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Abstract: Chronic venous disease (CVeD) is a prevalent condition with a significant socioeconomic
burden, yet the pathophysiology is only just beginning to be understood. Previous studies concerning
the dysregulation of matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of
metalloproteinases (TIMPs)) within the varicose vein wall are inconsistent and disregard clinical
progression. Moreover, it is highly plausible that MMP and TIMP expression/activity is affected by
transforming growth factor (TGF)-β1 and its signaling receptors (TGFβRs) expression/activity in
the vein wall. A case–control study was undertaken to analyze genetic and immunohistochemical
differences between healthy (n = 13) and CVeD (early stages: n = 19; advanced stages: n = 12) great
saphenous vein samples. Samples were grouped based on anatomic harvest site and subjected
to quantitative polymerase chain reaction for MMP1, MMP2, MMP8, MMP9, MMP12, MMP13,
TIMP1, TIMP2, TIMP3, TIMP4, TGFβR1, TGFβR2, and TGFβR3 gene expression analysis, and then
to immunohistochemistry for immunolocalization of MMP2, TIMP2, and TGFβR2. Decreased gene
expression of MMP12, TIMP2, TIMP3, TIMP4, and TGFβR2 was found in varicose veins when
compared to controls. Regarding CVeD clinical progression, two facts arose: results across anatomical
regions were uneven; decreased gene expression of MMP9 and TGFβR3 and increased gene expression
of MMP2 and TIMP3 were found in advanced clinical stages. Most immunohistochemistry results
for tunica intima were coherent with qPCR results. In conclusion, decreased expression of TGFβRs
might suggest a reduction in TGF-β1 participation in the MMP/TIMP imbalance throughout CVeD
progression. Further studies about molecular events in the varicose vein wall are required and should
take into consideration the venous anatomical region and CVeD clinical progression.

Keywords: chronic venous disease; matrix metalloproteinases (MMPs); tissue inhibitors of
metalloproteinases (TIMPs); transforming growth factor (TGF)-β receptors; varicose vein;
gene expression

1. Introduction

Matrix metalloproteinases (MMPs) are a large family of endopeptidases that are secreted in their
latent form by different cells in the venous wall (including fibroblasts, vascular smooth muscle cells,
and leukocytes) and have proteolytic activities that participate in cellular homeostasis, adaptation,
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and tissue remodeling [1–3]. They are known for degrading collagen, elastin, and other extracellular
matrix (ECM) macromolecules present in the structure of many tissues [1,2], and may affect other
cellular processes including endothelium-mediated dilation, vascular smooth muscle cell migration and
proliferation, as well as modulation of Ca2+ signaling and contraction in vascular smooth muscle [2,4].
MMP activity can be inhibited by four different tissue inhibitors of metalloproteinases (TIMP1–4) [1,2].
Tissue homeostasis is thus achieved by a tight balance of MMP and TIMP expression/activity.
When this balance is disturbed, dysregulated MMP activities result—a fact associated with many
diseases [3].

Transforming growth factor β (TGF-β) is a multifunctional growth factor that is widely expressed
in diverse tissues, and which has critical and specific roles during embryogenesis and in maintaining
the homeostasis of adult tissues [5]. This growth factor has three different isoforms in mammals
(TGFβ1–3) [5,6]. TGF-β1 is secreted in a latent complex by different cell types (including leukocytes,
platelets, and osteocytes) and is a potent chemo-attractant for inflammatory cells [7–10]. TGF-β1
signaling involves heteromeric complexes comprised of type I (e.g., transforming growth factor-β
receptor 1 (TGFβR1)) and II (e.g., TGFβR2) transmembrane receptors, Smads (as signaling effectors,
as well as transcription regulators), and non-Smad signaling pathways, leading to cell state-specific
modulation of gene transcription [5,10]. TGFβR2 is capable of binding TGF-β1 alone, while TGFβR1
can only bind the ligand in cooperation with TGFβR2 [5,10]. TGF-β1 access to the signaling receptors
is regulated by membrane-associated coreceptors (e.g., TGFβR3) that are thought to not signal
directly [5,10].

