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Abstract 

Ischemia/reperfusion (I/R) injury in liver transplantation can disrupt the normal activity of 
mitochondria in the hepatic parenchyma. This potential dysfunction of mitochondria after I/R injury 
could be responsible for the initial poor graft function or primary nonfunction observed after liver 
transplantation. Thus, determining the mechanisms that lead to human hepatic mitochondrial 
dysfunction might contribute to improving the outcome of liver transplantation. Furthermore, early 
identification of novel prognostic factors involved in I/R injury could serve as a key endpoint to 
predict the outcome of liver grafts and also to promote the early adoption of novel strategies that 
protect against I/R injury. Here, we briefly review recent advances in the study of mitochondrial 
dysfunction and I/R injury, particularly in relation to liver transplantation. Next, we highlight various 
pharmacological therapeutic strategies that could be applied, and discuss their relationship to 
relevant mitochondrion-related processes and targets. Lastly, we note that although considerable 
progress has been made in our understanding of I/R injury and mitochondrial dysfunction, further 
investigation is required to elucidate the cellular and molecular mechanisms underlying these 
processes, thereby identifying biomarkers that can help in evaluating donor organs. 

Key words: Liver transplantation; Mitochondria; Ischemia/reperfusion injury; Liver preservation solution; 
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Introduction 
Ischemia/reperfusion (I/R) injury is a 

multifactorial process by which cellular damage is 
initiated in organs during hypoxia, after which cells 
are then stressed by restoration of oxygen delivery 
and rebalancing of pH. This phenomenon is a major 
factor underlying the injury that occurs in liver 
surgery, mostly during liver transplantation (LT), and 
remains a source of major complications affecting 
perioperative morbidity and mortality. Consequently, 
it is critical to clarify the molecular mechanisms and 
regulatory processes involved in organ damage after 

I/R injury, a complex process that comprises a 
cascade of events that promote inflammation and 
tissue damage, including energy loss, generation of 
reactive oxygen species (ROS), release of cytokines 
and chemokines, and, finally, activation of immune 
cells [1-5]. 

 In I/R injury, one of the most notable features is 
the deterioration of mitochondrial function coupled 
with subsequent adjustment of energy metabolism. 
During ischemia, the absence of oxygen leads to 
cessation of oxidative phosphorylation (which plays a 
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crucial role in energy production), heightened 
generation of ROS, and initiation of apoptosis [6]. 

Currently, to treat patients with end-stage liver 
diseases or irreversible tumors of hepatic origin, LT is 
an established therapeutic regimen. However, an 
obstacle to LT is related to the lack of a donor pool; 
consequently, the mortality rate among LT 
waiting-list patients has been estimated to exceed 
20%. This shortage has encouraged the adoption of 
extended criteria for selecting donor organs; however, 
these organs are particularly susceptible to I/R injury 
[7-9]. In LT, functional and structural damage caused 
to donor organs by the process of cold 
preservation/warm reperfusion are major problems, 
and these can result in a non-functional graft or 
primary graft dysfunction [10, 11]. 

To understand liver damage caused by I/R 
injury, characterizing mitochondrial activity after I/R 
is critical. The early identification of the cellular and 
molecular changes that occur might allow the 
adoption of new strategies that protect against I/R 
injury, and thus help maintain mitochondrial function 
and liver energy balance. 

Liver Transplantation 
LT has developed over the past six decades from 

an experimental procedure to the standard of care for 
patients with end-stage liver disease. In LT, the 
long-term outcome has been improved as a result of 
advances in surgical techniques, the subsequent 
immunosuppressive regimens, in donor liver 
selection, and in postoperative care. However, during 
the past few decades, the number of patients awaiting 
an organ for transplantation has increased [7, 12, 13], 
and this has necessitated the extension of the criteria 
for organ donation and the use of marginal donors 
previously considered inadequate for LT (e.g. 
allowing for an increase in the age considered suitable 
for donors, the use of organs after prolonged cold 
ischemia, or donation after cardiac death or hepatic 
steatosis) [14]. Notably, the risk of primary graft 
nonfunction after the transplant of fatty donor organs 
is markedly higher than that after non-steatotic grafts 
(60% vs 5%). 

