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Oxidative stress has been defined as an imbalance between oxidants and antioxidants
and more recently as a disruption of redox signaling and control. It is generally
accepted that oxidative stress can lead to cell and tissue injury having a fundamental
role in vascular dysfunction. Physiologically, reactive oxygen species (ROS) control
vascular function by modulating various redox-sensitive signaling pathways. In vascular
disorders, oxidative stress instigates endothelial dysfunction and inflammation, affecting
several cells in the vascular wall. Vascular ROS are derived from multiple sources herein
discussed, which are prime targets for therapeutic development. This review focuses on
oxidative stress in vascular physiopathology and highlights different strategies to inhibit
ROS production.
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INTRODUCTION

Oxidative stress is an important underlying factor in health and disease. It is originated by an
alteration in the balance of reactive oxygen species (ROS) production and antioxidant defense
mechanisms (Halliwell, 1994; Betteridge, 2000). Homeostatic ROS concentrations play a crucial
role as secondary messengers in many intracellular signaling pathways in both innate and adaptive
immune responses (Schieber and Chandel, 2014; Sies, 2017). The problem occurs when ROS
bioavailability overtakes the antioxidant defenses. In these conditions, ROS act as destructive agents
affecting proteins, lipids and DNA, leading to cellular damage, tissue injury, and inflammation
(Halliwell and Gutteridge, 1999). On the other hand, from a mechanistic point of view, oxidative
stress may be better defined as a disruption of redox signaling and control. This concept could
redirect research to identify crucial perturbations of redox signaling and control and lead to new
treatments for oxidative stress-related disease processes (Jones, 2006).

Oxidative stress has been associated with the pathogenesis of several chronic disorders
such as neurodegenerative diseases, diabetes, hypercholesterolemia, and atherosclerosis and is a
contributory pathogenic factor in obesity-related disorders (Sayre et al., 2001; Schleicher and Friess,
2007; DeMarco et al., 2010; Giacco and Brownlee, 2010; Sena et al., 2013; Bhatti et al., 2017).
In addition, vascular oxidative stress is a leading cause in cardiovascular diseases (Li et al., 2014;
Förstermann et al., 2017). Elevated oxidative stress leads to vasoconstriction, vascular remodeling,
inflammation, and fibrosis (Rodriguez-Porcel et al., 2017). Insufficient cellular protection against
oxidative stress has been described as a major factor for the development of vascular diseases (Li
et al., 2014). Oxidative stress is also the principal cause of epigenetic changes that occur during
aging (Guillaumet-Adkins et al., 2017).

The involvement of reactive oxygen and nitrogen species has been extensively studied in various
pathological conditions. Its etiology is diverse.
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This review focuses on the oxidative processes that occur
mainly in the vasculature and lead to vascular dysfunction.

Vascular Oxidative Stress
Regulation of vascular tone is critical for the homeostatic
function of blood vessels and blood supply to peripheral
organs. In physiological conditions, maintenance of appropriate
endothelial function provides vasorelaxant properties through
release of vasoactive substances (Sena et al., 2013). An imbalance
between production of vasoprotective and vasorelaxant factors
and vasoconstrictor substances by the endothelium is a hallmark
of endothelial dysfunction, which precedes numerous vascular
pathologies (Sena et al., 2013). In this context, oxidative stress
has a crucial role in the initiation and progression of endothelial
dysfunction and vascular disease affecting several cells in the
vascular wall (Giacco and Brownlee, 2010; Sena et al., 2013;
Rodriguez-Porcel et al., 2017).

In addition, vascular oxidative stress promotes systemic
inflammation via immune activation. Activated immune cells
migrate into the vasculature, and release several factors
including ROS, metalloproteinases, cytokines, and chemokines
that promote dysfunction and cause vascular damage promoting
vasoconstriction and remodeling of blood vessels (Zhou et al.,
2017; Norlander et al., 2018). Vascular remodeling, stiffness,
structural elastin abnormalities, and increased oxidative stress are
hallmarks of vascular damage in hypertension (Martínez-Revelles
et al., 2017).

