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Marine environment has demonstrated to be an interesting source of compounds with

uncommon and unique chemical features on which the molecular modeling and chemical

synthesis of new drugs can be based with greater efficacy and specificity for the

therapeutics. Cancer is a growing public health threat, and despite the advances in

biomedical research and technology, there is an urgent need for the development of

new anticancer drugs. In this field, it is estimated that more than 60% of commercially

available anticancer drugs are natural biomimetic inspired. Among the marine organisms,

algae have revealed to be one of the major sources of new compounds of marine

origin, including those exhibiting antitumor and cytotoxic potential. These compounds

demonstrated ability to mediate specific inhibitory activities on a number of key cellular

processes, including apoptosis pathways, angiogenesis, migration and invasion, in both

in vitro and in vivo models, revealing their potential to be used as anticancer drugs. This

review will focus on the bioactive molecules from algae with antitumor potential, from

their origin to their potential uses, with special emphasis to the alga Sphaerococcus

coronopifolius as a producer of cytotoxic compounds.

Keywords: cancer, marine natural products, seaweeds, intracellular signaling pathways, biodiversity, marine

chemical ecology, Sphaerococcus coronopifolius

INTRODUCTION

Natural products (NPs) have been used as therapeutic agents for the treatment of a wide spectrum
of illnesses for thousands of years, playing an important role in meeting the basic needs of
human populations. In 1985,World Health Organization estimated that∼65% of world population
ensured their primary health care using predominately plant-derived traditional medicines,
existing a less prevalence in developed countries (Cragg and Newman, 2013). Due their unusual
chemical features, NPs have functioned as scaffolds for the development of new products with huge
therapeutic and industrial potential. Moreover, these compounds present a greater efficiency and
specificity with target sites since were originated in co-evolution with biological systems. These
interesting compounds result from the interactions between organisms and their environment,
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which promote the production of diverse complex chemical
compounds by the organisms to increase their survival and
competitiveness (Mishra and Tiwari, 2011).

Comparing with terrestrial organisms, marine organisms do
not have a distinguished history of use in traditional medicine.
However, in the last 50 years, advances in new technologies
and engineering such as scuba diving techniques, manned
submersibles and remotely operated vehicles (ROVs) opened up
the marine environment to scientific exploration (Cragg and
Newman, 2013). The coexistence of several species in these
habitats of limited extent increases their competitiveness and
complexity. For example, sessile organisms such as algae, corals,
sponges, and other invertebrates are in constant competition
and many of them have evolved chemical means to defend
themselves against predation or overgrowth of competing
species or, conversely, to subdue motile prey species for
ingestion. These chemical adaptations are generally defined as
“secondary metabolites” and involve different classes of chemical
compounds, which have evidenced great pharmacological
potential (Simmons et al., 2005). Therefore, marine organisms
have revealed to be an exceptional reservoir of NPs, some
of them with different structural features from those of
terrestrial sources. Despite considerable challenges, some marine
compounds arrived in the market and are currently used in
therapeutics, providing a useful roadmap for future translational
efforts (for details, please see topic 4; Arizza, 2013). Among
the different illnesses, cancer is a growing threat to public
health, particularly in developed countries, and it is expected that
their occurrence and associated deaths will increase in the next
years (American Cancer Society, 2015). This problem is directly
associated with the growth and aging of the population and the
adoption of behaviors that contribute to increase cancer risk
(American Cancer Society, 2015). Moreover, owing to the tumor
cells resistance to drugs, significant toxicity, and undesirable side
effects observed with synthetic drugs, there is an urgent need
for new antitumor drugs development (Sawadogo et al., 2015;
Torre et al., 2015). Given that cancer is a multifactorial andmulti-
targeting disease that cannot be prevented by mono-targeted
therapies, many researchers have focused their efforts toward
NPs, especially those from marine environments, to identify
novel anticancer compounds. Today, it is estimated that more
than 60% of anticancer drugs presently in the market are of
natural origin (Cragg and Newman, 2009). In addition, there are
several natural compounds originated or derived frommarine life
presently undergoing clinical trials with oncological indications
(AndisInsight, 2018; Calado et al., 2018; EMA, 2018a,b; FDA,
2018a,b; Mayer, 2018).

This review contains six topics condensing the importance
of marine resources as source of antitumor compounds,
summarizing the most important works accessing the potential
of algae as source of marine drugs for cancer therapeutics.

CANCER BIOLOGY—GENERAL OVERVIEW

Cancer is one of the major human health problems worldwide,
with high social and economic impacts. There is evidence
of this disease in antiquity, dating back to the times of the
Pharaohs in ancient Egypt and the classical world (Nobili

et al., 2009). Currently, worldwide, cancer is responsible by
one in each seven deaths causing more deaths than AIDS,
tuberculosis and malaria combined (American Cancer Society,
2015). Only surpassed by cardiovascular diseases, cancer is
the second leading cause of death in high-income countries
while being the third leading cause of death in low- and
middle-income countries following cardiovascular, infectious
and parasitic diseases (American Cancer Society, 2015). By 2030,
it is estimated that the incidence of this illness grows to over
21.7 million new cases and 13 million deaths (American Cancer
Society, 2015). Beyond the social impact, cancer is also associated
with high financial costs at the individual and social level for both
the person with cancer and for society as a whole. For example,
in 2011 in the US the direct medical costs (total of all health
care expenditures) associated with cancer was estimated in $88.7
billion, which are related with hospital outpatient or office-based
provider visits, patient hospital stays and medical prescriptions
(American Cancer Society, 2015).

However, what we simply call “human cancer” comprises,
in fact, more than 100 different diseases that result from the
continuous uncontrolled proliferation of cancer cells (Urbano
et al., 2011), which have the capability to invade organs and
normal tissues, as well as metastasizing through the body.
These cells do not respond properly to the signals that regulate
their normal behavior (Schulz, 2007; Cooper and Hausman,
2013). In line with this view, Hanahan and Weinberg (2000)
published a review article that combined information about
cancer biology and defined six hallmarks (sustaining proliferative
signaling, resisting cell death, inducing angiogenesis, enabling
replicative immortality, activating invasion and metastasis
and evading growth suppressors) that all cancer cells have
and that are responsible for their malignant properties.
Subsequently, an upgrade of this list was done adding two
new hallmarks, deregulating cellular energetics and evading
immune destruction. Nevertheless, the occurrence of these
hallmarks is directly associated with the genome instability,
which is responsible by genetic diversity that stimulates their
acquisition, and inflammation and promotes multiple hallmark
functions (Hanahan and Weinberg, 2011). Recently, case–
control metagenomics studies suggest that dysbiosis in the
commensal microbiota is also associated with various cancer
types adding microbiome as an additional hallmark (Rajagopala
et al., 2017). The complexity of tumors represents a great
challenge for therapeutic approaches, as experimental evidence
exists that each core hallmark capability is regulated by partially
redundant signaling pathways (Hanahan and Weinberg, 2011).
Consequently, targeted therapy mediated by drugs that only
act on one key pathway in a tumor may not be enough
to “switch off” a hallmark capability completely. As a result
some cancer cells can survive maintaining a basal function
awaiting an adaptation of their progeny to the selective pressure
imposed by the drug. This adaption can be accomplished by
genetic changes, epigenetic reprogramming, or remodeling of the
stromal microenvironment. All of these processes can contribute
for restitution of the functional capability, allowing renewed
tumor growth and consequently clinical relapse (Hanahan and
Weinberg, 2011). Nevertheless, the drug resistance of tumor
cell lines can also be mediated by other mechanisms, such as

Frontiers in Pharmacology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 777

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Alves et al. The Antitumor Potential of Marine Algae-Derived Compounds

drug efflux, suppression of drug activity, changes in cellular
targets, enhanced DNA repair, inability to induce cell death and
the epithelial-mesenchymal transition (Housman et al., 2014).
Among all the treatments currently used in cancer (surgery,
radiotherapy, hormonal treatment and immunotherapy, adjunct
therapy, and chemotherapy), chemotherapy continues to play an
extremely important role. However, its effectiveness is limited
in some cases by the existence of drug resistance, making
it necessary to define optimal combinations for therapeutic
strategies that ensure an efficient elimination of the tumor.
Moreover, in the last decades, with the continuous growth of
cancer cases and concerns over toxicity, tumor cell resistance,
the development of secondary cancers and the unwanted side
effects observed with synthetic drugs, there has been an increased
interest in exploiting NPs for cancer treatment (Newman and
Cragg, 2012; Sawadogo et al., 2015).