Severe macrovesicular steatosis (> 60%) has been 
linked with > 60% risk of primary nonfunction after 
transplantation, and this has been calculated to be 
responsible for the rejection of 25% of donor livers [15, 
16]. As a consequence of the shortage of donors, the 
MELD score (Model for End-Stage Liver Disease 
score) was adopted in 2002. The MELD score is used 
to predict the 3-month mortality from the patient’s 
liver disease, and it was adopted worldwide to help 
select patients from the recipient waiting list that 
should receive specific donor organs [17]. Selection of 

the correct donor, particularly in living donor LT, is 
critical to increase the survival of the graft and the 
recipient [18]. 

Diagnosing pre-existing liver disease is a crucial 
part of donor organ evaluation, and histopathological 
examination plays an essential role in this analysis 
and in the assessment of the donor liver. However, 
despite efforts to improve the quality of the donor 
liver pool, some of the LT patients will develop initial 
poor function and primary nonfunction [19, 20]. 

Currently, the three most common indications 
for LT are hepatocellular carcinoma, hepatitis C virus 
infection, and alcoholic cirrhosis. In this regard, other 
indications are also used, such as those for acute 
fulminant liver failure (e.g. acute acetaminophen 
overdose, mushroom poisoning, fulminant hepatitis 
A or B infection, Wilson’s disease, acute Budd-Chiari 
syndrome, or failed LT), cholestatic liver disease (e.g. 
primary biliary cirrhosis), and metabolic disorders 
(e.g. α-1-antitrypsin deficiency, non-alcoholic fatty 
liver disease) [21, 22]. 

In LT, the outcome is potently affected by liver 
preservation, which is one of the most critical 
component steps of LT [23]. The standard practice of 
liver preservation involves the use of preservation 
solutions at low temperatures (2–4 °C) under static, 
cool preservation conditions. In the 1980s, Belzer and 
Southard designed the University of Wisconsin (UW) 
solution, which is probably the most commonly used 
static preservation solution employed under 
hypothermic conditions, wherein the organ is 
perfused with cool preservation solution and held on 
ice; this has become the prevalent method for liver 
allograft preservation. The UW solution features an 
intracellular-type electrolyte composition, and to 
prevent tissue edema, the solution contains three 
inhibitory molecules: lactobionate, raffinose, and 
colloidal hydroxyethyl starch [24]. Conversely, in the 
histidine-tryptophan-ketoglutarate (HTK) solution, 
whose potassium concentration is slightly lower than 
that of the UW solution, the main impairment 
molecule is the amino acid histidine, and the HTK 
solution does not contain a colloid [25]. Another 
preservation solution, Celsior, which was developed 
in early 1990, contains histidine, a low concentration 
of glutathione, and incorporates lactobionate and 
mannitol as inhibitors. Celsior and the HTK solution 
are considerably less viscous than the UW solution 
[26]. 

Lastly, in clinical LT, the application of ex vivo 
machine preservation/perfusion is currently under 
investigation, and various temperatures (hypothermia 
or normothermia) and diverse preservation solutions 
are being tested. The development of new techniques 
will likely lead to an alteration in the manner in which 
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organs are perfused, preserved, and transported 
[27-29]. 

Ischemia/Reperfusion 
I/R injury induces damage to a hypoxic organ 

after oxygen delivery is restored, and this might occur 
in several clinical situations, such as trauma, 
hemorrhage, shock, thermal injury, transplantation, 
and certain types of liver surgery. In contrast to the 
ischemia under such clinical conditions, cold ischemia 
is exclusively related to the transplant setting. 

The specific period of cold ischemia (used to 
reduce metabolic activities of the graft) begins when a 
donor graft is harvested using a cold perfusion 
solution and ends after the tissue reaches the 
physiological temperature during the implantation 
procedures. The cold ischemia process is followed by 
a period of warm ischemia, which ends with the 

completion of surgical anastomosis after blood-flow 
restoration [30, 31]. Inevitably, this step is responsible 
for the major part of the LT injury and the 
development of graft failure that is coupled with 
considerable morbidity and mortality in patients [32] 
(Figure 1). 