Endothelium
Endothelial cells regulate vascular tone having a crucial role in
the control of organ vascular resistance. These cells, through their
secretome, influence vascular smooth muscle cells (VSMCs) and
circulating cells such as platelets and monocytes (Sena et al., 2013;
Rodriguez-Porcel et al., 2017).

The arterial endothelium is subjected to various injurious
stimuli such as oscillatory shear stress, disturbed turbulent
flow and oxidative stress among others. The major ROS
produced in response to several stimuli (such as hyperglycemia,
hyperlipidemia, and hypertension) is superoxide anion (O•−2 )
that quickly combines with NO to produce peroxynitrite
decreasing NO bioavailability and leading to endothelial
dysfunction (Sena et al., 2008, 2011). In response, endothelial
cells became activated, produce vasoconstrictor agents
(thromboxane A2, endothelin-1, or prostaglandin H2) and
an inflammatory response is initiated. The endothelium
starts expressing adhesion molecules and secretes chemokines
such as chemokine (C-C motif) ligand 2 (CCL2) to attract
immune cells (Sena et al., 2013). The increased expression of
chemokines and proteases in endothelial cells creates a vicious
circle perpetuating the inflammatory response (Campbell
et al., 2015). During prolonged vascular inflammation, several
changes such as an increment in apoptotic cells, remodeling
of the extracellular matrix, breakdown of elastic lamella,
and endothelial dysfunction, emerge in atheroprone vessels
and accelerate atherosclerosis-related complications (Weber
and Noels, 2011). Dysfunctional endothelium is crucial to
initiate vascular dysfunction leading to several pathologic

conditions including macro (atherosclerosis) and microvascular
diseases.

Vascular Smooth Muscle Cells
Vasoactive substances exert their vasorelaxant or vasoconstrictive
properties through effects on receptors of VSMCs, which are
central for the regulation of vascular tone. These substances
derive from endothelial cells, vasoactive nerves, and perivascular
tissue (Giacco and Brownlee, 2010; Majesky, 2015).

Vascular smooth muscle cells can also be sources of ROS
promoting oxidative stress (Lim and Park, 2014). Various stimuli
including increased cyclic stretch can promote oxidative stress
in VSMCs. It was recently described that lysyl oxidase (LOX),
an elastin crosslinking enzyme, is as a novel source of vascular
ROS. LOX-derived ROS activate p38 mitogen-activated protein
kinase critically influencing elastin structure and vessel stiffness
in hypertension (Martínez-Revelles et al., 2017).

Activation of oxidative stress and inflammation occurs
via receptors leading to changes in the balance between
vasodilators and vasoconstrictors affecting vascular tone and
ultimately lead to vascular dysfunction (Bhatt et al., 2014;
Lim and Park, 2014). Vascular ROS effects are mediated
through redox-sensitive signaling pathways. ROS regulate
protein kinases, phosphatases, mitogen-activated protein
kinases, and transcription factors; playing an important role
as modulators of [Ca2+]i, rho-associated coiled-coil protein
kinase (ROCK), and the contractile machinery. Oxidative
stress will activate protein kinase C (PKC) leading to the
activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases and in turn increment oxidative stress. PKC
activation will phosphorylate and activate multiple mechanisms
that ultimately promote VSMCs contraction. Increased
Nox-derived ROS generation enhances calcium signaling,
up-regulates ROCK and modulates the actin cytoskeleton,
thereby promoting vascular contraction and increasing vascular
tone. PKC and ROCK activity play a role in exacerbated
vasoconstriction associated with vascular dysfunction (Liu and
Khalil, 2018).