Despite being intensively studied in the past decades, chronic venous disease (CVeD) is far
from being completely understood. Theoretical explanations regarding venous pathophysiology and
genesis of varicosities in the lower limbs vary. Recent explanations suggest that venous hypertension
may induce leukocyte-endothelial activation and initiation of a series of inflammatory processes with
alterations at a molecular level within the vein wall (e.g., production of free radicals, inflammatory
mediators, and proteolytic enzymes) leading to dilated and tortuous veins, valvular incompetence, and
blood stasis, which in turn promote the perpetuation of local venous hypertension [7–16]. A variety of
molecules, such as TGF-β1, have been proposed to be involved in the regulation of leukocyte adhesion
and recruitment [7,9–12,16,17]. Furthermore, a crucial role of MMP/TIMP imbalance in varicose
vein formation and CVeD progression has been increasingly recognized [9,10,12,17–28]. Nevertheless,
published results are not always consistent and show wide discrepancy among them (i.e., the same
proteins were found to be increased, decreased, and even unchanged in varicose vs. non-varicose
veins) [29].

We have previously demonstrated that TGF-β1 may directly intervene in the gene expression
of MMP/TIMP in the great saphenous vein wall [30], which reinforced the hypothesis that the
inflammatory process may lead to morphologic changes within the vein wall that is mediated
by MMP and TIMP expression/activity [8,12,31]. Increasing knowledge about TGF-β1 signaling
mechanisms and regulation indicates that signaling responses are extensively defined by TGF-β1
receptor availability and function [10,32]. It would, therefore, seem reasonable to expect that the effect
of TGF-β1 on MMP and TIMP expression/activity depends on TGFβR expression/activity within vein
wall cells.

Although the MMP/TIMP derangement in varicose veins is widely accepted, little is known
about what triggers this imbalance and how it is related to TGF-β1 activity. Moreover, there are no
studies associating MMP, TIMP, or TGFβR expression in vein wall cells with CVeD clinical progression.
With the aim of achieving a better understanding on how MMP/TIMP and TGFβR gene expression
and their presence vary within healthy/varicose venous walls, a cross-sectional case–control study was
undertaken to analyze genetic and immunohistochemical differences between CVeD veins (grouped
by clinical stages) and healthy veins.
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2. Results

Table 1 summarizes the main demographic and clinical features of the participants. Ethnicity is
not presented as all participants were Caucasian. In order to control demographic and clinical
variability between groups, two subsamples of the 44 participants were used to study differences in
gene expression among the control, CEAP2–3, and CEAP4–6 groups (n = 29) and between the CEAP2–3
and CEAP4–6 groups (n = 31). Therefore, differences regarding sex, age, BMI, and pregnancies
presented p > 0.05.

Table 1. Participants’ demographic and clinical features. Data shown in this table refer to the total
number of participants from which subgroups were selected (in order to achieve demographic and
clinical feature equivalence) for further analyses.

Features Control CEAP2–3 CEAP4–6

Sex
Females 3 (23.08%) 14 (73.68%) 9 (75%)
Males 10 (76.92%) 5 (26.32%) 3 (25%)

Age (a) 67.85 ± 2.679 (54–81) 56.37 ± 1.764 (40–74) 59.58 ± 2.930 (45–77)

BMI (kg/m2)
25.28 ± 0.935
(20.89–29.07)

28.26 ± 1.072
(22.83–37.46)

28.82 ± 1.232
(23.15–35.55)

Pregnancies (No.) 2.33 ± 1.856 (0–6) 2.07 ± 0.322 (0–4) 2.89 ± 0.351 (2–5)

CEAP

2 - 2 (6.45%) -
3 - 17 (54.84%) -
4 - - 10 (32.25%)
5 - - 1 (3.23%)
6 - - 1 (3.23%)

2.1. MMP, TIMP, and TGFβR Gene Expression in Healthy and Varicose Vein Walls

PCR analysis confirmed the gene expression of all MMPs, TIMPs, and TGFβRs in the vein samples,
except for MMP8 and MMP13 (Figure 1). The absence of MMP8 and MMP13 gene expression was
reconfirmed after using umbilical arteries and the PC3 prostate cell line cDNA as positive controls.
Also, MMP1 and TGFβR1 were excluded from further qPCR analyses due to very low gene expression
in the cDNA pools.
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amplification of MMP8, MMP9, MMP12, and MMP13 in varicose veins. 