ROLE OF THE MARINE CHEMICAL
ECOLOGY IN THE PRODUCTION OF
BIOACTIVE METABOLITES ON ALGAE

The oceans represent a vast area of the planet and play a
fundamental role in its dynamic. Their physics, chemistry
and biology are key elements in the functioning of the earth
system, providing an interconnection between the different
natural systems (terrestrial, freshwater, estuarine, coastal, and
oceanic) and a range of valuable ecosystem services (Atkins
et al., 2011; Halpern et al., 2012; Botana and Alfonso, 2015).
Their essential role is further noted by the significant fraction
of the Earth’s biodiversity that oceans harbor (Brahmachari,
2015). According to the 33 animal phyla listed by Margulis
and Chapman (2009), 32 of them are represented in aquatic
environments, with 15 exclusively marine, 17 found in marine
and non-marine environments (with 5 of these having more
than 95% of their species only in marine environments), and
only one exclusively non-marine (Onychophora). A recent study
predicted the existence of ∼8.9 million eukaryotic species, of
which∼2.2million aremarine organisms, suggesting that around
86% of the species on the earth, and 91% in the ocean, have
not yet been described (Mora et al., 2011; Cragg and Newman,
2013; Berkov et al., 2014). The existence of a huge diversity
of life forms in the oceans is associated with the very exigent,
competitive and aggressive surrounding that promotes specific
and complex interactions, both inter-species and intra-species.
During the evolutionary period, many species share a common
environment establishing well-balanced associations between
them. Inside of these communities several organisms survive
and live in close association with other species, both macro
(e.g., algae, sponges, and ascidians) and micro (e.g., bacteria,
fungi, and actinomycetes) in order to ensure their survival
(Da Cruz et al., 2012; Graça et al., 2013; Horta et al., 2014;
Smith et al., 2018). Many of these complex interactions are
mediated by chemical signals, which play a crucial role at the
organizational level in the marine environment (Hay, 2009).
These chemical cues constituting much of the language of sea life
and are the utmost importance for several marine species which

have not some senses such as vision and hearing; nevertheless
even species that see and hear rely on chemical cues (Botana
and Alfonso, 2015). Interactions mediated by chemical signals
play a crucial and decisive role in ecological processes. These
signals influence population structure, community organization
and ecosystem function. In addition they are involved in the
definition of escape strategies, commensal associations, partners
and habitats, competitive interactions, feeding choices and
energy and nutrients transfer within and among ecosystems
(Hay, 2009).

Among marine organisms, algae are a clear example in which
chemical signals play a fundamental role in ecological processes.
These signs are involved in the growth and survival in extremely
exigent conditions, giving them competitive advantages relative
to other marine organisms including against predators and
competitors. One such piece of evidence has recently been
observed in coral reefs, which are in dramatic global decline, with
algae commonly replacing them. Several studies have observed
that algae damage corals directly or colonize opportunistically,
suppressing coral recruitment through the production of specific
chemical cues repulsing the recruits (Rasher and Hay, 2010,
2014; Dixson et al., 2014). Recently, Rasher et al. (2011)
identified four compounds (two loliolide derivatives and two
acetylated diterpenes) from two algae as potent allelochemicals
which directly damage corals. Marine organisms sometimes
face the dilemma of how to allocate the limited resources
available, having to strategically adapt. Usually these decisions
may have consequences on their growth, reproduction, or ability
to counteract biological (e.g., predators, maintenance of unfouled
surfaces, paralyzing their prey, etc.) and/or physical stress
(e.g., UV light, temperature, nutrient availability, high pressure,
salinity, oxygen content, etc.) (Winter et al., 2010; Botana and
Alfonso, 2015). The production of these types of compounds
has also been revealed to be an important weapon for the
successful invasion of non-indigenous species into new ranges.
For instance, the invasive red alga Bonnemaisonia hamifera
has become one of the most abundant species in Scandinavian
waters. According to Svensson et al. (2013) the high capacity of
this alga to colonize these waters seems to be linked with the
presence of a specific chemical compound (1,1,3,3-tetrabromo-
2-heptanone). The production of this metabolite inhibit the
settlement of propagules on its thallus and on surrounding
surfaces, achieving a competitive advantage over native algae
(Svensson et al., 2013). Chemical cues also play an important
role in the symbiotic interactions established between algae
and microorganisms. The cross-kingdom interactions between
them are not restricted to the exchange of macronutrients,
including vitamins and nutrients but also include the use
of infochemicals with different functions, establishing a tight
relationship and enabling them to interact as a unified functional
entity (Egan et al., 2013; Wichard, 2015). For instance, associated
microorganisms are responsible to produce compounds of
utmost importance which mediate essential ecological functions
in the development and growth of algae species including
quorum sensing signaling molecules, compounds with biological
activities, substances that promote the growth and other effective
molecules compounds (Singh and Reddy, 2014). Some of
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these compounds, such as bacterial morphogenetic compounds,
dimethylsulfoniopropionate (DMSP), the amino acids proline
and alanine, halogenated furanones and fucoxanthin, play
important roles in the ecological function, interfering with
the surface fouling of others organisms as well as with the
vital functions performance of the algae. These compounds
prevent the attachment of certain bacteria (e.g., Cytophaga sp.)
and support the fixation of others (e.g., Rheinheimera baltica),
controlling the community composition and abundance of the
algae-associated bacteria (Saha et al., 2011, 2012; Spoerner et al.,
2012; Egan et al., 2013). Marine organism interactions promote
the production of a high diversity of marine NPs with quite
specific and potent activities, representing an enormous source
of new compounds with potential for biotechnology applications
providing economic and human benefits.

MARINE NATURAL PRODUCTS AS A
SOURCE OF NEW DRUGS AND CURRENT
CLINICAL PIPELINE

Along of the evolution, marine organisms developed exceptional
metabolic capacities through the production of compounds with
quite specific and potent activities (Murray et al., 2013; Martins
et al., 2014). These compounds, often defined as secondary
metabolites, are generally limited to a particular taxonomic
family, genus, species or even organism, characterized by their
wide heterogeneity, and often constitutes a very small fraction
of the total biomass of the organism (Ianora et al., 2006;
Avila et al., 2008; Martins et al., 2014). Predominantly, their
production occurs in sessile or slow-moving organisms (e.g.,
algae, sponges, cnidarians, tunicates and bryozoans) that, without
effective escapemechanisms or structural protection, ensure their
protection through chemical defense (Noyer et al., 2011; Botana
and Alfonso, 2015). Nevertheless, many organisms have the
capacity to sequester secondary metabolites from their diet and
then derivatize them tomore or less toxic forms can be these used
for functions different from their roles in the original producer
(Ianora et al., 2006; Kicklighter et al., 2011; Botana and Alfonso,
2015; Gotsbacher and Karuso, 2015). Moreover, since natural
compounds released into the water are rapidly diluted, they need
to be highly potent to retain their efficacy (Haefner, 2003). For
these reasons, it is widely accepted that a huge number of NPs and
novel chemical entities that exist in the oceans could be useful for
providing sustainable economic and human benefits.

To date, different types of secondary metabolites (e.g.,
terpenoids, alkaloids, polyketides, peptides, shikimic acid
derivatives, sugars, steroids, and a large mixture of biogenesis
metabolites) were isolated from marine organisms and found
to exhibit many biological activities (antimicrobial, antitumor,
antidiabetic, anticoagulant, antioxidant, anti-inflammatory,
antiviral, antimalarial, antitubercular, anti-aging antifouling, and
antiprotozoal) with huge industrial and therapeutic potential
(Blunt et al., 2013, 2014; Mayer et al., 2013, 2017; Agrawal et al.,
2018). Marine NPs have exhibited rare and unique chemical
structures, upon which the molecular modeling and chemical
synthesis of new drugs can be based on (Dias et al., 2012; Botana

and Alfonso, 2015). Since this kind of compounds are originated
from nature present several advantages compared with synthetic
compounds such as a chemical diversity, biochemical specificity,
binding efficiency, and affinity to interact with biological systems,
making them interesting structures for development of new
drugs (Martins et al., 2014).

The marine biodiscovery and vision of marine-derived
drugs on the market had their beginning in the early 1950s
with Bergmann, who isolated and identified two nucleosides,
spongouridine and spongothymidine, from the Caribbean
sponge Cryptotethya crypta (previously known as Tethya crypta).
These discoveries led researchers to synthesize analogs, Ara-
A (Vidarabine R©, Vidarabin Thilo R©) and Ara-C (Cytarabine,
Alexan R©,Udicil R©), the firstmarine derived compounds that have
reached themarket as antiviral and antitumor drugs, respectively,
(Newman et al., 2009; Botana and Alfonso, 2015). Over the last
50 years was reported the isolation of more than 30,000 new
compounds of marine origin (Figure 1) and the approval of more
than 300 patents (Blunt et al., 2015; Botana and Alfonso, 2015).

Nevertheless, despite of the remarkable potential of marine
NPs as source of new drugs their role have undergone several
changes, having had an evident decline in the pharmaceutical
R&D activities by the mid-1990s. After that decline, the
larger research and development effort in the exploration of
this niche was essentially assured by enterprising academics,
mainly partnered with industry. In the last decade, this
area seems to have benefited from a renaissance, since the
number of new isolated marine compounds has increased
when compared with the previous similar period (Molinski
et al., 2009; Botana and Alfonso, 2015). This rebirth is directly
associated with recent technological advances in analytical
technology, spectroscopy, and high-throughput screening.
Advances in “omics” techniques (genomics, metagenomics,
proteomics), combinatorial biosynthesis, synthetic biology,
selection methods, expression systems, and bioinformatics have
contributed as powerful tools to discover new chemical entities

FIGURE 1 | Marine compounds isolated in the last 50 years (approximate

number/10 years) (Faulkner, 1984, 1986, 1987, 1988, 1990, 1991, 1992,

1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002; Blunt et al.,

2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014,

2015, 2016, 2017, 2018).
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with pharmaceutical potential (Molinski et al., 2009; Bucar et al.,
2013).

Over the last 30 years, great efforts have been made, showing
productive and promising results, since it has been defined the
major tendencies in secondary metabolism of several classes of
marine organisms. Only in the last 20 years, more than 18,000
new marine compounds were described and six (Figure 2) out
of the nine marine-derived drugs currently used in clinical
therapy were approved, as well as one over-the-counter drug
(OTC). Cytarabine (Cytosar-U R©), Vidarabine (Vira-A R©) (US
discontinued), Ziconotide (Prialt R©), Brentuximab Vedotin
(Adcetris R©), Eribulin Mesylate (Halaven R©), Omega-3-acid
ethyl esters (Lovaza R©), Trabectedin (Yondelis R©), Fludarabine
Phosphate (Fludara R©), and Nelarabine (Arranon R©) were
approved by the Food and Drug Administration (FDA) in the
US Pharmacopeia and/ or by the European Agency for the
Evaluation of Medicinal Products (EMA). Iota-carrageenan
(Carragelose R©), one OTC, was approved by EMA. However,
it is expected that the number of newly approved drugs from
marine origin will continue to increase, since 28 marine or
marine-derived drugs are currently in clinical trials (six marine
molecules—phase III; fourteen marine molecules—phase II;
eight marine molecules—phase I) (Figure 2) (AndisInsight,
2018; Calado et al., 2018; EMA, 2018a,b; FDA, 2018a,b; Mayer,
2018).