 The cellular and molecular mechanisms of I/R 
injury are poorly understood; however, the injury is 
recognized to affect hepatocytes and biliary epithelial 
cells. The I/R injury caused by cold ischemia and 
warm ischemia can produce common and specific 
effects on various subsets of cells. For example, 
sinusoidal endothelial cells are more susceptible to the 
effects of cold preservation than are hepatic 
parenchymal cells. In the remaining viable endothelial 
cells, the expression of adhesion molecules is affected, 
and this accentuates the I/R injury (Figure 2). 

 

 
Figure 1. Schematic timeline of the liver transplantation phases of I/R injury. 

 

 
Figure 2.  I/R injury caused by cold ischemia and warm ischemia can produce common and specific effects on various subsets of cells. For example, sinusoidal 
endothelial cells are more susceptible than hepatic parenchymal cells to the effects of cold preservation, and the reperfusion phase amplifies the ischemic injury with 
the preferential involvement of the hepatic parenchymal cells; A- space of Disse; B- sinusoid; C- sinusoidal endothelial cells (with fenestrae); D- biliary canaliculus; E- 
Stellate cell; F- Kupffer cell; H- hepatocyte; N- nucleus. 
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Conversely, in the reperfusion phase, ischemic 
injury can be amplified with the preferential 
involvement of hepatocytes. During this period, the 
generation of ROS causes nonspecific oxidative 
damage to lipids, proteins, and DNA [33]. 

Two distinct phases follow reperfusion: an early 
phase that lasts for the first 2 h after reperfusion; and a 
late phase that extends from 6 to 48 h after 
reperfusion. 

The early phase is characterized by the activation 
of immune cells and oxidative stress. In the initial 
stages, the activation of Kupffer cells leads to ROS 
generation, which causes moderate hepatocellular 
injury. This oxidative damage is then increased as a 
consequence of the release of several 
proinflammatory chemokines and cytokines (e.g. 
tumor necrosis factor (TNF)-α, and interleukin (IL)-12 
and IL-1β), and this promotes and amplifies the later 
secondary inflammatory phase [34, 35]. 

The occurrence of the late phase is mediated by 
neutrophils, whose involvement depends on the 
chemokines released in the early stage. These 
neutrophils release proteases and other cytotoxic 
enzymes (e.g. collagenase, elastase, cathepsin G, and 
heparanase) that act within cellular membranes and 
on matrix components, thereby promoting cellular 
degradation [36, 37]. 

Mitochondrial Activity and I/R 
Mitochondrial activity is involved in the I/R 

process, and the change in in this parameter might be 
critical for I/R injury. The most crucial change 
induced by I/R injury is related to the deterioration of 
mitochondrial function and the consequent alteration 
in energy metabolism. 

In cold ischemia, oxygen deprivation and 
metabolite reduction lead to a reduction in the natural 
function of the mitochondrial respiratory chain and in 
ATP synthesis; this results in failure of 
ATP-dependent enzymes and a concomitant rise in 
ADP, AMP, and Pi concentrations, coupled with the 
consequent disturbances in membrane ion 
translocation and cytoskeletal disruption. During this 
period, any ATP that is produced is used to preserve 
the mitochondrial membrane potential, and the ATP 
yield from glycolysis is insufficient [36,37]. 