Figure 2 presents the comparison between healthy and CVeD veins from the tibiotarsal region. 
The gene expression of MMP12 (p = 0.006), TIMP2 (p = 0.010), TIMP3 (p = 0.026), TIMP4 (p < 0.001), 
and TGFβR2 (p = 0.001) was significantly decreased in the CEAP2–3 veins when compared to 
controls. Similarly, the gene expression of TIMP4 (p < 0.001) and TGFβR2 (p = 0.019) was significantly 
decreased in the CEAP4–6 veins when compared to controls. 

Figure 1. PCR analysis of several matrix metalloproteinases (MMPs), tissue inhibitors of
metalloproteinases (TIMPs), and transforming growth factor-β receptors (TGFβRs) in cDNA pools of
varicose and healthy veins. Amplification of β-actin housekeeping gene was used as a control of the
cDNA synthesis. Umbilical arteries or the PC3 prostate cell line was used as a positive control for the
amplification of MMP8, MMP9, MMP12, and MMP13 in varicose veins.

Figure 2 presents the comparison between healthy and CVeD veins from the tibiotarsal region.
The gene expression of MMP12 (p = 0.006), TIMP2 (p = 0.010), TIMP3 (p = 0.026), TIMP4 (p < 0.001),
and TGFβR2 (p = 0.001) was significantly decreased in the CEAP2–3 veins when compared to controls.
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Similarly, the gene expression of TIMP4 (p < 0.001) and TGFβR2 (p = 0.019) was significantly decreased
in the CEAP4–6 veins when compared to controls.
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with β-actin housekeeping gene. All results are expressed as fold expression. Error bars indicate 
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anatomic harvest sites (tibiotarsal, saphenofemoral, and tributaries) were also performed. No 
significant differences in MMP, TIMP, and TGFβR gene expression were found between the two 
CVeD groups from the tibiotarsal junction. From the saphenofemoral junction, only MMP9 gene 
expression was significantly lower in the CEAP4–6 veins (p = 0.027). Finally, in varicose tributary 
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Figure 2. MMP, TIMP, and TGFβR gene expression in healthy, CEAP2–3, and CEAP4–6 veins
(from the tibiotarsal junction). Their gene expression was determined by qPCR and after normalization
with β-actin housekeeping gene. All results are expressed as fold expression. Error bars indicate
mean ± standard error of the mean (SEM), n(healthy) = 13, n(CEAP2-3) = 10, and n(CEAP4-6) = 6. * p ≤ 0.05.

Comparisons between the CEAP2–3 and CEAP4–6 vein groups (Figure 3) from different anatomic
harvest sites (tibiotarsal, saphenofemoral, and tributaries) were also performed. No significant
differences in MMP, TIMP, and TGFβR gene expression were found between the two CVeD groups
from the tibiotarsal junction. From the saphenofemoral junction, only MMP9 gene expression
was significantly lower in the CEAP4–6 veins (p = 0.027). Finally, in varicose tributary veins,
MMP2 (p = 0.002) and TIMP3 (p = 0.050) gene expressions were significantly increased, while TGFβR3
gene expression (p = 0.002) was significantly decreased in the CEAP4–6 group.
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Figure 3. MMP, TIMP, and TGFβR gene expression in the CEAP2–3 and CEAP4–6 veins (from three
different regions). Their gene expression was determined by qPCR after normalization with β-actin
housekeeping gene. All results are expressed as fold expression. Error bars indicate mean ± SEM,
n(CEAP2–3) = 19 and n(CEAP4–6) 12. * p ≤ 0.05.

2.2. MMP, TIMP, and TGFβR Immunoreactivity in Healthy and Varicose Vein Walls

Qualitative results of IHC analysis are shown in Figure 4 and Table 2. Positive immunostaining
for MMP2, TIMP2, and TGFβR2 was more consistently found in both intima and media layers of
varicose and healthy veins. A closer look at the staining intensity revealed that MMP2 was decreased
in all tunicae, TIMP2 was decreased in the intima and media, and TGFβR2 was slightly decreased in
all tunicae of varicose veins when compared to controls.
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Figure 4. Immunodetection of MMP2, TIMP2, and TGFβR2 in healthy, CEAP2–3, and CEAP4–6 veins.
Immunohistochemistry (IHC) was performed and revealed using a peroxidase substrate. Decreased labeling
of proteins was observed in chronic venous disease veins. Scale bar represents 20 µm.