Considering all the marine drugs available in the market, it is
particularly interesting to see that six are used in cancer therapies

(Figure 3), and the majority of the compounds that are in clinical
trials are also for application in cancer therapy, which reveals
the great potential of marine compounds as anticancer drugs
(Figure 2).

Although not associated with cancer therapeutics, iota-
carrageenan (Carragelose R©) is the first product developed from
algae in the market. It is a type of carrageenan, isolated from a red
edible algae belonging a family of linear sulfated polysaccharides.
Carragelose R© has ability to block viral attachment to the host
cells being effective against a broad spectrum of respiratory
viruses (Ludwig et al., 2013; Calado et al., 2018).

ANTITUMOR POTENTIAL OF MARINE
ALGAE-DERIVED COMPOUNDS

Among marine organisms, algae are one of the most important
resources of the ocean, economically and ecologically (Kim,
2014). Their inclusion in the Asian diet has been associated
with health benefits, where there has been observed a lower
incidence of chronic diseases, such as hyperlipidaemia, coronary
heart disease, diabetes and cancer, according to epidemiological
studies comparing Japanese and Western diets (Brown et al.,
2014; Bouga and Combet, 2015). Algae are valuable sources of
protein, fiber, vitamins, polyunsaturated fatty acids, and macro-,
and trace elements. More recently, they have also revealed
to be an interesting source of useful bioactive components

FIGURE 2 | Current clinical pipeline of marine-derived drugs and their original marine source. NP, Natural product; D, Derivate; OTC, Over-the-counter (AndisInsight,

2018; Calado et al., 2018; EMA, 2018a,b; FDA, 2018a,b; Mayer, 2018).
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FIGURE 3 | Chemical structures of anticancer marine-derived drugs in the market.

such as antioxidants, phycocolloids, proteins, vitamins, minerals,
carotenoids, soluble dietary fibers, polyunsaturated fatty acids,
phycobilins, polysaccharides, sterols, tocopherols, terpenes, and
phycocyanins. These compounds demonstrated to possess
nutritional and functional value apart from their potential use
as therapeutic agents in biomedical area (Chandini et al., 2008;

Lordan et al., 2011; Mohamed et al., 2012; Alves et al., 2016b).
Due to their unique structures and biochemical characteristics,
the multifunctional properties of algae should be exploited in
their fullness. In addition, the idea that algae are a promising
prolific source of structurally unique NPs with biomedical
potential is even more supported by the view that the number
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of algae species identified around the world is more than 30,000
(Plouguerné et al., 2014). Moreover, algae have been revealed a
major source of new compounds of marine origin, after sponges,
microorganisms and phytoplankton (Figure 4).

Many of these algae-derived compounds have proven
therapeutic properties associated with numerous health-
promoting effects, including anti-obesity (Maeda et al., 2005; Kim
et al., 2018), antidiabetic (Mayer et al., 2013), antihypertensive
(Sivagnanam et al., 2015), antihyperlipidaemia (Sathivel et al.,
2008), antioxidant (Magalhaes et al., 2011; Pinteus et al., 2017),
anticoagulant (Magalhaes et al., 2011), anti-inflammatory (De
Souza et al., 2009), immunomodulatory (Pérez-Recalde et al.,
2014), anti-estrogenic (Skibola, 2004), thyroid-stimulating
(Teas et al., 2007), neuroprotective (Pangestuti and Kim, 2011),
anti-osteoarthritic (Moon et al., 2018), anti-osteoporosis (Deng
et al., 2018), antiviral (Aguilar-Briseño et al., 2015), antimicrobial
(Pinteus et al., 2015; Rodrigues et al., 2015), and antitumor
(Moussavou et al., 2014; Rodrigues et al., 2015; Alves et al.,
2016a). Among the well-documented bioactive compounds
are brominated phenols, polysaccharides, and carotenoids,
but especially a large diversity of terpenoids, several of them
being halogenated compounds (Gribble, 2015; Rodrigues et al.,
2015). Although many works have attempted to identify marine-
derived compounds, detailed chemical characterization and
identification of bioactive components are still largely lacking
(Santos et al., 2015).

Along the last five decades, it is estimated that more than
3,000 NPs have been discovered from algae (Leal et al., 2013),
and among all of the biological activities observed, the antitumor
activity is one of the most promising. Despite several studies
have shown the high cytotoxic potential of the compounds

isolated from algae on different tumor cell lines, there are
few studies that have characterized the intracellular signaling
pathways involved in the process (Table 1). Currently, according
to the National Cancer Institute (USA), different targeted
therapies have been approved for use in cancer treatment,
including hormonal therapies, inhibitors of signal transduction
and angiogenesis, modulators of gene expression, inducers of
apoptosis, immunotherapies and toxin delivery molecules.

In Vitro Antitumor Activities of
Algae-Derived Compounds and
Intracellular Signaling Pathways Activated
Analyzing the compounds isolated from algae with antitumor
activity (Table 1) is possible to see that several of them mediate
their activities in some of these target therapies mentioned
previously. For example, dioxinodehydroeckol (Kong et al.,
2009), sargachromanol E (Heo et al., 2011), EI-SP (Wang
et al., 2014), siphonaxanthin (Ganesan et al., 2011), sulfated
carrageenan (Murad et al., 2015), TDB (Lee et al., 2007), GLP
(Thangam et al., 2014), mertensene (Tarhouni-Jabberi et al.,
2017), TTB (Choi et al., 2017), DDSD (Velatooru et al., 2016),
and clerosterol (Kim et al., 2013) induced apoptosis in different
cell lines by similar intracellular signaling pathways, regulated by
Caspase (−3,−9 or both) activation, downregulation of Bcl-xL or
Bcl-2, upregulation of Bax and cleavage of PARP.Moreover, some
of these compounds, such as EI-SP and clerosterol, also caused
the loss of the mitochondrial membrane potential. The treatment
of colon26 cells with Eucheuma serra agglutinin (Fukuda et al.,
2006) also promoted an increase of Caspase-3 expression
and translocation of phosphatidylserine in lectin-treated cells,

FIGURE 4 | Approximate numbers of new compounds isolated from different marine organism sources between 1977 and 2016 (Faulkner, 1984, 1986, 1987, 1988,

1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002; Blunt et al., 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,

2013, 2014, 2015, 2016, 2017, 2018).
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TABLE 1 | Marine compounds isolated from algae with antitumor and cytotoxic activities and intracellular signaling pathways involved.

Algae Compound Chemical class Intracellular signaling pathways References

OCHROPHYTA (BROWN ALGAE)

Ecklonia cava Dieckol Polyphenol Induces a downregulation of FAK signaling pathway mediated by

the scavenging of intracellular reactive oxygen species (ROS),

influencing migration and invasion of HT1080 cells.

Park and Jeon,

2012

Potent inhibitor for tumor promoter-mediated MAPK-signaling

pathways, leading to Activator Protein 1 (AP-1) and

Metalloproteinase (MMP)−9 activation by regulating cancer cell

motility.

Oh et al., 2011

Ecklonia cava 6,6′-bieckol Polyphenol Acts as a suppressor of MMP-2 and MMP-9 expressions by

downregulating Nuclear Factor kappa-light-chain-enhancer of

Activated B cells (NF-κB) and inhibits the migration of HT1080

cells. In addition, cell morphology and shape are affected in 3D

culture condition.

Zhang et al., 2010

Ecklonia Cava Dioxinodehydroeckol Phloroglucinol

derivative

Induction of apoptosis through NF-κB family and NF-κB

-dependent pathway.

Kong et al., 2009

Ecklonia cava Fucodiphloroethol G Phlorotannin Promotes inhibition of AP-N, MMPs (-2,-9) and c-fos by blocking

signal transduction of MAPK and Akt pathways in Vascular

Endothelial Growth Factor (VEGF)-induced EVC304 and EA.hy926

cells.

Li et al., 2011

Eisenia bicyclis Diphlorethohydroxycarmalol

(DC)

Phlorotannin Induces apoptosis on HL60 cells through the accumulation of

sub-G1 cell population along with nuclear condensation, the

reduction of Bcl-2 expression and the depletion of mitochondrial

membrane potential (1Ψm).

Kang et al., 2012

Hizikia fusiformis HFGP Glycoprotein Induces on HepG2 cells apoptosis and sub-G1 phase arrest. The

expressions of Fas, Fas-associated death domain protein, Bax,

and Bad were significantly upregulated in HFGP-treated cells.

Moreover, HFGP induces the translocation of Bax to the

mitochondria and the release of cytochrome c into the cytosol.

Ryu et al., 2012

Hydroclathrus

clathratus

H3-a1 Sulfated

polysaccharide

Induces significant arrest of sub-G1 phase on HL-60 and MCF-7

cells. In vivo, it inhibits tumor growth at doses of 20 and 50mg

Kg−1 in tumor-bearing BALB/c mice. Moreover, it suppresses

ascitic sarcoma 180 tumor growth and prolongs the lifespan of the

tumor-bearing mice by ∼30–40%. H3-a1 compound also

increases the tumor necrosis factor-alpha (TNF-α) level in mouse

serum.