Adventitia and Perivascular Adipose
Tissue
The adventitia surrounds the tunica media containing many
different cell types in close continuity with perivascular tissue
(Majesky, 2015), particularly in large arteries, influencing
both endothelial (through vasa vasorum) and VSMCs.
In this context, perivascular adipose tissue (PVAT) is an
important regulator of vasculature, with much more than
a supportive and mechanical role it has also endocrine
and paracrine functions. Visceral adipose tissue is a known
source of adipokines but PVAT is also an active producer of
both adipokines and inflammatory cytokines (Omar et al.,
2014).

Under physiological conditions, PVAT has anti-contractile
and anti-inflammatory properties that protect blood vessels.
Recent studies have suggested that aortic PVAT is protective
for endothelial dysfunction in hypercholesterolemic LDL
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receptor knockout mice. Elevated eNOS-derived NO
production in aortic PVAT of this animal model is an
adaptive mechanism that may protect endothelial function
and maintain normal endothelium-dependent relaxation
in the early stages of atherosclerotic disease (Baltieri et al.,
2018).

In pathologic conditions such as obesity and atherosclerosis,
PVAT changes its phenotype and can contribute to vascular
oxidative stress because they have an increment in NADPH
oxidases in adipocytes with increase activity in obesity-
related conditions (Gao et al., 2006; Gil-Ortega et al., 2014;
Padilla et al., 2015). In fact, an increment in ROS has
been previously described (DeMarco et al., 2010; Salgado-
Somoza et al., 2010; Meijer et al., 2011; Sacks and Fain,
2011). In addition, oxidative stress in adipocytes subsequently
stimulates recruitment of immune cells (Chatterjee et al.,
2009). Perivascular adipocytes also express angiotensinogen
(Serazin et al., 2004) and PVAT produces and releases
angiotensin II and related peptides (Bujak-Gizycka et al.,
2007).

In obesity, PVAT displays hypoxia, inflammation,
and oxidative stress culminating in a dysregulated
production/secretion of adipokines and cytokines and leading
to PVAT changes toward a proinflammatory phenotype.
In animal models and in patients with obesity, PVAT
phenotype has been described by up-regulation of pro-
inflammatory adipokines/cytokines (e.g., leptin, interleukin-6,
tumor necrosis factor-α) and down-regulation of anti-
inflammatory adipokines/cytokines (e.g., adiponectin and
Interleukin-10) (Henrichot et al., 2005; Chatterjee et al.,
2009; Marchesi et al., 2009; Ketonen et al., 2010; Meijer
et al., 2011; Aghamohammadzadeh et al., 2016; Xia et al.,
2016; Sena et al., 2017). In addition, an increment in
esterified fatty acids has also been observed (Ghorbani et al.,
1997).

The oxidative stress and inflammation in PVAT have a major
impact on endothelial function (Wimalasundera et al., 2003;
Payne et al., 2010; Sena et al., 2017), vascular stiffness (Tsioufis
et al., 2007; Wu et al., 2016), smooth muscle migration (Barandier
et al., 2005) and ultimately lead to vascular disease (Marchesi
et al., 2009; Ketonen et al., 2010; Ma et al., 2010; Almabrouk et al.,
2014; Gil-Ortega et al., 2014; Omar et al., 2014; Molica et al., 2015)
reinforcing the “vasocrine” effects of PVAT in obesity-related
diseases.

Sources of Reactive Oxygen Species
In biological systems most ROS are generated from mitochondria
(Cadenas and Davies, 2000). Mitochondrial dysfunction is
an important cause in the development and progression of
several diseases: energy surplus and oxidative stress causes
the mitochondrial dysfunction fostering ROS production and
oxidative stress. Other sources include NADPH oxidase, xanthine
oxidase, cytochrome P450, uncoupled endothelial nitric oxide
synthase (eNOS enzyme produces O•−2 instead of NO),
myeloperoxidases and lipoxygenases (Madamanchi et al., 2005;
Santilli et al., 2015) (Figure 1).

