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Imagery of facial expressions in Autism Spectrum Disorder (ASD) is likely impaired
but has been very difficult to capture at a neurophysiological level. We developed an
approach that allowed to directly link observation of emotional expressions and imagery
in ASD, and to derive biomarkers that are able to classify abnormal imagery in ASD.
To provide a handle between perception and action imagery cycles it is important
to use visual stimuli exploring the dynamical nature of emotion representation. We
conducted a case-control study providing a link between both visualization and mental
imagery of dynamic facial expressions and investigated source responses to pure face-
expression contrasts. We were able to replicate the same highly group discriminative
neural signatures during action observation (dynamical face expressions) and imagery,
in the precuneus. Larger activation in regions involved in imagery for the ASD group
suggests that this effect is compensatory. We conducted a machine learning procedure
to automatically identify these group differences, based on the EEG activity during
mental imagery of facial expressions. We compared two classifiers and achieved an
accuracy of 81% using 15 features (both linear and non-linear) of the signal from
theta, high-beta and gamma bands extracted from right-parietal locations (matching the
precuneus region), further confirming the findings regarding standard statistical analysis.
This robust classification of signals resulting from imagery of dynamical expressions
in ASD is surprising because it far and significantly exceeds the good classification
already achieved with observation of neutral face expressions (74%). This novel neural
correlate of emotional imagery in autism could potentially serve as a clinical interventional
target for studies designed to improve facial expression recognition, or at least as an
intervention biomarker.

Keywords: emotional facial expression, mental imagery, EEG biomarker, machine learning, autism spectrum
disorder, dynamic expressions
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INTRODUCTION

Faces represent a critical source of visual information for social
perception, conveying relevant information about identity and
emotional states of others (Kanwisher and Yovel, 2006). Since
the first months of life, children are capable of understanding
and processing facial cues, like FEs (Field et al., 1982). The
ability to interpret these social signs represents an essential
skill in child development and, therefore, a basic condition for
the development of the ability to engage in successful social
interactions early in life (Bayless et al., 2011).

ASD is a neurodevelopmental disorder characterized by
deficits in the social domain which represent hallmark early
characteristics (Sperdin et al., 2018). Even for simple visualization
of FE, the literature is somewhat inconsistent: while some studies
show group differences both in behavioral performance and
neural responses, other studies show no identifiable deficits at all
(for a compreensive review, see Monteiro et al., 2017).

Importantly, no previous study has considered the role of MI
in the FE processing domain, possibly because of the challenges
in identifying imagery signatures that mimic neural responses
during simple observation. The perceptual strength and spatial
frequency of the FE stimuli seem to be relevant to yield ASD
group differences during simple visual presentation (Vlamings
et al., 2010; Luckhardt et al., 2017), but the large majority of visual
perception studies use static frame stimuli, lacking the dynamic
characteristics of naturalistic FE (Monteiro et al., 2017). Those
dynamics have been shown to play a crucial role on the perception
of the respective FE and its emotional valence (Krumhuber et al.,
2013) possibly because they allow to generate perception and
action imagery cycles.

Another limiting aspect is the notion that specific processing
experimental contrasts are needed to isolate effects of interest.
For example, the use of blank screen baselines, before the
presentation of faces, generates a non-specific contrast of
face with expression against a baseline without any stimulus.
Therefore, those responses comprise both the processing of low-
level core aspects of the face and the specific processing of the
FE. In this EEG study we used dynamic FE morphing in a virtual
avatar and used its neutral expression as baseline, to ensure a
FE specific contrast. This way, the neutral FE is already present
in the baseline. We believe this stringent contrast provides a
response specific to the processing of the FE aspects, isolating
it from the simple response to the face static itself. A systematic
review of EEG studies regarding FE processing in ASD conducted
by Monteiro et al. (2017) has already identified the need for
experimental paradigms targeting the dynamic characteristics of
FEs. All the studies identified by that review applied non-specific
experimental contrasts, using blank screens as baseline of their
experimental conditions. To the best of our knowledge, our study

Abbreviations: ASD, autism spectrum disorder; ERP, event-related potential; FE,
facial expression; fMRI, functional magnetic resonance imaging; IQ, intelligence
quotient; MI, mental imagery; sLORETA, standardized low resolution brain
electromagnetic tomography; SnPM, statistical non-parametric mapping; SVM,
support vector machine; TD, typically developed; VEP, visual evoked potential;
WiSARD, wilkes, stonham and aleksander recognition device; WNN, weightless
neural network

is the first one to combine a task-specific contrast for dynamic FE
stimuli.