Wang et al., 2010

Undaria pinnatifida Fucoidan Sulfated

polysaccharide

Capable of suppress the proliferation of HLF cells by

AMPK-associated inhibition of fatty acid synthesis and G1/S

transition.

Kawaguchi et al.,

2015

Promotes apoptosis via ROS-mediated mitochondrial pathway on

SMMC-7721 cells.

Yang et al., 2013

Induces intrinsic and extrinsic apoptosis by stimulating ERK1/2

MAPK, deactivating P38 MAPK and PI3K/Akt signaling pathways

and downregulating Wnt/β-catenin signaling pathway on prostate

cancer cells (PC-3).

Boo et al., 2013

Undaria pinnatifida Fucoxanthin Carotenoid Increases the efficiency of cisplatin treatment on HepG2 cell line.

Reduces cell viability. Increases Bax/Bcl-2 ratio, probably through

inhibition of NF-κB, and ERCC1 expression through ERK and

PI3K/AKT pathways.

Liu et al., 2013

Cladosiphon

okamuranus Tokida

Fucoxanthinol Carotenoid Inhibits Akt and Activator protein-1 pathways that influenced the

suppression of cell growth, migration and invasion and the

induction of apoptosis on osteosarcoma cells.

Rokkaku et al.,

2013

Sargassum

siliquastrum

Sargachromanol E Meroditerpenoid Induction of apoptosis on HL-60 cells mediated by Caspase-3

activation. Apoptosis accompanied by downregulation of Bcl-xL,

upregulation of Bax, activation of Caspase−3, and cleavage of

poly (ADP-ribose) polymerase (PARP).

Heo et al., 2011

Ascophyllum nodosum Ascophyllan Sulfated

polysaccharide

Reduces N-Cadherin levels and increases E-Cadherin, which lead

to the inhibition of migration and adhesion of B16 cell line.

Abu et al., 2015

Laminaria digitata Laminarin Polysaccharide Induces apoptosis and cell cycle arrest at sub-G1 and G2/M

phases on human colon cancer cells (HT-29) and suppresses

ErbB signaling pathway activation.

Park et al., 2013

(Continued)
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TABLE 1 | Continued

Algae Compound Chemical class Intracellular signaling pathways References

Laminaria japonica LJGP Glycoprotein Supresses cell proliferation and induces apoptosis on HT-29 cells

mediated through Fas signaling pathway, mitochondrial pathway

and cell cycle arrest.

Go et al., 2010

Sargassum horneri SHPSA Polysaccharide Inhibits the proliferation of human colon cancer cells (DLD) by

increasing the accumulation of cells at G2/M phase and inducing

the apoptosis of DLD cells.

Wang S. et al.,

2015

Sargassum vulgare PSV1 Sulfated

polysaccharide

It blocks tubulogenesis and VEGF secretion on rabbit aorta

endothelial cells using Matrigel. Inhibitory effect on angiogenesis.

Guerra Dore et al.,

2013

Leathesia nana Bis(2,3-Dibromo-4,5-

dihydroxybenzyl) ether (BDDE)

Bromophenol Induces apoptosis on K562 cells by a mitochondrial mediated

pathway. Induces ROS generation and arrests cell cycle in S

phase. Interacts with the minor groove of DNA and inhibits

Topoisomerase I activity.

Liu et al., 2012

Displays in vitro anti-angiogenic activity by suppressing

significantly vascular endothelial cells (HUVEC) proliferation,

migration, and tube formation, without any effect on the preformed

vascular tube. Decreases the levels of VEGF and VEGFR proteins

and inhibits the VEGF downstream signaling molecules, including

mTOR and Src, while activates Akt and ERK. On zebrafish

embryos, blocks sub-intestinal vessel formation and exhibits

toxicity when used in higher concentrations (in vivo).

Qi et al., 2015

Sargassum

siliquastrum

9′-cis-(6′R) fucoxanthin (FcA)

13′-cis-(6′R) fucoxanthin

complex (FcB)

Carotenoid Both compounds reduce MMP-2, MMP-9 and mRNA levels, and

the migration of HT1080 cells. Moreover, increase the expression

of MMP inhibition factors (MMP-1) and suppress significantly the

transcriptional activity of NF-κB, c-Jun N-terminal kinase (JNK), as

well as p38 mitogen-activated protein kinase activity.

Nguyen et al.,

2014

Sargassum

stenophyllum

SargA Sulfated

polysaccharide

In vitro, induces a decrease of B16F10 cells migration and viability.

In vivo, causes the inhibition of tumor growth with no systemic

toxicity and exhibits an anti-angiogenic effect.

Dias et al., 2005

Sargassum

macrocarpum

Tuberatolide B (TTB) Meroterpenoid TTB reduces the cell viability of several cancer cells lines

(MDA-MB-231, MDA-MB-453, MCF-7, A549, H1299, HCT-116,

SW620, CT26, PC-3, and DU145) by apoptosis decreasing Bcl2

expression and increasing the Caspase-3 and PARP cleavage.

Promotes γH2AX foci formation and phosphorylation of several

proteins (Chk2 and H2AX) related to DNA damage. In addition

TTB promotes the production of ROS inhibiting STAT3 activation,

which result in the decrease of the levels of cyclin D1, MMP-9,

survivin, VEGF, and IL-6. Its activity seems to be mediated by ROS

production and consequently inhibition of STAT3 signaling.

Choi et al., 2017

Stoechospermum

marginatum

5(R), 19-diacetoxy-15,18

(R and S), dihydro spata-13,

16(E)-diene (DDSD)

Spatane diterpenoid In vitro DDSD induces cell cycle arrest at the S-phase and cell

death by apoptosis on B16F10 melanoma cells. This compound

promotes the generation of ROS, and consequently alterations in

the ratio of Bax/Bcl-2 and in the mitochondrial transmembrane

potential (1Ψm), phosphatidylserine externalization, release of

cytochrome c to the cytoplasm, Caspase activation, nuclear

condensation, and fragmentation of DNA. Moreover, the results

suggest that DDSD induces apoptosis through deregulating

PI3K/AKT signaling pathway. In vivo, DDSD inhibits tumor growth

(volume and weight) without evident toxic effects on C57BL/6

mice bearing B16F10 melanoma.

Velatooru et al.,

2016

Not identified by the

authors

MSP Sulfated

polysaccharide

Exhibits anti-metastatic ability, both in vitro and in vivo. Induces

regulatory effects on Actin dynamics in an FAK/ERK1/2-dependent

manner, which might be further attributed to its binding to FN and,

consequently, FN-induced tumor adhesion, and migration.

Tang et al., 2006

Not identified by the

authors

Not defined Sulfated

polysaccharide

Induces apoptosis and cell arrest at G2/M phase of MKN45 cells

via ROS/JNK signaling pathway. In addition, it promotes ROS

production and mediate the phosphorylation of several proteins,

including Jun N-terminal kinase (JNK), p53, Caspase-9, and -3.

Xie et al., 2016

(Continued)
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TABLE 1 | Continued

Algae Compound Chemical class Intracellular signaling pathways References

RHODOPHYTA (RED ALGAE)

Lophocladia sp. Lophocladines B Alkaloid Cell cycle analysis on MDA-MB-435 cells showed arrest at G2/M

phase and induction of microtubule depolymerization on A-10

cells.

Gross et al., 2006

Laurencia viridis Polyether triterpenoid

dehydrothyrsiferol

Terpenoid Induces apoptosis on breast cancer cells by estrogen-depend and

independent pathways.

Pec et al., 2003

Eucheuma serra Eucheuma serra agglutinin

(ESA)

Lectin Increases Caspase-3 expression and translocation of

phosphatidylserine in lectin-treated colon26 cells, suggesting that

cell death is mediated by apoptosis. In vivo is observed a

significant growth inhibition of Colon26-induced tumors on

BALB/c mice. DNA fragmentation in tumor cells after intravenous

injection with ESA is also detected.

Fukuda et al.,

2006

Gracilaria verrucosa (E)-9- oxooctadec-10-enoic

acid (C10)

Enone fatty acid Angiogenesis and NF-κB activation in HUVECs cells stimulated by

VEGF are blocked as well as their proliferation and migration. This

is also observed in vivo model of angiogenesis using mouse

cornea. Moreover, the neovascularization induced by VEGF is

significantly suppressed.

Furuno et al., 2011

Grateloupia filicina GFP08 Sulfated

polysaccharide

In the chicken chorioallantoic membrane assay, reduced new

vessel formation. In mice decreases the weight of sarcoma-180

cells-induced tumor in a dose-dependent manner. Also decreased

Tissue Factor (TF) expression without affecting the activities of

MMP-2 and−9.

Yu et al., 2012

Laurencia intricata Laurenditerpenol Diterpene Inhibits hypoxia-inducible factor-1 (HIF-1) mediated hypoxic

signaling in breast tumor cells.

Mohammed et al.,

2004

Laurencia papillosa Sulfated carrageenan (ESC) Sulfated

polysaccharide

Inhibits MDA-MB-231 cell proliferation and induces cell death

through nuclear condensation and DNA fragmentation. Cell death

is induced by apoptosis as result of activation of the extrinsic

apoptotic Caspase-8 gene. The apoptotic signaling pathway is

regulated through the Caspase-3, Caspase-9, p53, Bax, and

Bcl-2 proteins.

Murad et al., 2015

Laurencia majuscula Hexadecyl-1-

O-α-l-arabinopyranoside

Arabinopyranoside Decreases significantly CDK1 and Cyclin A expression, with slight

changes in Cyclin B1; arrests cell cycle at G2/M.