Table 2. Immunodetection of MMP2, TIMP2, and TGFβR2 in tissue sections of healthy, CEAP2–3,
and CEAP4–6 veins (from three different regions). The scores were established in a blinded manner
by two independent observers, according to the labeling observed with a microscope, as follows: −,
negative; +, discrete; ++, moderate and +++, intense.

Region Tunica Group MMP2 TIMP2 TGFβR2

Tibiotarsal junction

Intima
Controls +++ ++ +
CEAP2–3 + − −/+
CEAP4–6 + + +

Media
Controls +++ ++ +
CEAP2–3 + + −/+
CEAP4–6 + + −

Adventitia
Controls +++ − −/+
CEAP2–3 − −/+ −
CEAP4–6 − − −

Saphenofemoral junction

Intima
CEAP2–3 ++ +/++ +
CEAP4–6 + + +

Media
CEAP2–3 ++ +/++ −/+
CEAP4–6 −/+ + −/+

Adventitia
CEAP2–3 − ++ −
CEAP4–6 − −/+ −

Tributary

Intima
CEAP2–3 + − −/+
CEAP4–6 + −/+ −

Media
CEAP2–3 + + −/+
CEAP4–6 − −/+ −/+

Adventitia
CEAP2–3 − −/+ −
CEAP4–6 − − −
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From the comparisons between the CVeD groups, MMP2 was generally unchanged (except for
the saphenofemoral junction samples where it was decreased in the intima and media of the CEAP4–6
group), TIMP2 was generally decreased in the media and adventitia but slightly increased in the intima
(except for the saphenofemoral samples) of the CEAP4–6 group, and TGFβR2 appeared to have no
relevant difference among the groups.

3. Discussion

This cross-sectional case–control study was set up in an attempt to resolve existing discrepancies
and gaps in the literature regarding the role of MMP/TIMP dysregulation in CVeD pathophysiology.
Specifically, the aim was to take into consideration two other variables: TGFβR expression within the
vein wall and CVeD clinical progression. Moreover, unlike the majority of the studies in this field,
two methodological measures were taken for the purpose of controlling additional sources of variability.
Firstly, specimens were grouped and compared based on anatomic harvest site (evidence that vein
source and location may be a factor in the variability has been shown previously [19]), and secondly,
comparison groups were matched regarding important demographic and clinical features.

The choice of specific MMPs was based on previously published studies [29], yet only genetic
data concerning MMP2, MMP9, MMP12, TIMP1, TIMP2, TIMP3, TIMP4, TGFβR2, and TGFβR3
are discussed as RT-PCR results showed no detection of MMP8 and MMP13 gene expression.
Likewise, qPCR results obtained from cDNA pools of CVeD and healthy veins showed negligible
MMP1 and TGFβR1 gene expression. The absence of MMP8 and MMP13 gene expression in vein
samples contradicts previous findings [19,28,33]. MMP8 is frequently associated with venous ulcer
healing [34,35]; however, it may not intervene in venous wall restructuring.

In our study, gene expression of MMP12, TIMP2, TIMP3, TIMP4, and TGFβR2 was decreased in CVeD
veins (especially in early clinical stages) when compared to healthy veins. Elevated gene expressions
of MMP2, TIMP1, and TIMP3 in varicose veins were previously described [23,25], while decreased
expression of MMP2 was also reported [18,24]. Methodological differences—for example, sample size,
anatomic harvest site or use/non-use of effective control samples—may partially explain the conflicting
results. The disparity in genetic data among studies may also be due to the broad range of morphologic
presentations of varicose vein walls (atrophic or hypertrophic segments), and the possible existence of
different phases in MMP and TIMP expression/activity throughout CVeD progression. It is plausible that
the imbalance of these proteins favors atrophy during a primary phase and fibrosis during a secondary
phase. In view of this, vein specimens at different CVeD stages were stratified for comparison in the
current study.