During ischemia, an increase in the intracellular 
concentrations of H+, Na+, and Ca2+ causes 
mitochondrial dysfunction. This increase in Na+ is 
associated with ATP depletion, which inhibits 
Na+/K+ ATPases. The increased Na+ concentration 
promotes Ca2+ influx through the Na+–Ca2+ 
exchanger, which is responsible for the irreversible 
cell injury that occurs. The intracellular Ca2+ increase 
associated with Ca2+-ATPase failure mainly affects 

sinusoidal endothelial cells [38]. 
The source of ROS generation during hepatic I/R 

remains unclear; however, it might involve complexes 
I and III of the electron transport chain or possibly 
xanthine/xanthine oxidase. ROS promote the 
peroxidation of the components of the phospholipids 
(unsaturated fatty acids) of the inner mitochondrial 
membrane, and this disrupts the electron flow 
through the electron transport chain. Moreover, 
during the reperfusion phase, the damage caused to 
mitochondrial lipids and proteins enhances ROS 
generation. If the tissue damage occurs for only a 
short time, mitochondria can repair themselves and 
continue to generate ATP; however, if a critical period 
is exceeded, mitochondrial recovery is not possible 
[39]. 

During mitochondrial damage, once mitochon-
drial permeability transition (MPT) has been 
permanently initiated, the mitochondrial inner 
membrane collapses, which enables solutes with a 
molecular mass of up to 1.5 kDa to cross the inner 
membrane. MPT promotes the release of certain 
apoptotic factors (such as cytochrome c) from the 
mitochondrial intermembrane space into the cytosol 
through channels formed by Bax (a proapoptotic Bcl-2 
family member). After I/R, the predominant type of 
cell death is necrosis, but the onset of MPT can induce 
apoptosis in the ischemic liver [4, 40-42]. MPT is a 
common pathway leading to both types of cell death 
after I/R: necrosis and either apoptosis or necroptosis. 

Damaged mitochondria are cleared through the 
selective autophagy process of mitophagy, a catabolic 
pathway that favors cell survival by preserving 
energy levels and preventing the accumulation of 
damaged mitochondria and cytotoxic mitochondrial 
subproducts [43, 44]. At least two types of mitophagy 
exist: the phosphatidylinositol-3-kinase-dependent 
and -independent types [45]. In normoxia or short 
ischemia, the demand for mitophagy is negligible 
because only a few mitochondria are damaged. By 
contrast, in prolonged ischemia and reperfusion, the 
increase in Ca2+ and ROS levels induce numerous 
damaged mitochondria, which must be rapidly 
removed via mitophagy to prevent autophagy failure 
caused by the increase in the number of injured 
mitochondria [46]. 

Mitochondrial Targeting Strategies 
against I/R Injury in Liver 
Transplantation 

I/R is a multifactorial process and the animal 
models used to study it have limitations; thus, most of 
the animal studies on I/R have not translated to 
human trials [4]. In the literature, multiple therapeutic 
strategies against hepatic I/R injury have been 
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reported. Furthermore, numerous experimental 
investigations have suggested that the use of various 
drugs (synthetic and natural derivatives) could 
prevent or reduce the injury related to I/R; however, 
despite these efforts, no ‘optimal’ drug has been 
identified to date. Nevertheless, the strong 
implication of mitochondrial involvement in I/R 
injury justifies a careful analysis of various available 
therapeutic options in relation to their effects on 
mitochondrial function. Diverse therapeutic 
approaches have been attempted thus far, including 
those involving the storage process (cold storage, 
machine perfusion), manual conditioning, and 
multiple pharmacological conditioning. These 
approaches can promote a reduction in I/R injury, 
which indicates the importance of the relationship 
between mitochondrial activity and the mitigation of 
I/R injury. 

With regard to the aforementioned relationship, 
the most important mitochondrion-related processes 
and targets are the following: (1) MPT onset, (2) 
calcium channel inhibition, (3) autophagy, (4) 
antioxidants, (5) nitric oxide (NO), (6) TNF-α, (7) 
apoptosis, and (8) nucleic acids as drugs (Figure 3). 

MPT is a phenomenon involved in calcium 
signaling and cell destruction. A previous study 
showed that MPT inhibition with cyclosporine A 
reduced mitochondrial ROS production in response to 
calcium [47]. Moreover, Mg2+, acidic pH, and 
trifluoperazine were shown to prevent the opening of 
permeability transition pores; whereas calcium, 
inorganic phosphate, alkaline pH, and ROS were 
shown to promote the onset of MPT [48].  