Du et al., 2010

Callophycus serratus Bromophycolide A Diterpene–benzoate

macrolides

Induces apoptosis on A2780 human ovarian cells; arrests G1

phase of the cell cycle, consistent with decreased number of cells

from the S and G2/M phases.

Kubanek et al.,

2005

Chondrus ocellatus λ-Carrageenan Sulfated galactan Conjugation with 5-Fluorouracil (5-FU) enhanced antitumor activity

and mitigated immunocompetence damage of 5-FU.

Zhou et al., 2006

Laurencia microcladia Elatol Sesquiterpene Induces cell cycle arrest at G1 and sub-G1 phases, leading cells

to undergo apoptosis. Reduces the expressions of Cyclin-D1,

Cyclin-E, Cyclin-dependent kinase (Cdk)2 and Cdk4. It is also

observed increases in Bak, Caspase-9 and p53 expressions and a

decrease in Bcl-xl expression. In vivo elatol treatment reduces

tumor growth on C57Bl6 mice.

Campos et al.,

2012

Laurencia thyrsifera Thyrsiferol Triterpene Supresses HIF-1 activation on T47D human breast tumor cells

and blocks mitochondrial respiration at complex I.

Mahdi et al., 2011

Champia feldmannii Cf-PLS Sulfated

polysaccharide

In vivo antitumor activity without marked toxicity. Enhances the

efficacy of 5-FU, while preventing immunocompetence hindrance

by 5-FU.

Lins et al., 2009

Porphyra haitanensis Porphyran Sulfated galactan Conjugation with 5-FU enhanced its antitumor activity and

mitigated immunocompetence damage.

Wang and Zhang,

2014

Porphyra yezoensis PY-D2 Polysaccharide Blocks cell cycle at G0/G1 or G2/M check-points on different cell

lines (SMMC-7721, HO-8910, MCF-7, K562 cells).

Zhang et al., 2011

Porphyra yezoensis Sulfoquinovosyldiacylglycerol

(SQDG)

Sulfolipids Inhibits significantly telomerase activity. Eitsuka et al.,

2004

Grateloupia elliptica Pheophorbide a (Pa) Chlorophyll Induces cytostatic activity on glioblastoma cells (U87MG). The cell

cycle distribution showed that U87MG cells are arrested at G0/G1

phase.

Nguyen et al.,

2014

(Continued)
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Algae Compound Chemical class Intracellular signaling pathways References

Grateloupia longifolia GLP Polysaccharide Prevents the proliferation of HMEC-1 and HUVEC cells,

suppresses the formation of intact tube networks and decreases

migration. Decreases vessels density and new vessels formation in

the chick chorioallantoic membrane assay and also, by

intravenous administration decreases tumor weight and vascular

density without showing toxicity in mice bearing

sarcoma-180-cells-induced tumors.

Zhang et al., 2006

Rhodomelaceae

confervoides

Bis-(2,3-dibromo-4,5-

dihydroxy-phenyl)-methane

(BDDPM)

Bromophenol Inhibits several biological processes associated with angiogenesis,

including endothelial cell sprouting, migration, proliferation, and

tube formation.

Wang B. et al.,

2015

Symphyacladia

latiuscula

2,3,6-tribromo-4,5-

dihydroxybenzyl methyl ether

(TDB)

Bromophenol Inhibits MCF-7 breast cancer cells growth and induces DNA

fragmentation by apoptosis, accompanied by a downregulation of

Bcl-2 protein expression and PARP cleavage by Caspase-3. This

treatment increases the level of p21 WAF1/CIP1 protein in a

p53-dependent manner.

Lee et al., 2007

Pterocladiella

capillacea

Mertensene Halogenated

monoterpene

Induces apoptosis on HT-29 cells accompanied by Caspase-3

activation and PARP cleavage. Decreases the phosphorylated

forms of several proteins (p53, Rb, Ccd2, Chkp2) and the levels of

cyclin-dependent kinases CDK2 and CDK4, and increases the

levels of death receptor-associated protein TRADD. In addition it

seems to promote the activation of MAPK ERK-1/-2, Akt and

NF-κB pathways.

Tarhouni-Jabberi

et al., 2017

CHLOROPHYTA (GREEN ALGAE)

Avrainvillea nigricans Nigricanosides A (NA) Glycolipid Arrests MCF-7 breast cancer cells in mitosis. Cells exhibit

disorganized microtubule spindles. In vitro induces polymerization

of Tubulin and inhibition of both MCF-7 and HCT-116 cells

proliferation.

Williams et al.,

2007

Caulerpa spp. Caulerpin Alkaloid Acts as an inhibitor of the transportation of electrons to

mitochondrial complex III, interfering with the mitochondrial

ROS-regulated HIF-1 activation and HIF-1 downstream target

genes expression.

Liu et al., 2009

Caulerpa taxifolia Caulerpenyne Sesquiterpenoid An early shift into synthesis phase (S) along with a blockade at

G2/M phase is observed on colorectal cancer cells.

Fischel et al., 1994

Codium fragile Siphonaxanthin Carotenoid Induces apoptosis on HeLa cells accompanied by a decrease of

Bcl-2 expression and subsequently activation of Caspase-3 and

increase of the expression of GADD45α and the Death Receptor 5

(DR5).

Ganesan et al.,

2011

Ulva intestinalis EI-SP Sulfated

polysaccharide

Induces apoptosis on HepG2 cells accompanied by changes in

mitochondrial membrane potential, release of cytochrome c to the

cytosol, decrease and increase of Bcl-2 and Bax expression,

respectively and cleavage of Caspase-3 and Caspase-9, as well

as cleavage of PARP.

Wang et al., 2014

Ulva intestinalis DAEB Sulfated

polysaccharide

Exhibits low toxicity in vitro. In vivo DAEB reduces tumor mass and

increases thymus and spleen mass. Tumor growth inhibition is

ascribed to increase levels of TNF- α, NO, and ROS.

Jiao et al., 2009

Capsosiphon

fulvescens

Cf-GP Glycoprotein Inhibits AGS cells proliferation and migration by a decrease of

Integrin expression via the TGF-β 1-activated FAK/PI3K/AKT

pathways.

Boo et al., 2013

Capsosiphon

fulvescens

Cf-PS Polysaccharide Inhibits cell proliferation and induces apoptosis by inhibiting IGF-IR

signaling and the PI3K/Akt pathway.

Kwon and Nam,

2007

Codium fragile Clerosterol Sterol Induces apoptosis accompanied by changes in mitochondrial

membrane potential, an increase and a decrease of Bax and Bcl-2

expression, respectively, and activation of Caspase-3 and

Caspase-9.

Kim et al., 2013

Codium decorticatum GLP Glycoprotein GLP induces apoptosis on MDA-MB-231 breast cancer cells by

mitochondria-mediated intrinsic pathway promoting changes in

the mitochondrial membrane potential and Bax/Bcl-2 ratio,

cytochrome c release, and Caspases-3 and 9 activation.

Thangam et al.,

2014
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suggesting that cell death was mediated by apoptosis.. On the
other hand, algae-derived compounds such as lophocladines B
(Gross et al., 2006), hexadecyl-1- O-α-l-arabinopyranoside (Du
et al., 2010) and caulerpenyne (Fischel et al., 1994) affected the
intracellular signaling pathways linked with regulation of the cell
cycle. Lophocladines B showed a marked reduction of MDA-
MB-435 cells at the G1 and S phases, with an accumulation
of cells at G2/M, indicating a G2/M cell cycle arrest. This
compound also induced microtubule depolymerization on A-10
cells. Du et al. (2010) isolated from the alga Laurencia majuscula
a new arabinopyranoside compound designed as hexadecyl-1-
O-α-l-arabinopyranoside, which exhibited significant antitumor
activity in different cancer cell lines. The active compound
arrested cell lines at G2/M phase of the cell cycle by decreasing
the expression of CDK1 and Cyclin A proteins, which are critical
for the G2/M-phase transition. Caulerpenyne induced cell cycle
arrest in colorectal cancer cells that exhibited an early shift into
the S phase followed by a blockade at the G2/M phase (Fischel
et al., 1994).

Nevertheless, most of the intracellular signaling pathways
activated by these compounds are simultaneously linked with
the regulation of cell cycle and apoptosis. Park et al. (2013)
demonstrated that laminarin, extracted from brown alga
Laminaria digita, induced apoptosis on HT-29 colon cancer cells
and increased the percentage of cells in the sub-G1 and G2/M
phases. The observed decrease in cellular proliferation was found
to be dependent on ErbB, followed by subsequent activation
of c-Jun N-terminal kinase. In the same way, Liu et al. (2012)
verified that a bromophenol compound, bis(2,3-dibromo-4,5-
dihydroxybenzyl) ether, induced apoptosis on K562 cells by a
mitochondria-mediated pathway, as well as the arrest of the cell
cycle at the S phase. Additionally, this compound interacted with
theminor groove of DNA and inhibited Topoisomerase I activity.
On A2780 human ovarian cells, bromophycolide A induced
the arrest at the G1 phase of the cell cycle and a consequent
and consistent loss of cells from the S and G2/M phases, while
simultaneously induced apoptosis (Kubanek et al., 2005). Similar
effects were induced by elatol, a compound isolated from the
alga Laurencia microcladia, which induced cell cycle arrest in the
G1 and sub-G1 phases, leading the cells to undergo apoptosis.
It influenced the expression of several proteins (cyclins, Bax,
Bcl-xl, caspases, p53) that play important roles in these biological
processes (Campos et al., 2012). Diphlorethohydroxycarmalol,
isolated by Kang et al. (2012), induced apoptosis by the
accumulation of the sub-G1 cell population and nuclear
condensation, depletion of mitochondrial membrane potential
(1Ψm) and regulation of the expression of the pro-survival and
pro-apoptotic Bcl-2 family members. HFGP (Ryu et al., 2012)
and LJGP (Go et al., 2010) glycoproteins induced apoptosis on
HepG2 and HT-29 cells, which was mediated by Fas signaling
and mitochondrial pathway, and cell cycle arrest. On the other
hand, Cf-PS polysaccharide (Kwon and Nam, 2007) inhibited
the cell proliferation and induced apoptosis by inhibiting IGF-IR
signaling and the PI3K/Akt pathway, which are involved in
the regulation of cell growth, proliferation, differentiation,
motility, survival, metabolism and protein synthesis
(Chen et al., 2014).