PRO-OXIDANT PATHWAYS

NADPH Oxidase
NADPH oxidases (Nox) are a crucial contributor to oxidative
stress in vascular cells, including endothelial cells, VSMCs,
fibroblasts, and perivascular adipocytes (Griendling et al., 2000;
Cai et al., 2003). Nox expression and activity are closely linked
with clinical risk factors for atherosclerosis (Guzik et al., 2000).
There are at least seven variations of the Nox, characterized by
their different catalytic subunits (Guzik and Touyz, 2017).

In blood vessels, Nox1 expression is residual under basal
conditions and increases considerably after stimuli (Lassègue and
Clempus, 2003). Nox2 generates both O•−2 and H2O2 directly
affecting both NO bioavailability and contractile properties
of the vasculature (Judkins et al., 2010; Guzik and Touyz,
2017). Nox4 is expressed in all vascular and some perivascular
cell types. Nox4 possesses vasorelaxant properties via eNOS
activation. It predominantly produces H2O2 and only small
amounts of O•−2 . In the context of atherosclerosis, Nox4
expression appears to exert vasoprotective effects (Ellmark et al.,
2005; Guzik and Touyz, 2017). Nox4 was shown to exert
both a beneficial as well as detrimental effect (Lener et al.,
2009; Kozieł et al., 2013), depending on the cell context and
stimuli that influence its activity. Indeed, Nox4 is a source
of ROS, which changes the redox-state of numerous proteins,
and further research is needed to clarify its role in the
vasculature. Nox 5 is also expressed in blood vessels. It is a
Nox sensitive calcium isoform that produces O•−2 (Montezano
et al., 2018). Nox 5 is a pro-contractile Nox isoform important
in redox-sensitive contraction. It was recently described a novel
function for vascular Nox5, linking calcium and ROS to the
pro-contractile molecular machinery in VSMCs (Montezano
et al., 2018). Further studies are necessary to clarify Nox5
functions.

The renin-angiotensin system also stimulates NADPH oxidase
activity contributing to oxidative stress, endothelial dysfunction,
and structural vascular changes typical of hypertension and
atherosclerosis (Dzau, 1987; Heart Outcomes Prevention
Evaluation Study Investigators et al., 2000; Guzik and Touyz,
2017).

The Mitochondrial Respiratory Chain
Mitochondrial oxidative phosphorylation produces O•−2 , which
is transformed to H2O2 by the manganese-dependent superoxide
dismutase and subsequently to water by glutathione peroxidase
1 (Boveris et al., 1976). Under pathological conditions, due
to insufficient ROS detoxification or excessive ROS production
mitochondrial oxidative stress arises (Madamanchi et al., 2005;
Yu et al., 2012; Murphy et al., 2016). Several diseases including
atherosclerosis in human have been linked with mitochondrial
dysfunction and subsequent oxidative stress (Corral-Debrinski
et al., 1992).

Xanthine Oxidase
Endothelium dysfunction is linked with an increment in
endothelial xanthine oxidase expression (Landmesser et al., 2002;
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FIGURE 1 | Schematic outline of the interrelationships between some of the more relevant reactive oxygen species (ROS) that affect the vascular wall. Superoxide
(O−•2 ) is produced from molecular oxygen (O2) by different sources such as nicotinamide adenine dinucleotide phosphate – NADPH oxidase (Nox), mitochondrial
respiratory chain, xanthine oxidase, uncoupled endothelial nitric oxide synthase (eNOS) and lipoxygenases. Superoxide can directly affect vascular cells but can also
be converted by superoxide dismutases (SOD) to hydrogen peroxide (H2O2). H2O2 can undergo spontaneous conversion to hydroxyl radical (OH•, extremely
reactive – attacks most cellular components) in the presence of iron (Fe2+) via the Fenton reaction. H2O2 produces direct effects on the vascular wall or can be
detoxified via glutathione peroxidase (GPx), catalase (Cat), or thioredoxin (Trx) peroxidase to H2O and O2. Superoxide can also react with nitric oxide (NO) or
arachidonic acid to form peroxynitrite (ONOO·-) or isoprostanes, respectively. In addition to other signaling effects, H2O2 can activate Nox, resulting in further
production of superoxide. The enzyme myeloperoxidase (MPO) can use H2O2 to oxidize chloride to the strong-oxidizing agent hypochlorous acid (HOCl). HOCl can
chlorinate and thereby inactivate various biomolecules including lipoproteins and the eNOS substrate L-arginine. Besides HOCl generation, myeloperoxidase can
oxidize (and thus inactivate) NO to nitrite (NO-