Significant differences were only found between healthy and CVeD veins (i.e., these differences
were not present between CVeD vein groups from the tibiotarsal junction—cf. Figures 2 and 3).
Despite this, we believe that in a larger sample the trends presented in Figure 3 may achieve statistical
significance. We also believe that these trends give a good representation of what happens in CVeD
atrophic/hypertrophic phases: a local decrease in MMP and TIMP gene expression in varicose veins
from the CEAP2–3 group (during the atrophic phase) followed by a local gradual increase in MMP
and TIMP gene expression in varicose veins from the CEAP4–6 group (during the hypertrophic phase).
Regarding TGF-β1 receptors, decreased gene expression of the signal transducer TGFβR2 in varicose
veins could suggest a counter-regulation mechanism to control chronically elevated local levels of
TGF-β1, leading to a reduction in participation of this growth factor in the MMP/TIMP imbalance
throughout CVeD clinical progression. This is in line with previous studies advocating a correlation
between TGF-β1 enhanced expression/activity and the development of varicosities [10,12,36–38].
Although TGF-β1-enhanced expression was previously found in varicose veins [36,37], its signal
transducer receptor expression has not been extensively studied [39]. However, whilst our results for
TGFβR gene expression may explain generally decreased gene expression of MMP and TIMP in CVeD
veins (especially from early clinical stages) when compared to healthy veins, they do not explain the
slightly increased gene expression of MMP and TIMP in the CEAP4–6 group (when compared to the
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CEAP2–3 group). It might be that another inflammatory cytokine/growth factor (e.g., interleukins,
vascular endothelial growth factor, or tumor necrosis factor-α) [40,41] may play a role in linking
pressure-induced leukocyte infiltration, vein wall inflammation, and alteration in MMP and TIMP
expression/activity during the CVeD hypertrophic phase.

Before discussing further results regarding CVeD clinical progression, it should be noted
that genetic data across anatomical vein regions were uneven (Figure 3) and this may be
important. If molecular events are not uniform in the venous system, measures of MMP and TIMP
expression/activity should always be reported with reference to vein region and comparisons among
vein specimens harvested from different anatomical regions might not be reliable.

Only gene expression of MMP2, MMP9, TIMP3, and TGFβR3 presented differences between CVeD
groups. On the one hand, MMP2 and TIMP3 gene expressions were increased in advanced CEAP
stages (from tributary veins); on the other hand, MMP9 and TGFβR3 gene expressions were decreased
in advanced CEAP stages (from the saphenofemoral junction and tributary veins, respectively).

MMP2 and MMP9 have been long recognized as major contributors to proteolytic degradation
of ECM [42]. Contrary to others’ findings [20,23,26,43], no significant differences in gene expression
of both gelatinases were found between healthy and CVeD veins, which is most probably due to the
sample size. However, MMP2 and MMP9 gene expression seemed to evolve differently throughout
CVeD clinical progression. This might be due to distinct response processes to different inflammatory
cytokines/growth factors (other than TGF-β1) during the hypertrophic phase. Also, MMP9 (unlike
MMP2) might have its preponderant proteolytic role in early CVeD stages rather than in advanced
stages. This is coherent with previous studies in which an increase in plasma pro-MMP9 activity (but
not MMP2) was found in response to 30 min postural blood stasis in patients with varicose veins [21].
Nevertheless, the only significant result for MMP9 was achieved in veins from the saphenofemoral
region and this region might not be as reliable as the others for CVeD group comparisons (as proximal
and distal segments of veins may be affected differently by the disease [19]).

The decrease in TGFβR3 gene expression throughout CVeD clinical progression is consistent with
our previous supposition. If a counter-regulation mechanism to control chronically elevated local
levels of TGF-β1 was in place, this coreceptor (whose main function is to regulate TGF-β1 binding and
signaling through its corresponding receptors) [5,44,45] may be part of the mechanism.

With respect to IHC results, it should be explained that the selection of proteins submitted to
this technique was a consequence of previous qPCR results obtained from CVeD and healthy veins:
it was assumed that the proteins with higher gene expression levels (MMP2, TIMP2, and TGFβR2)
were most likely to present immunostaining differences. Our results showed that MMP2, TIMP2,
and TGFβR2 can be detected mainly in the tunica intima and media of healthy and varicose vein
walls, although in a lower quantity in the latter. Lower levels of MMP2, TIMP2, and TGFβR2 in
varicose veins, when compared to controls, have been partially described by others [18,24] and are
in accordance (particularly regarding tunica intima) with our qPCR results for similar comparisons
(CVeD groups vs. control group).