Other examples such as dieckol (Oh et al., 2011; Park and
Jeon, 2012), 6,6′-bieckol (Zhang et al., 2010), ascophyllan (Abu
et al., 2015), 9′-cis-(6′R) fucoxanthin (FcA) (Nguyen et al.,
2014), fucoxanthinol (Rokkaku et al., 2013), and 13′-cis-(6′R)
fucoxanthin complex (FcB) (Nguyen et al., 2014), SargA (Dias
et al., 2005), MSP (Tang et al., 2006), and Cf-GP (Boo et al., 2013)
showed the capacity to inhibit the motility, migration, adhesion
or invasion on different in vitro and in vivomodels using distinct
intracellular signaling pathways, as described in Table 1.

Currently, one of the targets of cancer treatment, especially
in solid tumors, is angiogenesis, which is responsible for
the formation of new blood vessels and is a requirement
for the sustained growth and proliferation of solid tumors.
Accordingly, the search for inhibitors of this process has become
a leading line of investigation in anticancer research, with the
consequent release of several drugs on the market that have
clearly improved outcomes in patients with different tumor
types and metastatic disease (Marín-Ramos et al., 2015). The
compounds PSV1 (Guerra Dore et al., 2013), SargA (Dias et al.,
2005), BDDE (Qi et al., 2015), GFP08 (Yu et al., 2012), GLP
(Zhang et al., 2006), Fucodiphloroethol G (Li et al., 2011), C10
(Furuno et al., 2011), and BDDPM (Wang B. et al., 2015) also
demonstrated interesting anti-angiogenic activities. For example,
the sulfated polysaccharide, PSV1, inhibited tubulogenesis in
RAEC cells in Matrigel and VEGF secretion (Guerra Dore
et al., 2013); SargA induced a marked dose-dependent inhibition
of capillary networks development (Dias et al., 2005). As to
fucodiphloroethol G, this compound inhibit angiogenesis on
ECV-304 and EA.hy926 cells when induced with VEGF, as well
as the transcriptional factor c-fos and its targets AP-N, MMP-
2, by MAPK, and Akt signaling pathways inhibition (Li et al.,
2011). However, one of the most interesting and promising
compounds is BDDPM, reported to inhibit various biological
processes associated with angiogenesis, including endothelial cell
sprouting, migration, proliferation, and tube formation (Wang
B. et al., 2015). Kinase assays revealed that BDDPM is a
potent selective but multi-target receptor tyrosine kinase (RTKs)
inhibitor (VEGFR, PDGFR, FGFR, and EGFR). However, other
compounds have not only evidenced in vitro activity but also in
vivo as described in the section Preclinical and Clinical Evidence
of Antitumor Activities of Algae-Derived Compounds of the
present review.

Compounds such as laurenditerpenol (Mohammed et al.,
2004), caulerpin (Liu et al., 2009), thyrsiferol (Mahdi et al.,
2011), phlorofucofuroeckol-A (Lee et al., 2012), SQDG (Eitsuka
et al., 2004), and DAEB (Jiao et al., 2009) showed antitumor
activity by activating other intracellular signaling pathways. For
example, laurenditerpenol, thyrsiferol, and caulerpin showed the
capacity to inhibit the transcription factor HIF-1 by blocking
the induction of the oxygen-regulated HIF-1α protein, which
promotes tumor cell adaptation and survival under hypoxic
conditions (Ke and Costa, 2006). Lee et al. (2012) observed that
phlorofucofuroeckol-A, a compound isolated from the edible
brown alga Eisenia bicyclis, is a potent inhibitor of the aldo-keto
reductase family 1 B10 (AKR1B10), a member of the NADPH-
dependent aldo-keto reductase (AKR) superfamily, considered
to be a potential cancer therapeutic target. In the same way, the
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compound SQDG showed a marked inhibition of the telomerase
activity, which is an enzyme that drives the uncontrolled division
and replication of cancer cells (Eitsuka et al., 2004).

Some of the compounds isolated from algae can also be used
as co-adjuvants to improve the efficiency of the drugs currently
used as therapeutics. For instance, the pre-treatment of HepG2
cells with fucoxanthin allowed to improve the therapeutic effect
of cisplatin (Yang et al., 2013). According to Liu et al. (2013),
these effects were associated withNFκB expression inhibition and
an increase in the Bax/Bcl-2 mRNA ratios regulated by NFκB.
Moreover, the decrease of the DNA repair systems regulated by
ERK, p38, and PI3K/AKT seems also be associated with these
effects. Additionally, the conjugation of λ-carrageenan (Zhou
et al., 2006), Cf-PLS (Lins et al., 2009), and porphyran (Wang and
Zhang, 2014) compounds with 5-FU drug enhanced its antitumor
activity. According to previous studies, the conjugation of these
compounds with 5-FU increased the antitumor activities of the

drug and mitigated the immunocompetence damage induced by
5-FU (Zhou et al., 2006; Lins et al., 2009; Wang and Zhang,
2014).

Many of the studies discussed above have identified
compounds, such as polysaccharides, polyphenols, carotenoids,
alkaloids, terpenes and others, that mediate specific inhibitory
activity on a number of key cellular processes, including
apoptosis pathways, angiogenesis, migration and invasion
processes, in different in vitromodels revealing their potential use
as anticancer drugs (Figure 5).

Preclinical and Clinical Evidence of
Antitumor Activities of Algae-Derived
Compounds
Despite the antitumor activities of algae-derived compounds
have majorly been described on in vitro human tumor models,

FIGURE 5 | Overview of the antitumor/cytotoxic compounds isolated from algae, biological targets and intracellular signaling pathways activated.
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there are several studies in preclinical and clinical trials
demonstrating the potential of these compounds as antitumor
and/or co-adjuvants drugs with capacity to act in distinct
intracellular signaling pathways.

Among the chemical structures derived from algae, the
highest number of in vivo studies were conducted with sulfated
polysaccharides, revealing their potential to be used in antitumor
therapies. For instance, the sulfated polysaccharides H3-a1
(Wang et al., 2010) and DAEB (Jiao et al., 2009) revealed
antitumor activity by immune system enhancement, through the
increase of the tumor necrosis factor-alpha (TNF-α) and ROS
levels and by the activation of peritoneal macrophages leading to
the secretion of TNF-α and NO. In addition, when administrated
in tumor-bearing BALB/c mice at doses of 20 and 50 mg/Kg,
the sulfated polysaccharide H3-a1 exhibited capacity to suppress
the ascitic sarcoma 180 tumor growth, increasing the lifespan of
the tumor-bearing mice in ∼30–40%. On the other hand, the
treatment with the sulfated polysaccharide DAEB reduced the
thymus and spleen tumor growth in mice promoting the increase
of immune organs weight.

Due to increasing evidences of the antitumor potential
of algae derived sulfated polysaccharides, several studies have
been conducted to deepen their antitumor potential, including
studies addressing the possibility to be used as co-adjuvants
drugs, to increase treatments efficiency and also as an
attempt to reduce undesirable side-effects. As an example, the
sulfated polyssacharide Cf-PLS extracted from the red alga
C. feldmannii exhibited capacity to reduce the tumor growth
on mice transplanted with sarcoma 180 tumor cells and to
increase the leukocytes number in the peritoneal cavity and
neutrophil migration. In addition, its co-administration with
the chemotherapeutic agent 5-FU on tumor-bearing animals
allowed to significantly increase the tumor growth inhibition,
comparing with single administration, also preventing the
immunocompetence hindered by 5-FU (Lins et al., 2009).

As described above, one of the targets for cancer treatment
is angiogenesis. In these studies, several compounds have
exhibited promising activities on in vivo models. The treatment
of mice bearing sarcoma-180 cells with GLP polysaccharide
promoted the reduction of tumor weight around 52% and the
vascular density of the tumor (Zhang et al., 2006). In the
same model, the GFP08 compound decreased the tumor weight
by 68.9% and inhibited the formation of new vessels in the
chicken chorioallantoic membrane assay (ex vivo) (Yu et al.,
2012). By other side, the bromophenol BDDE also exhibited
anti-angiogenesis properties by inhibiting sub-intestinal vessel
formation in zebrafish embryos in vivo (Qi et al., 2015). Similarly
to the bromophenol BDDE, the compound C10 inhibited
markedly the neovascularization induced by VEGF in the mouse
cornea (Furuno et al., 2011). On the other hand, the compound
SargA inhibited the vascularization of Gelfoam skin implants and
exhibited antitumor properties on melanoma cells with doses of
1.5 and 150 µg/animal without inducing deaths or body weight
loss (Dias et al., 2005).

TheMSP sulfated polysaccharidemediated a potent inhibitory
effect on the metastasis of Lewis lung carcinoma reducing
significantly the number of pulmonary metastatic colonies. The
reduction of colony-formation rate was between 70 and 93.6%.