2) in the vasculature. Paraoxonase (PON) isoforms 2 and 3 can prevent mitochondrial O2•– generation (Adapted with
modifications from De Silva and Faraci, 2017).

Spiekermann et al., 2003) due to the increased production
of superoxide and H2O2. The activity of this enzyme is
increased in patients with coronary artery disease (Landmesser
et al., 2007) and inhibitors of this enzyme decrement
endothelial dysfunction in both humans and animal models
(Guthikonda et al., 2003; Schröder et al., 2006; Nomura et al.,
2014).

Uncoupled eNOS
Uncoupled eNOS generates O•−2 instead of NO due to low
levels of its cofactor tetrahydrobiopterin (BH4) or its substrate
L-arginine (Alp and Channon, 2004). ROS, in particular
peroxynitrite, promote eNOS “uncoupling” (Sena et al., 2013;
Santilli et al., 2015). Superoxide reacts with NO forming
peroxynitrite that further oxidizes BH4 to dihydrobiopterin
(BH2), creating a vicious circle and more eNOS uncoupling

(Li and Forstermann, 2014). Under physiological conditions,
PVAT prevents eNOS uncoupling (Ebrahimian et al., 2009).

Myeloperoxidase
Myeloperoxidase (MPO) is an enzyme that belongs to
the mammalian heme peroxidase superfamily, present in
polymorphonuclear neutrophils and in monocytes/macrophages
(Lefkowitz et al., 2010). MPO produces various compounds
with pro−oxidant properties contributing to oxidative stress
by oxidizing LDL and lowering NO bioavailability (Pitanga
et al., 2014). This enzyme is involved in the formation of
products derived from the oxidation of arachidonic acid
that are involved in the inflammatory response and in
lipid peroxidation (Zhang et al., 2002; Kubala et al., 2010).
In addition, MPO promotes atherogenesis through the
production of modified subtypes of LDL and HDL lipoproteins
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(Daugherty et al., 1994; Nicholls and Hazen, 2009; Kettle et al.,
2014).

Lipoxygenases
Lipoxygenases (LOXs) are intracellular enzymes that peroxidize
polyunsaturated fatty acids into bioactive lipids with a potential
important role in the pathogenesis of atherosclerosis. LOXs,
in particular 5−LOX and 12/15 LOX were found to be
overexpressed in advanced atherosclerotic lesions. 5−LOX
converts arachidonic acid into leukotriene B4, a potent
chemo−attractant and leukocyte activator (Rådmark et al., 2015).
However, inconclusive data were obtained with respect to the
pathophysiological relevance of this leukotriene signaling in
atherosclerosis. Thus, more studies are necessary to clarify this
matter (Kuhn et al., 2015).

Antioxidant Defenses
In the vascular wall, the primary antioxidant defense systems
to neutralize ROS production are enzymatic detoxifiers such as
superoxide dismutases (MnSOD, CuZnSOD, EcSOD), catalase,
glutathione peroxidase, paraoxonase, thioredoxin peroxidase,
and heme oxygenases (Santilli et al., 2015). In addition, the
transcription factor nuclear factor erythroid-2 related factor 2
(Nrf2) has also been shown to play a key role in establishing a
cellular anti-oxidant defense mechanism against oxidative stress
(Bryan et al., 2013; Lee, 2017) and is consider an important
therapeutic target to manage vascular dysfunction (Förstermann,
2008).