Mitochondrial Ca2+ accumulation and 
overloading are responsible for the cell abnormality 
associated with I/R injury. In one study, pretreatment 
with the calcium-channel blocker amlodipine restored 
cellular normality and counteracted the alteration in 
mitochondrial enzymes induced by I/R injury [49]. In 
another study, the calcium-channel inhibitor, 
2-aminoethoxydiphenyl borate, prevented Ca2+ 
overloading, cytochrome c release, and cell death 
during I/R [50]. 

Mitochondrial autophagy can play a protective 
role in liver I/R injury [51]. Heme oxygenase-1 can 
prevent liver I/R injury by suppressing inflammation 
and eliciting an antiapoptotic response, and inhibition 
of this enzyme reduced autophagy and upregulated 
apoptosis [52]. Furthermore, autophagy inhibition 
aggravated starvation-induced ROS accumulation, 
which contributed to hepatocyte necrosis [53]. 

The deleterious effects produced by ROS could 
potentially be reduced using antioxidants. For 
example, mangafodipir trisodium, a powerful 
antioxidant, exerts a protective effect when 

administrated to the donor before organ harvesting 
[54]. Furthermore, herbal antioxidants, such as green 
tea catechins, tetrandrine, quercetin, and 
trans-resveratrol can efficiently reduce I/R injury and 
could act directly as antioxidants and indirectly 
through the activation of Nrf2 [55-57]. Another 
example is glutathione, a crucial molecule in the cell’s 
defense against oxidative stress, and N-acetylcysteine, 
a glutathione precursor, might help to maintain or 
replenish hepatic glutathione stores [58]. Pretreatment 
with N-acetylcysteine can improve glutathione 
homeostasis, enhance ATP regeneration, and increase 
survival [59]. 

Mitochondria reduce nitrite to NO, and this is 
usually sufficient to inactivate redox-active iron ions. 
NO is a signaling mediator involved in numerous 
cellular activities, such as the regulation of 
microcirculation and the inhibition of caspase activity 
in apoptosis pathways [60]. Nitrite protects against 
I/R injury and improves mitochondrial function by 
inhibiting the iron-mediated oxidative reactions that 
occur as a consequence of the release of iron ions 
during hypoxia [61]. During liver I/R injury, the 
protective effects of NO, including the potentiation of 
hepatic ATP levels, reduce oxidative damage and 
alleviate the adverse effects of endothelin. However, 
the safe therapeutic window of NO is limited because 
large amounts of NO can damage liver tissue [62, 63]. 

TNF-α is a proinflammatory cytokine that plays 
a major role in hepatocyte apoptosis and triggers 
apoptotic liver damage. In mitochondria, TNF-α 
induces the formation of MPT pores, the release of 
cytochrome c, and the activation of caspases [64-66]. 
In animal models, TNF-α induces apoptotic liver 
injury only when hepatocyte-specific transcription is 
inhibited, whereas in the absence of this inhibition, it 
protects against liver damage. Thus, TNF-α  
preconditioning with low doses of TNF-α  or the 
blockade of TNF-α  action (e.g. with anti-TNF-α  
antibodies) prevents hepatocellular apoptosis and 
liver injury [67]. 

As a consequence of I/R injury, the 
mitochondrial respiratory chain is disrupted, and this 
can lead to ATP loss and initiation of apoptosis 
through caspase activation and cytochrome c release. 
Cyclosporine A treatment could serve as a promising 
adjunct therapeutic approach, because cyclosporine A 
limits the activation of the apoptotic machinery by 
inhibiting MPT [68]. Moreover, supplementation with 
dibutyryl-cAMP could promote the inhibition of 
mitochondrial apoptosis by stimulating the cAMP 
second-messenger signaling pathway and 
subsequently reducing the release of cytochrome c 
into the cytosol [69]. 

Current data indicate that circulating 
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microRNAs could serve as non-invasive biomarkers 
because of their association with liver diseases and 
liver injury. Farid et al. demonstrated that serum 
levels of microRNAs (e.g., miR-122) increased before 
an elevation of transaminase levels [70]. This could 
represent a critical finding because the currently used 
biochemical blood parameters related to liver 
disease/injury and dysfunction are nonspecific [71].  