Moreover, compared with cisplatin treatment, this compound
promoted a significant amelioration of alveolar structures
without inducing weight loss (Tang et al., 2006). DDSD (4,
10, and 15 mg/Kg) and Elatol [(oral (3, 10, 30 mg/Kg) or
intraperitoneal (1, 3, 10 mg/Kg)] demonstrated significantly
reduction of the tumor growth without evident toxic effects
(Campos et al., 2012; Velatooru et al., 2016). The lectin ESA
extracted from red alga Eucheuma serra, injected in the tail
vein of BALB/c mice with colon26 cells, promoted a significant
delay of the tumors growth inducing the cells death by apoptosis
as observed in vitro. Additionally the treatment with ESA
compound did not promoted weight loss or animal death
(Fukuda et al., 2006). These studies become more relevant since
the antitumor activities mediated by many of these compounds
are not linked with toxic effects.

Other of the compounds widely studied on in vivo models,
including clinical trials, is the sulfated polyssacharide fucoidan.
This compound exhibits multi-targets acting in different
signaling pathways, including the activation of the intrinsic and
extrinsic pathways of apoptosis, suppression of angiogenesis,
increase immune response, and mobilization of haematopoietic
progenitor cells (Kwak, 2014; Moghadamtousi et al., 2014).
The co-administration of low-molecular –weight fucoidan with
standard drugs in patients with metastatic colorectal cancer
improved the disease control rate suggesting its potential
application as additional therapy (Tsai et al., 2017). In addition
when administrated in conjugation with the standard hormonal
drugs letrozole and tamoxifen, in patients with breast cancer,
revealed to be well tolerated and without influence in the
steady-state plasma concentrations of these drugs (Tocaciu et al.,
2018). Despite de great potential demonstrated by fucoidans on
clinical trials, to be used as suplementary therapy, its use as
anticancer drugs is being studied, since fucoidan preparations
obtained from different sources have induced different anticancer
activities in vivo. These differential responses seem to be
associated with their different structural properties. Therefore,
it will be important to determine the structural characteristics
of fucoidan responsible for the verified in vivo antitumor
activities to ensure its potential use as therapeutic agent (Kwak,
2014).

The marine-derived cyclic depsipeptide kahalalide F was the
first compound found in algae that achieved the phase II of
clinical trials (Murphy et al., 2014). Kahalalide F is a potent
cytotoxic compound produced by the green alga Bryopsis pennata
and found in the mollusk Elysia rufescens (Miguel-Lillo et al.,
2015; Sable et al., 2017). It advanced through five clinical trials
and completed the safety evaluation in phase I in patients
with distinct advanced solid tumors. Nevertheless, kahalalide F
dropped in phase II due to lack of efficacy, short half-life, limited
spectrum of activity and a poor response in patients. However,
due the high potential of this compound as cytotoxic, it inspired
the development of several synthetic analogs to overcome its
limitations increasing its potency and half-life time (Wang B.
et al., 2015).

In the last years nanotechnology has emerged as a promising
solution to be used in drug delivery systems to suppress some of
these limitations, being considered as one of the next-generation
platform for cancer therapy (Sun et al., 2014; Xin et al., 2017).
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Therefore the production of nano-formulations of drugs derived
from algae-derived compounds can be an interesting approach
to potentiate anticancer properties. In addition the use of nano-
formulations can also be useful to overcome some limitations
that arise from specific characteristics of each compound, such as
nonspecific biodistribution, low water solubility, lack of targeting
capability, systemic toxicity, weak therapeutic effect, and limited
bioavailability (Sun et al., 2014; Blanco et al., 2015). For instance
one of the most promising compounds isolated from algae with
interesting antitumor proprieties is fucoxanthin. However, the
poor solubility, chemical instability, and low bioavailability of
this carotenoid limit its use in cancer therapeutics. To overcome
these drawbacks several approaches have been assessed such
as the inclusion of fucoxanthin in nano-emulsions (Huang
et al., 2017), nano-suspensions (Muthuirulappan and Francis,
2013) and nano-gels (Ravi and Baskaran, 2015). However as
described by Bajpai et al. (2018) for the microalgae, the published
data on nano-formulations using compounds derived from
macroalgae is also scarce suggesting a new area to be explored
that can potentiate the capacity of these compounds in cancer
therapeutics.

According to the interesting activities mediated by algae-
derived compounds, it is expected that in the next few years
some of them may reach the clinical trials stages or inspire the
development of new compounds allowing their translation into
clinically useful drugs in the future. Moreover, the use of some
those compounds as co-adjuvant in pre-existent therapeutics
regimes appears to be a valid approach to improve the therapeutic
effects of the antitumor drugs and decrease their side-effects.

The Therapeutic Potential of
Sphaerococcus coronopifolius

Compounds—Case Study
Sphaerococcus coronopifolius is a red alga belonging to the
Rhodophyta phylum, which is narrow, compressed, two-edged,
cartilaginous, scarlet fronds and main axes that are dark
brownish-red. The habitat of this species is rarely on rocks in
the lower littoral, but it is common in the shallow sublittoral
to a 15m depth. They are distributed in the East Atlantic
(Ireland and Britain to Canary Islands) and Mediterranean and
Black Seas (Guiry and Guiry, 2015). Since its first chemical
analysis in 1976, S. coronopifolius has demonstrated to be
an interesting source of brominated cyclic diterpenes, most
of them containing one or two bromine atoms (Rodrigues
et al., 2015). Although more than 40 compounds have been
isolated and described from S. coronopifolius, in the last four
decades, few studies characterized their biological activities.
According to previous studies, some of the compounds isolated
evidenced great biological activities, including antifouling
(Piazza et al., 2011), antimalarial (Etahiri et al., 2001) and
antimicrobial (Etahiri et al., 2001; Smyrniotopoulos et al.,
2010b,c; Rodrigues et al., 2015). Another interesting bioactivity
exhibited by these compounds is their antitumor potential.
Several compounds revealed interesting cytotoxic activities in
different in vitro models (Table 2). For example, 14R-Hydroxy-
13,14-dihydro-sphaerococcenol-A decreased significantly the

viability of NSCLC-N6-L16 and A549 human lung cancer cell
lines with an IC50 of 5 and 4µg/mL, respectively. Moreover,
spirosphaerol and corfusphaeroxide showed moderate cytotoxic
activity against the malignant cell lines A549, Hs683 and MCF-
7. Smyrniotopoulos et al. (2010a) isolated several metabolites
and evaluated their cytotoxic activity toward four human
apoptosis-resistant (U373, A549, SK-MEL-28, OE21) and two
human apoptosis-sensitive (PC-3, LoVo) cancer cell lines with
IC50 values ranging from 3 to 100µM. In a study performed
by Rodrigues et al. (2015), the compound Sphaerococcenol
A exhibited the highest anti-proliferative activity on HepG2
cells with an IC50 of 42.87µM, being more potent than
cisplatin (75.41µM). Although some compounds isolated
from Sphaerococcus coronopifolius have exhibited interesting
biological activities, its potential remains understudied since the
intracellular mechanisms associated with the observed effects
are yet uncovered. S. coronopifolius is therefore a clearly
example of the potential of algae as source of cytotoxic
compounds, still under explored, suggesting that the potential
of algae as source of compounds for the development of
new antitumor drugs is probably much higher than previously
thought.

CONCLUSIONS AND FINAL REMARKS

Over the last several decades, marine organisms revealed to be
an interesting source of both pre-existing and unrecognized
compounds with the potential for providing sustainable
economic and human benefits. Many of these compounds
demonstrated great potential for therapeutic applications,
exhibiting specific and potent activities against different diseases,
including cancer. Their potential as a source of antitumor
drugs has been proven by the current pipeline. Six of nine
drugs from marine origin currently in the market are used
in cancer treatment, and several compounds originated or
derived from marine organisms are undergoing clinical trials
with indications for oncologic therapeutics. However, the
number of compounds in the market or in clinical trials
is very low compared with the total number of isolated
compounds with antitumor potential. This is mainly due to the
different constraints between discovery and commercialization
such as the discontinuation of “candidates” in clinical trials
or preclinical tests due to difficulties on harvesting the
organism and on the isolation and purification procedures,
low yields, insufficient investment by pharmaceutical companies,
environmental policies, high toxicity and low efficiency
of the active compounds. Nevertheless, considering the
approved marine drugs, it is also possible to observe that
six of them were approved in the last 10 years. This fact is
probably directly associated with the development of high-
throughput screening technologies that allowed faster and
more accurate results. Thus, it is expected that the number of
antitumor drugs of marine origin will increase in the next few
years.

Among the marine organisms, many crude extracts, enriched
fractions and compounds obtained from algae displayed
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TABLE 2 | Cytotoxic compounds isolated from Sphaerococcus coronopifolius.