THERAPEUTICS

Current pharmacological approaches for prevalent diseases,
such as obesity, diabetes, and cardiovascular diseases are
limited in efficacy. Many studies with antioxidants have proven
unsuccessful in clinical trials (Steinhubl, 2008). Hence, the search
for new therapies is very important an emergent in order to
improve the health status and increase lifespan of the patients.

Lifestyle Approaches
Lifestyle interventions are capable of reducing body weight
through an increment in physical exercise and a reduction in
caloric intake. Weight loss by calorie restriction and/or exercise
can improve the global health state reducing oxidative stress
(Imayama et al., 2012).

Mitochondrial-Targeted Therapies
An important and potentially useful therapeutic approach for
diseases associated with an increment in oxidative stress is
to target antioxidants (as ubiquinol or α-tocopherol) to the
mitochondria (Milagros Rocha and Victor, 2007; Murphy and
Smith, 2007) with lipophilic cations such as mitoquinone
(MitoQ) or MitoE2 (Murphy and Smith, 2007; Smith et al., 2008).
However, some studies revealed that MitoQ may be prooxidant
and proapoptotic because its quinone group can participate
in redox cycling and superoxide production. In light of these

results, studies using mitoquinone as an antioxidant should be
interpreted with caution (Doughan and Dikalov, 2007).

In addition, enzymatic systems or cell-permeable cationic
peptides (Szeto-Schiller peptides) directed to the mitochondria
can also be an alternative therapeutic approach (Szeto, 2006).

The mitochondrial protein p66Shc is fundamental in the
homeostasis of mitochondria. Targeting this adaptor is another
form of decreasing mitochondrial oxidative stress. P66Shc leads
to ROS generation (Camici et al., 2015) and its inactivation may
be essential in oxidative stress related diseases (Francia et al.,
2004). Previous studies have demonstrated that the expression of
p66Shc is reduced by SIRT1 activation, which in turn decrements
oxidative stress and endothelial dysfunction (Chen et al., 2013).
SIRT mimetics are therefore promising tools to mitigate vascular
disease progression.

Nrf2 Activators
Nrf2 is a transcription factor ubiquitously expressed in various
tissues (including the vasculature) of human and animal models
(Pereira et al., 2017; Suzuki and Yamamoto, 2017). It regulates
the expression of several antioxidant and detoxification enzymes
by binding to upstream antioxidant response elements (Ungvari
et al., 2011; Juurlink, 2012).

This transcriptional factor is crucial in the prevention of
oxidative stress related-diseases (Kobayashi and Yamamoto,
2006; Lee, 2017). Nrf2 interacts with antioxidant response
element sequences of genes coding for antioxidant enzymes
include γ-glutamyl cysteine ligase, NAD(P)H quinone
oxidoreductase-1, glutathione S-transferase, heme oxygenase-
1, uridine diphosphate glucuronosyl transferase, superoxide
dismutase, catalase, and glutathione peroxidase-1 having a major
role in cellular responses to oxidative stress (Alam et al., 1999).

Nrf2 activators can act through different mechanisms (Niture
et al., 2014): they can directly prevent the interacting of Nrf2
with the Nrf2-binding site of Kelch-ECH-associated protein-
1 (KEAP1) (as, for instance, ML334) (Jiang et al., 2016),
they enhance transcription of Nrf2-targeted antioxidant genes
(as berberine) (Imenshahidi and Hosseinzadeh, 2016) or they
specifically and reversibly increment Nrf2 half-life (as MG-132)
(Dreger et al., 2009). Other compounds promote the release of
Nrf2 from KEAP1 through interaction with its cysteine thiol
residues (as sulforaphane) (Hong et al., 2005).