Regarding IHC results between the CVeD groups, it is worth mentioning that these were not
always coherent among anatomical regions, suggesting once more that comparisons among vein
specimens harvested from different locations might not be reliable. Nevertheless, intima layer results
(from all anatomical regions) were, in general, consistent with our qPCR results. MMP2 presence in
all tunicae was mainly unchanged between CVeD groups with one exception: at the saphenofemoral
junction where a slightly lower presence was found in the CEAP4–6 group. This is coherent with the
trend revealed with the qPCR results (Figure 3). In tributary veins, MMP2 presence was generally
unchanged between the two groups, while the qPCR results showed an increase in the CEAP4–6
group. This may be explained by the subjective nature of IHC results. With regard to TIMP2 presence,
the results are generally in line with Figure 3 trends, particularly for the tunica intima. Finally,
the equally low presence of TGFβR2 across CVeD groups was consistent with our qPCR findings,
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reinforcing the idea of a counter-regulation mechanism to reduce local TGF-β1 expression or signaling
throughout CVeD clinical progression.

Whilst it has been suggested that MMP/TIMP imbalance could potentially work through elements
(especially smooth muscles cells) in the tunica media [46], we highlight the importance of the tunica
intima in CVeD pathophysiology, as shown by the coherence found between qPCR and IHC results
for this tunica (in vein specimens from all anatomical regions). It was also noted that among the
three anatomical vein regions, varicose tributary veins showed more evident differences (especially in
qPCR results) between the CVeD groups, probably due to its thinner media. A thinner media tunica
may make the venous walls more vulnerable to homeostatic upset induced by local hypertension,
and therefore more prone to varicosity and premature morphologic changes.

4. Materials and Methods

4.1. Specimen Collection

Samples (2 cm length) of healthy great saphenous veins were harvested from the tibiotarsal
junction of 13 patients undergoing coronary bypass surgery (control group). Samples of pathologic
refluxing great saphenous veins (from the saphenofemoral and tibiotarsal junctions) and varicose
tributaries (from veins showing tortuosity and significant diameter increase with blood filling at the
thigh or leg), including the adventitia, were obtained from 31 patients submitted to surgical ablation of
the great saphenous vein (CVeD group). The methods of harvesting, storage, and processing samples
were identical in both groups.

Before collection, preoperative venous duplex ultrasonography was performed (to confirm venous
reflux in CVeD samples and its non-existence in controls) and CVeD patients were evaluated according
to the CEAP (Clinical, Etiologic, Anatomic and Pathophysiologic) classification [47] and then regrouped
(CEAP2–3/CEAP4–6 groups). Subjects with the following conditions were excluded: surgery within
the previous six weeks; steroids or intravenous drug use; deep vein thrombosis or thrombophlebitis;
active infection; and collagen diseases and conditions that could modify leukocyte activity (e.g.,
diabetes mellitus, neoplasia, rheumatoid arthritis, vasculitis). After collection, all vein samples were
aseptically washed free of blood using a physiological salt solution, immersed in RNA-Later (Ambion®,
Carlsbad, CA, USA), refrigerated at 4 ◦C for 24 h, then snap frozen in liquid nitrogen and stored at
−80 ◦C until use.

In compliance with the Declaration of Helsinki, all the procedures carried out with human
samples were approved by the Ethics Committee of “Cova da Beira University Hospital Centre,
Covilhã, Portugal” (protocol No. 28/2009, 26 February 2009). Informed consent was obtained from
all participants.

4.2. Conventional and Quantitative Real-Time Polymerase Chain Reaction

Total ribonucleic acid (RNA) was isolated from 50 to 100 mg of tissue sample using the TRI Reagent
(Ambion®, Carlsbad, CA, USA) and following the manufacturer’s instructions. For complementary
deoxyribonucleic acid (cDNA) synthesis, 500 ng of total RNA was reverse transcribed using the
M-MuLV Reverse Transcriptase kit (NZYTech®, Lisbon, Portugal) in a final volume of 20 mL.
Both procedures have been described elsewhere [30].