Compound name First

report

Locale of

collection

Chemical structure Cytotoxic activities (IC50 in µM or µg/mL) References

Sphaerococcenol A 1976 La Escala, Spain U373 (IC50:3.2µM)*; A549 (IC50:3.7µM);

SK-MEL-28 (IC50:5.2µM); OE21 (IC50:3µM);

PC-3 (IC50:3.7µM); LoVo (IC50:2.8µM);

HepG2 (IC50:42.87µM)

Fenical et al., 1976;

Smyrniotopoulos et al.,

2010a; Rodrigues

et al., 2015

Bromosphaerol 1976 Italy U373 (IC50:30µM); A549 (IC50:35µM);

SK-MEL-28 (IC50:34µM); OE21 (IC50:28µM);

PC-3 (IC50:30µM); LoVo (IC50:23µM); HepG2

(IC50:203.33µM)

Fattorusso et al., 1976;

Smyrniotopoulos et al.,

2010a; Rodrigues

et al., 2015

Bromosphaerodiol 1977 Portopalo, Sicily,

Italy

U373 (IC50:22µM); A549 (IC50:24µM);

SK-MEL-28 (IC50:31µM); OE21 (IC50:15µM);

PC-3 (IC50:26µM); LoVo (IC50:20µM)

Smyrniotopoulos et al.,

2010a

12S-Hydroxy-

bromosphaerol

1982 Bay of Salerno,

Italy

HepG2 (IC50:291.42µM); U373 (IC50:16µM);

A549 (IC50:19µM), SK-MEL-28 (IC50:22µM);

OE21 (IC50:19µM); PC-3 (IC50:12µM); LoVo

(IC50:9µM)

Cafieri et al., 1982;

Smyrniotopoulos et al.,

2010a; Rodrigues

et al., 2015

1S-Hydroxy-1,2-

dihydro-bromosphaerol

1982 Bay of Salerno,

Italy

U373 (IC50:25µM); A549 (IC50:28.6µM);

OE21 (IC50:20µM); SK-MEL-28 (IC50:26µM);

PC-3 (IC50: 25µM); LoVo (IC50: 23µM)

Cafieri et al., 1982;

Smyrniotopoulos et al.,

2010a

Bromotetrasphaerol 1986 Bay of Napoles,

Massalubrense,

Italy

U373 (IC50:34µM); A549 (IC50:38µM); OE21

(IC50:33µM); SK-MEL-28 (IC50:43µM); PC-3

(IC50:43µM); LoVo (IC50:56µM)

Cafieri et al., 1986;

Smyrniotopoulos et al.,

2010a

12R-Hydroxy-

bromosphaerol

1987 Bay of Naples,

Massalubrense,

Italy

HepG2 (IC50:104.83µM); U373 (IC50:25µM);

A549 (IC50:28µM); OE21 (IC50:25µM);

SK-MEL-28 (IC50:29); PC-3 (IC50: 26µM);

LoVo (IC50: 26µM)

Cafieri et al., 1987;

Smyrniotopoulos et al.,

2010a; Rodrigues

et al., 2015

Alloaromadendrene 1988 Plomin, Croatia U373 (IC50:71µM); A549 (IC50:79µM); OE21

(IC50:83µM); PC-3 (IC50: 35µM); LoVo (IC50:

63µM)

de Rosa et al., 1988;

Smyrniotopoulos et al.,

2010a

1S-Hydroperoxy-

12R-hydroxy-

bromosphaerol-B

2008 Palaiokastritsa

bay, Corfu

Island, Greece

NSCLC-N6-L16 (IC50: 9.5µg/mL); A549

(IC50:12µg/mL); U373 (IC50:32µM); A549

(IC50:40µM); OE21 (IC50:25µM); SK-MEL-28

(IC50:31µM); PC-3 (IC50: 30µM); LoVo (IC50:

22µM)

Smyrniotopoulos et al.,

2008, 2010a

(Continued)
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TABLE 2 | Continued

Compound name First

report

Locale of

collection

Chemical structure Cytotoxic activities (IC50 in µM or µg/mL) References

1S-Hydroperoxy-12S-

hydroxy-

bromosphaerol-B

2008 Palaiokastritsa

bay, Corfu

Island, Greece

NSCLC-N6-L16 (IC50: 6µg/mL); A549

(IC50:5µg/mL); U373 (IC50:22µM); A549

(IC50:26µM); OE21 (IC50:27µM); SK-MEL-28

(IC50:28µM); PC-3 (IC50: 28µM); LoVo (IC50:

28µM)

Smyrniotopoulos et al.,

2008, 2010a

14R-Hydroxy-13,14-

dihydro-

sphaerococcenol-A

2008 Palaiokastritsa

bay, Corfu

Island, Greece

NSCLC-N6-L16 (IC50:5µg/mL); A549 (IC50:

4µg/mL); U373 (IC50:7.2µM); A549

(IC50:18µM); OE21 (IC50:8.4µM); SK-MEL-28

(IC50:21µM); PC-3 (IC50: 8.1µM); LoVo (IC50:

5.3µM)

Smyrniotopoulos et al.,

2008, 2010a

4R-Hydroxy-1-deoxy-

bromotetrasphaerol

2010 Palaiokastritsa

bay, Corfu

Island, Greece

U373 (IC50:75µM); A549 (IC50:63µM); OE21

(IC50:64µM); PC-3 (IC50: 43µM); LoVo (IC50:

56µM)

Smyrniotopoulos et al.,

2010a,c

Coronone 2010 Palaiokastritsa

bay, Corfu

Island, Greece

U373 (IC50:31µM); A549 (IC50:42µM);

SK-MEL-28 (IC50:38µM); OE21 (IC50:30µM);

PC-3 (IC50:30µM); LoVo (IC50:28µM)

Smyrniotopoulos et al.,

2010a

Sphaerollane-I 2009 Palaiokastritsa

bay, Corfu

Island, Greece

U373 (IC50:20µM); A549 (IC50:44µM);

SK-MEL-28 (IC50:57µM); OE21 (IC50:34µM);

PC-3 (IC50:34µM); LoVo (IC50:23µM)

Smyrniotopoulos et al.,

2009, 2010a

Sphaerostanol 2010 Palaiokastritsa

bay, Corfu

Island, Greece

U373 (IC50:85µM); A549 (IC50:97µM);

SK-MEL-28 (IC50:96µM); OE21 (IC50:60µM);

PC-3 (IC50:74µM); LoVo (IC50:64µM)

Smyrniotopoulos et al.,

2010a

10R-Hydroxy-

bromocorodienol

2010 Palaiokastritsa

bay, Corfu

Island, Greece

U373 (IC50:60µM); A549 (IC50:64µM);

SK-MEL-28 (IC50:62µM); OE21 (IC50:33µM);

PC-3 (IC50:48µM); LoVo (IC50:24µM)

Smyrniotopoulos et al.,

2010a

Sphaerodactylomelol 2015 Berlenga Nature

Reserve,

Peniche,

Portugal

Inhibition of cell proliferation (IC50: 280µM);

Cytotoxicity (IC50: 720 µM) on HepG2 cells

Rodrigues et al., 2015

Spirosphaerol 2015 Liapades Bay,

Corfu, Greece

A549 (IC50:69µM); Hs683 (IC50:56µM);

MCF-7 (IC50:67µM); B16F10 (IC50:65µM)

Smyrniotopoulos et al.,

2015

(Continued)
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TABLE 2 | Continued

Compound name First

report

Locale of

collection

Chemical structure Cytotoxic activities (IC50 in µM or µg/mL) References

Anthrasphaerol 2015 Liapades Bay,

Corfu, Greece

A549 (IC50:90µM); Hs683 (IC50:93µM);

MCF-7 (IC50:85µM); B16F10 (IC50:63µM)

Smyrniotopoulos et al.,

2015

Corfusphaeroxide 2015 Liapades Bay,

Corfu, Greece

A549 (IC50:67µM); Hs683 (IC50:63µM);

MCF-7 (IC50:60µM); U373 (IC50:81µM);

SK-MEL-28 (IC50:75µM); B16F10

(IC50:46µM)

Smyrniotopoulos et al.,

2015

* Induce cytostatic activity on U373 cells inhibiting cell entrance into mitosis (3µM). For the others compounds the possible intracellular signaling pathways were not characterized.

interesting antitumor potential along the years. These effects
are mediated by compounds from different chemical classes
including polysaccharides, terpenoids, phenolic compounds,
glicoproteins, sterols, carotenoids, alkaloids, sulfolipids,
chlorophylls, and fatty acids. Despite the high number of
reports evidencing the cytotoxic and cytostatic properties of
algae-derived compounds, few studies have characterized the
intracellular signaling pathways underlying their effects. This
view is clearly evident with Sphaerococcus coronopifolius, since
some of its bioactive compounds exhibited interesting cytotoxic
activities on different cell lines, but the intracellular signaling
pathways involved in its activities have still not been deeply
characterized. Thus, there is a need to design and perform
studies to evaluate these type of molecules in more complex
biological systems, including in vivo models. Another important
tool that still remain unexplored is the use of 3D chemical
structural modeling techniques to find new biochemical targets
for the algae-derived compounds. Moreover, the idea of using
algae-derived compounds as co-adjuvants in therapeutics should
also be evaluated.

One of the major challenges in this area is the sustainable
production of these compounds to “supply” sufficient quantity
for preclinical, clinical and future commercialization,
since the algae’s slow growth and seasonality together
with low extraction yields are significant limitations.
In line with this requirement, total chemical synthesis
can not only guarantee the sustainable and continuous
production of the bioactive molecules but also improve or
enhance their functional zones. Aquaculture can also be
an interesting approach for the continuous supply of algae.
However, more studies are needed to understand if algae
continue to produce the desired compounds under artificial
conditions.

The applications of new techniques such as nanotechnology to
develop new nano-formulations can potentiate the development
of anticancer drugs from algae origin leading to the suppression
of limitations and improve the capabilities of some algae-
derived compounds. However further technologies are needed
to validate the improvement of their antitumor activities
when applied in nanoformulations. According with this search

this area was not yet explored. By other side, the creation/
establishment of interdisciplinary teams (including for example
chemists, pharmaceuticals, biotechnologists and biologists) can
contribute a faster bioscreening process, from the isolation and
identification of algae-derived compounds to full validation
of their antitumor capabilities. The studies gathered in the
present review clearly demonstrate that algae have great
potential as a source of antitumor compounds with the
capacity to hamper different key pathway targets involved in
cancer development including cell cycle regulation, apoptosis,
angiogenesis, migration and invasion processes. Even though,
to date algae have not been fully exploited, it is expected
that in a few years, their translation to clinical use can be a
reality.
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