Nox Inhibitors and Recouplers of eNOS
Triazolopyrimidines are efficient and selective inhibitors of
NADPH oxidase activity. They specifically inhibit NADPH
oxidase-derived ROS in vitro (ten Freyhaus et al., 2006;
Drummond et al., 2011; Santilli et al., 2015) and have great
potential in the field of atherosclerosis.

GKT137831, an inhibitor of NOx 1 and Nox4, reduces
oxidative stress and diabetic vasculopathy (Gray et al., 2017)
and is currently under clinical trial. GLX351322 has been
suggested as a therapeutic approach in type 2 diabetes through
its selective inhibition of NOX4 (Anvari et al., 2015). In
addition, rutin, a glycoside of quercetin, exhibits anti-oxidant and
anti-inflammatory properties protecting endothelial dysfunction
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through inhibition of NOx4 and the ROS-sensitive NLRP3
inflammasome (Wang et al., 2017).

The aldehyde dehydrogenase 2 and its activator Alda-1 are
novel molecules capable of inhibiting toxic aldehydes, decreasing
oxidative stress and NADPH oxidase activity. These molecules
are able to reverse mitochondria dysfunction having a potential
role in atherogenesis (Stachowicz et al., 2014; Yang et al., 2018).
Nebivolol inhibits the activity of NADPH oxidase and, in
addition, reverses eNOS uncoupling (Munzel and Gori, 2009).

Inhibiting eNOS uncoupling is another strategy capable of
reducing ROS. Among the drugs used in the clinical practice,
inhibitors of the renin–angiotensin–aldosterone system, statins,
metformin and pentaerythritol tetranitrate have been described
to prevent or reverse eNOS uncoupling. Other compounds,
such as resveratrol, sepiapterin, BH4, folic acid, α-lipoic acid
and AVE3085, improve endothelial function through eNOS
recoupling although further studies are needed to validate
these compounds (Li and Forstermann, 2014; Xia et al.,
2017). Recently, thioredoxin was shown to reverse age-related
hypertension and arterial stiffness by improving vascular redox
and restoring eNOS function (Hilgers et al., 2017).

Targeting Hyperglycemic Memory
Inhibiting hyperglycemic memory concomitantly with
a reduction in oxidative stress is crucial under diabetic
conditions. The hyperglycemic memory needs to be reduced
in diabetes in order to prevent the progression of diabetic
complications (Bianchi et al., 2013). Otherwise, this occurrence
will result in a vicious cycle continuously producing ROS
and leading to vascular dysfunction. Targeting the incretin
pathway with dipeptidyl peptidase inhibitors or glucagon-
like peptide receptor-1 agonists was able to reduce advanced
glycation end products (AGEs) and ROS downstream events
that promote cellular damage (Berezin, 2016). Therapies
associated with reversion of hyperglycemic memory deserve
further investigation in this field and include soluble
RAGE/RAGE antagonists, AGE/methylglyoxal inhibitors,
S100 inhibitors, targeting vascular protein lysine acetylation
(Carrillo-Sepulveda, 2017; Kraakman et al., 2017), among
others.

Anti-diabetic Drugs
Studies both in humans and in animal models revealed that
anti-diabetic drugs (such as metformin) are able to decrement
oxidative stress and inflammation and ameliorate endothelial
function reducing the progression toward atherosclerosis (Sena
et al., 2009, 2011; Jenkins et al., 2018). Incretin mimetics,
in particular GLP1 agonists and dipeptidyl peptidase-4
(DPP4) inhibitors, are currently anti-diabetic agents with
a wide range of beneficial effects that include antioxidant
effects. An example is linagliptin, an inhibitor of DPP4 that
reduces obesity-related insulin resistance and inflammation
by regulating M1/M2 macrophage status (Zhuge et al.,
2016). It was recently shown that saxagliptin, an inhibitor
of DPP4, prevented coronary vascular stiffness through a
mechanism that involved a decrement in AGEs, NF-κB, and

nitrotyrosine levels in aortic-banded mini swine (Fleenor et al.,
2018).