To confirm the gene expression of MMP1, MMP2, MMP8, MMP9, MMP12, MMP13, TIMP1, TIMP2,
TIMP3, TIMP4, TGFβR1, TGFβR2, and TGFβR3 in CVeD and healthy vein samples, conventional
polymerase chain reactions (PCR) were performed using the NZYTaq DNA polymerase kit (NZYTech®,
Lisbon, Portugal) in accordance to the manufacturer’s instructions. PCR reactions were carried out in
a final volume of 25 µL containing 1 µL synthesized cDNA, 0.1 µL Taq DNA polymerase (5 U/µL),
0.625 µL deoxyribonucleoside triphosphate solution (10 mM), 1.2 µL sense and antisense primers
(5 pmol/µL) for each gene (STABVIDA®, Lisbon, Portugal; Table 3), 1.5 µL MgCl2 (50 mM), 16.875 µL
nuclease-free water, and 2.5 µL 10× Taq DNA polymerase buffer. After initial heating at 95 ◦C for
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5 min to denature the cDNA, 35 cycles (30 cycles for β-actin) of 30 s at 95 ◦C, annealing 30 s at 60 ◦C,
and extension 30 s at 72 ◦C were carried out. The final cycle was followed by a period of 5 min at 72 ◦C
to ensure that the amplified DNA was double-stranded. The integrity of cDNA samples was assessed
by amplification of the β-actin housekeeping gene. The PCR products were electrophoresed on a 1%
agarose gel and visualized with GreenSafe (NZYTech®, Lisbon, Portugal) using UV light.

Table 3. Oligonucleotide sequences and amplicon sizes in conventional and quantitative real-time PCR.
bp: base pairs.

Gene Primer Sequence (5′–3′) Amplicon Size (bp)

β-actin
Sense: CAT CCT CAC CCT GAA GTA CCC

202Antisense: AGC CTG GAT AGC AAC GTA CAT G

TIMP1
Sense: GAC GGC CTT CTG CAA TTC C

79Antisense: GTA TAA GGT GGT CTG GTT GAC TTC TG

TIMP2
Sense: GAG CCT GAA CCA CAG GTA CCA

77Antisense: AGG AGA TGT AGC ACG GGA TCA

TIMP3
Sense: CCA GGA CGC CTT CTG CAA

73Antisense: CCC CTC CTT TAC CAG CTT CTT C

TIMP4
Sense: CAG CCT CAG CAG CAC ATC TG

75Antisense: GGC CGG AAC TAC CTT CTC ACT

MMP1
Sense: AAG ATG AAA GGT GGA CCA ACA ATT

70Antisense: CCA AGA GAA TGG CCG AGT TC

MMP2
Sense: AAC TAC GAT GAC GAC CGC AAG T

142Antisense: AGG TGT AAA TGG GTG CCA TCA

MMP8
Sense: CAC TCC CTC AAG ATG ACA TCG A

135Antisense: ACG GAG TGT GGT GAT AGC ATC A

MMP9
Sense: AGG CGC TCA TGT ACC CTA TGT AC

111Antisense: GCC GTG GCT CAG GTT CA

MMP12
Sense: CGC CTC TCT GCT GAT GAC ATA C

136Antisense: GGT AGT GAC AGC ATC AAA ACT CAA A

MMP13
Sense: AAA TTA TGG AGG AGA TGC CCA TT

124Antisense: TCC TTG GAG TGG TCA AGA CCT AA

TGFβR1
Sense: ACG GCG TTA CAG TGT TCT G

358Antisense: GGT GTG GCA GAT ATA GAC C

TGFβR2
Sense: GCA GGT GGG AAC TGC AAG AT

76Antisense: GAA GGA CTC AAC ATT CTC CAA ATT C

TGFβR3
Sense: CTG TTC ACC CGA CCT GAA AT

502Antisense: CGT CAG GAG GCA CAC ACT TA

The gene expression of positively-confirmed MMP, TIMP, and TGFβR was determined by
quantitative real-time PCR (qPCR) using gene-specific primers (STABVIDA®, Lisbon, Portugal;
Table 3) and SYBR-Green/Fluorescein qPCR Master Mix (Fermentas Life Sciences®, Vilnius, Lithuania).
β-actin housekeeping gene was used to normalize gene expression levels. The efficiency of the
amplifications was determined for all primer sets using serial dilutions (1, 1:5 and 1:25) of cDNA.
Primer concentrations and annealing temperatures were optimized, and the specificity of amplicons
was determined by melting curve analysis.