Some studies relate the role of mitochondria 
with the genetic regulation by RNA 
interference[72-75](Figure 4).  

The use of nucleic acids as drugs represents the 
ultimate therapy [76]. RNA interference (RNAi) is a 
biological process in which RNA molecules neutralize 
targeted mRNA molecules by inhibiting gene 
expression or translation. Several options are 
available for synthetic and expressed RNAi. The most 
commonly used form of synthetic RNAi involves the 
use of small interfering RNAs (siRNAs), which occur 
naturally in the cytoplasm or are synthesized outside 
and then introduced into the cell. Intraportal 
administration of siRNAs targeting caspase-8 and 
caspase-3 promoted a reduction in lesions induced in 
the liver by warm I/R via RNAi-mediated inhibition 
of the expression of caspase-8 and caspase-3, which 
are both components of the apoptotic process [77]. 
Other RNAi therapies that have been applied to 
prevent I/R injury targeted IL-1β/nuclear factor 
kappa B (NF- κB) (transcription-related factors), Fas 

cell surface death receptor (Fas) and acid 
sphingomyelinase (ASMase) (apoptosis), and 
adiponectin (oxidative stress)[78-80]. Recent advances 
in nanomedicine have led to progress in the design of 
RNA/DNA drug-delivery systems, such as the 
development of a multifunctional envelope-type nano 
device that can control intracellular trafficking in 
specific cells in vivo and enables drug targeting to the 
mitochondrial system [81, 82]. MITO-Porter is a 
specific delivery system to mitochondria that allows 
the introduction of macromolecules cargoes into 
mitochondria. To date, this system was used to 
delivery antisense oligo-RNA with functional effect 
on mitochondria[83, 84]. 

 One of the therapeutic approaches that has 
attracted the most attention recently is the use of 
machine perfusion. The first randomized controlled 
trial comparing normothermic machine perfusion 
with cold storage revealed that machine perfusion is 
safe and can preserve liver function outside the body 
for 24 h. Moreover, using this technique, liver 
function can be assessed, including bile production 
and clearance of lactic acidosis [85]. In the future, it is 
believed that it should be possible to assess specific 
miRNAs during organ preservation to evaluate the 
potential liver injury related to the I/R process and 
the RNAi that might be active during normothermic 
preservation or the reperfusion phase. 

 

 
Figure 3. Mitochondrion-related processes and targets 
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Figure 4. Interaction between the regulation of gene expression by RNA interference due to the presence of pre-mature (pre-miRNA) and mature (miRNA) 
microRNAs and the mitochondria system 

 

Conclusions and Future Perspectives 
Although considerable effort has been devoted 

to studying I/R injury, the molecular and cellular 
mechanisms involved in this process remain 
incompletely determined and require further 
investigation.  

In evaluating the quality of donor organs for LT, 
a critical aspect could be the identification of 
biomarkers. For example, microRNAs have been 
established as key posttranscriptional regulators in 
the liver, and could be used in LT as valuable 
biomarkers and potential therapeutic targets.  

To improve the outcome of the LT, 
pharmacological agents could be added to the 
preservation solutions used for the donor liver. 
Although this has been extensively investigated using 
animal models, few clinical trials have been 
conducted, because most of these studies were 
conducted in unrealistic conditions without the 
potential to be translated for clinical use [86].  

The development of new mitochondrial drug 
delivery systems could be helpful to use some of these 
mitochondrial targets directly into the mitochondria 
[87].  

Nowadays, the most promisor’s 
mitochondrion-related targets are the antioxidant 
agents or caspase inhibitors, which are being studied 
in Phase II trials [88].  

Lastly, because I/R injury is a multifactorial 
process, it will probably be necessary to perform 
studies to assess the results of treatment with 
emergent pharmacological drugs that act on multiple 

therapeutic targets. Translational research could 
represent a solution to increase the donor liver pool 
and improve the outcome of LT [89, 90]. 
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