point 0 0( 0 m, 0 m)x y  . The elastic inclusions 
are assumed to be circular (with radius equal to 0.3 m) and infinitely long in the z direction, 
being buried at a depth of 0.2 m from the surface and completely filled with a homogeneous 
material (material/domain Ω2). Initially, hard inclusions made of concrete were considered, 
with the correspondent centres equally spaced of 1 m along both x and y directions, and the 
closest inclusion to the source centred at 5mcx   . The inclusions can be directly buried in 
the host soil or can eventually be embedded in a confined soil near the set of inclusions, 
with properties of ballast or sub-ballast materials (material/domain Ω3).  
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Fig. 1. Problem representation and general scheme definition on a cross-sectional x-y plane view: 
(left) half-space system without embankment; (right) half-space system with embankment. 

Figure 2 presents the amplitude of the displacement norm computed at receiver R, 
located at ( 15m, 0 m)R Rx y   , for the reference cases where no elastic inclusions are 
introduced and therefore the wave propagation occurs in two homogeneous media: the 
elastic half-space with flat surface (without embankment) and the elastic half-space with an 
embankment, that elevates the free surface in a limited region. In the first case (left side of 
Figure 2), it is clear that, for phase velocity values below the propagation velocity of the 
Rayleigh wave (cR), very little energy propagates in the system (null displacements 
observed for all frequency range), which only enables evanescent waves. For phase velocity 
values above cR, the elastic waves propagate without obstacles and higher displacements 
values are observed. In the second case, e.g. in the presence of the embankment, the 
registered results change significantly for phase velocity values above cR,, as can be seen on 
the right side of Figure 2. Here, the displacement amplitude values decrease for frequencies 
above around 40 Hz, as a consequence of the presence of the embankment and the resulting 
discontinuity of the half-space surface.  
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3.2 Set of periodic inclusions without and with embankment  

To verify the effect of the presence of the set of 4×2 hard inclusions buried in the host soil, 
Figure 3 presents the amplitude of the displacement norm determined at the same receiver 
R, selected so as to place the set of elastic inclusions between the source and the receiver. 
By comparing Figures 2 and 3, one can assess the protection effect introduced by the 
periodic inclusions, more evident without the presence of embankment. The presence of 
solid obstacles significantly reduces the amplitude of the displacements in a region of the 
c-f domain of analysis influenced by the vibration modes of the inclusions (this is 
confirmed by the dispersion curve for longitudinal bending waves also plotted as dashed 
black lines for a concrete inclusion). However, in these plots, it is not easy to quantify the 
effect related to the Bragg effect due to the periodic distribution of the inclusions. Some 
effects of the assumed cross-section symmetry can be observed as lighter lines below the 
dispersion curves and approximating the region with phase velocity values near cR. 

      
Fig. 2. Representation of displacement norm at receiver R for the reference cases without periodic 
inclusions – homogeneous media: (left) without embankment; (right) with embankment. 

      
Fig. 3. Representation of displacement norm at receiver R for the cases with two rows of periodic 
inclusions embedded in host soil: (left) without embankment; (right) with embankment. 

3.3 Set of periodic inclusions with different stiffness  

As expected, the stiffness of the inclusions has a great influence in the dynamic response of 
the systems being analysed. This can be verified in Figure 4, where the amplitude of the 
displacement norm is plotted for the cases with the inclusions being modelled with a softer 
material, characterized by a reduced Young modulus by a factor of eight. The dispersion 
relation for each inclusion has also been recalculated and plotted as dashed black lines, 
exhibiting a very different behaviour, with reduced attenuation efficiency, but once again 
clearly delimiting (to lower phase velocity values) the region of the c-f domain where the 
protection effect by the group of inclusions is more evident.   
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Fig. 4. Representation of displacement norm at receiver R for the cases with two rows of periodic soft 
inclusions embedded in host soil: (left) without embankment; (right) with embankment. 

4 Final considerations 
The present paper describes a preliminary parametric study, based on a 2.5D FEM model, 
with the objective of understanding the shielding effect provided by a set of periodic 
circular cylindrical inclusions buried near the surface of a host soil. The results obtained 
show the influence of a selected number of parameters modifying the mitigation effect 
introduced by the buried periodic inclusions. 
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