The qPCR was performed as described elsewhere [30].
Both conventional and quantitative real-time PCR was carried out for a pool of specimen cDNA

and then for each specimen separately.
Fold differences were calculated using the formula 2−∆∆Ct [48].
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4.3. Immunohistochemistry

Vein specimens were fixed in 2% paraformaldehyde/0.2% glutaraldehyde for 24 h, transferred to
a 70% alcohol solution and paraffin embedded the following day. Paraffin-embedded vein blocks were
cut into 6 mm sections and mounted onto poly-L-lysine-coated slides.

Immunostaining of MMP2, TIMP2, and TGFβR2 was performed according to an optimized
immunohistochemistry (IHC) protocol. Paraffin-embedded vein sections were deparaffinized,
rehydrated, and pre-treated with TrilogyTM solution (Cell Marque®, Rocklin, CA, USA).
Endogenous peroxidase activity was blocked by incubation in 3% (v/v) H2O2 for 10 min. Before and
after incubation steps, the sections were washed twice for 5 min with Tris-buffered saline containing
0.1% Tween®-20 (Rockford, IL, USA) (TBS-T) at room temperature. Vein sections were incubated for 1
h with primary polyclonal rabbit antibodies against human MMP2 (1:700 dilution; ab38917, Abcam®,
Cambridge, UK), TIMP2 (1:500 dilution; ab74216, Abcam®, Cambridge, UK), and TGFβR2 (1:500
dilution; ab61213, Abcam®, Cambridge, UK) at room temperature. A goat biotinylated anti-rabbit
IgG (Vector Laboratories®, Burlingame, CA, USA) was used as secondary antibody. The specificity of
the staining was accessed by omitting the primary antibody. After 10 min amplification and 10 min
detection steps, the sections were then incubated in peroxidase substrate solution (diaminobenzidine)
in a dark chamber for 10 min, counterstained with Mayer’s hematoxylin for 3 min, rinsed for 10 min,
and mounted for observation under a Zeiss LSM-710 laser scanning confocal microscope (Carl Zeiss,
Oberkochen, Germany).

Staining was developed for the same period of time for each antibody, for both control and CVeD
specimens, and was scored in a blinded manner by two independent observers. The final results took
into account the staining intensity and relative difference between different groups of vein specimens
(control, CEAP2–3, and CEAP4–6).

4.4. Statistical Analysis

Statistical analysis was performed by means of IBM SPSS Statistics, (v.22.0, Armonk, NY, USA).
Using data from subsamples (selected by quota sampling) of the 44 participants, statistically significant
differences in gene expression among three (controls vs. CEAP2–3 vs. CEAP4–6) or two (CEAP2–3
vs. CEAP4–6) groups of participants were tested for. ANOVA (followed with Bonferroni tests) or the
Student test was used to compare the means for independent groups. Equivalence between the groups,
regarding participants’ demographic and clinical features, was assessed using Fisher’s exact test or its
Freeman-Halton extension (for 2 × 3 contingency table) and Student test or ANOVA, as appropriate.
To meet parametric assumptions, data were transformed using log10(x) when necessary and outliers
were controlled. Before violation of those assumptions, non-parametric tests (Kruskal–Wallis test,
followed by the Mann-Whitney test) were performed. Data descriptive statistics are presented as
(absolute and relative) frequencies, mean values ± standard error of the mean (SEM) and ranges.
All tests were two-tailed and the significance was set at p ≤ 0.05.

5. Conclusions

Whilst further studies about molecular events in varicose vein walls are required, our results
have contributed more evidence on MMP/TIMP imbalance in venous walls throughout CVeD clinical
progression, as well as on the role of TGF-β1 in this event. Differences in MMP and TIMP expression
should be expected not only among healthy, atrophic, and hypertrophic varicose veins, but also across
anatomical vein regions. The full functional role of TGF-β1 remains to be defined but our results
regarding TGFβR expression may suggest a counter-regulation mechanism to control chronically
elevated local levels of TGF-β1, leading to a reduction in participation of this growth factor on
MMP/TIMP imbalance throughout CVeD clinical progression.

These findings represent another step towards the understanding of CVeD pathophysiology and
may provide some cues for therapeutic approaches targeting TGF-β1 signaling.
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