In obesity, diabetes and hypertension mineralocorticoid
receptor antagonism improves endothelial function and seems
to be a mediator of the switch from vascular health to disease.
In endothelial cells, the mineralocorticoid receptor exerts
a protective role on endothelial function. In the presence
of cardiovascular risk factors, endothelial mineralocorticoid
receptor contributes to endothelial dysfunction through
NOX activation, eNOS uncoupling, increased epithelial
sodium channel expression, and ICAM1/VCAM1-mediated
inflammation. Further studies are necessary to clarify these
mechanisms (Bakris et al., 2015; Davel et al., 2017).

PCSK-9 Inhibitors
PCSK9 inhibitors are monoclonal antibodies that bind to and
inactivate proprotein convertase subtilisinkexin 9 (PCSK9), a
liver enzyme that promotes the lysosomal degradation of LDL
receptors in hepatocytes thus increasing the number of LDL
receptors in the membrane and LDL-cholesterol uptake. In recent
studies, evolocumab for 52 weeks significantly decreased the level
of vitamin E in LDL-C and increased vitamin E level in HDL
(Blom et al., 2015) revealing antioxidant properties (Sabatine
et al., 2017).

Other Pharmacological Approaches
Serotonin in peripheral blood reflects oxidative stress and plays
an important role in atherosclerosis highlighting the novel anti-
atherothrombotic strategy to mitigate vascular disease (Sugiura
et al., 2016). Tropisetron, a 5-HT3 receptor antagonist, can
attenuate early diabetes through calcineurin inhibition and by
suppressing oxidative stress and some inflammatory cytokines
in streptozotocin-induced diabetic rats (Barzegar-Fallah et al.,
2015).

More recently, cell-permeable peptides mimicking the kinase
inhibitory region of suppressor of cytokine signaling- 1 (SOCS1)
regulatory protein emerged as an important antioxidant and
anti-inflammatory strategy to limit the progression of diabetic
complications (Lopez-Sanz et al., 2018). SOCS-targeted therapies
have recently been suggested as potential therapeutic approaches
in atherosclerosis and deserve further investigation.

Other approach includes the inhibition of selenoprotein P
(SeP). SeP is a liver derived secretory protein that promotes
insulin resistance (Misu et al., 2010) and is upregulated in the
liver of type 2 diabetic patients. This hepatokine downregulates
the metabolic switch, AMP-activated protein kinase (AMPK)
(Misu et al., 2010). Recent studies have suggested that SeP
regulates cellular metabolism and the development of vascular
diseases (Ishikura et al., 2014; Cetindaǧlı et al., 2017; Mita
et al., 2017; Kikuchi et al., 2018). SeP promotes vascular
smooth cell proliferation through increased oxidative stress and
mitochondrial dysfunction in an autocrine/paracrine manner.
Sanguinarine, an orally active small molecule, reduces SeP
expression and smooth muscle proliferation, and ameliorates
pulmonary arterial hypertension in mice and rats. Thus, it seems
that SeP could be a novel and realistic therapeutic target (Kikuchi
et al., 2018).
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The clinical benefit of these compounds awaits further
confirmation. Moreover, novel nanotherapeutic approaches are
being developed to target oxidative stress and inflammation
(Wang et al., 2018).

Traditional medicinal plants have been used by
several civilizations through the years contributing to the
notion that natural products are relevant sources of new
pharmaceutical compounds. Technological advances are now
capable of unravel the value of natural products as novel
sources for new drug discovery including their role as
antioxidants.

CONCLUSION

Vascular oxidative stress promotes endothelial dysfunction and
atherosclerosis progression. In the vasculature, several sources
promote an increment in oxidative stress.

Preventing vascular oxidative stress and incrementing NO
bioavailability may represent the future therapeutic strategy to
mitigate the cardiovascular burden and reduce associated risk
factors.
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