MI is defined as the simulation or re-creation of perceptual
experience (Kosslyn et al., 2001; Pearson et al., 2013). Most
of these mental representations are extracted from memory
and allow one to mentally revisit the original stimuli or their
combination (Pearson et al., 2015). Disturbed MI has been
postulated to be present in several psychiatric disorders, from
post-traumatic stress disorder (Lanius et al., 2002) to socio-
emotional disorders like social phobia or depression (Hirsch
et al., 2006). In the specific case of ASD, MI is likely to
be impaired, since one of the key deficits included in the
ASD diagnosis, in the form of absence or impairment of
‘pretend play’ (Baron-Cohen et al., 2001; American Psychiatric
Association [APA], 2013), which requires preserved action-
perception imagery cycles. This deficit is particularly interesting
since it spans into the social, imitation and repetitive behavior
dimensions (Crespi et al., 2016). Therefore, the study of the
neural correlates of MI in ASD gains relevance since it might
lead to the understanding of the neural correlates of its
core neurodevelopmental limitation and further help into the
development of successful therapies.

Here, by providing a critical link between visual observation
and subsequent replay imagery, we bound MI to the FE of
an avatar, in a task where the participant mentally replays the
previously observed dynamic image of the avatar performing
a happy or a sad FE. We believe this link between visual
observation and MI of FE in others addresses both the deficits
of FE processing, emotion identification and theory of mind,
due to the lack of thinking from the perspective of the other
present in ASD. Therefore, the concept of visually imagining
others smiling recruits the faculties of expression processing and
pretend play, and our experimental design allowed to study such
imagery process in ASD, and to use two distinct classification
approaches, based on linear and non-linear features describing
brain signals, to differentiate between the disease state and
normal cognition. Non-linear features consist of quantitative
measures that represent in a relatively simple way complex
dynamic characteristics of the EEG signals, which the traditional
linear methods (amplitude and frequency, for example) are
not able to capture. They have been adopted more and more
frequently in EEG analysis in general and ASD biomarker
research in particular (Bosl et al., 2011, 2017).

MATERIALS AND METHODS

Participants
Seventeen male teenagers with the diagnosis of idiopathic ASD
were recruited from the Unit of Neurodevelopment and Autism
from the Pediatrics Unit from the University Hospital of Coimbra
and from Portuguese ASD patient associations (Coimbra and
Viseu). Since ASD is a disorder far more prevalent in male
individuals, with a ratio of four males to every female, and there
is accumulated evidence for sex differences in brain connectivity
(Alaerts et al., 2016; Irimia et al., 2017; Fu et al., 2018), only
male participants were included in the study. The diagnosis of

Frontiers in Neuroscience | www.frontiersin.org 2 November 2018 | Volume 12 | Article 791

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00791 October 31, 2018 Time: 16:49 # 3

Simões et al. Autism Biomarker of Facial Imagery

ASD was performed based on the Autism Diagnostic Observation
Schedule, the Autism Diagnostic Interview – Revisited and the
Diagnostic and Statistical Manual of Mental Disorders – 5th
edition criteria, confirmed by an expert multidisciplinary team.
Seventeen healthy TD male controls were recruited from our
local database of volunteers. Participants from both groups
had their IQ assessed by the Wechsler Adult Intelligence
Scale for participants older than 16 years old, and by the
Wechsler Intelligence Scale for Children for younger participants.
Groups were matched by chronological age (ASD mean age and
standard error (SE): 16.4 ± 0.6 years; TD mean age and SE:
15.5 ± 0.6 years) and performance IQ (ASD mean score and SE:
99.8± 3.0; TD mean score and SE: 106.2± 4.2). Additional group
characterization can be found in Table 1.

Written informed consent was obtained from the parents
of the participants or, when appropriate, the participants
themselves. The study was approved by the ethics committee
from Faculty of Medicine from the University of Coimbra and
was conducted in accordance with the declaration of Helsinki.

Experimental Tasks
The experiment is divided in two tasks: one of visual stimulation
and one of MI requiring “mental replay” of previously observed
FE, with the goal to identify similar neural signatures. The
visual stimulation task and overall experiment were developed in
WorldViz Vizard 5 VR Toolkit (development edition) using the
male002 virtual avatar from the Complete Characters HD pack
and its FE poses. The total duration of the experiment is about
50 min, including 15 min for scalp cleaning and placement of the
EEG cap, 30 min for the experimental tasks and 5 min to clean up
at the end of the session.

Visual Stimulation Task
This task consists in observing a virtual avatar performing
either sad or happy FEs (see Figure 1A), which represent two
antagonistic expressions from the six core expressions (Ekman
and Friesen, 1971). The FEs were verified in accordance with the
action units defined in the Facial Action Coding System (FACS)
(Ekman and Friesen, 1978). The happy expression comprises
action units 6 (cheek raiser), 12 (lip corner puller) and 25 (lip
part), while the sad FE uses action units 1 (inner brow raiser), 2
(outer brow raiser), 4 (brow depressor), 15 (lip corner depressor),
and 17 (chin raiser).

Each trial is composed by a morphing period of 250 ms where
the expression of the avatar gradually changes from neutral to the

TABLE 1 | Group characterization: mean and standard error of the mean
(between brackets) of age, full scale IQ (FSIQ), verbal IQ (VIQ) and performance IQ
(PIQ) (∗p > 0.05).

ASD TD

N 17 17

Age 16.4 (0.6) 15.5 (0.6) ∗

FSIQ 92.2 (3.1) 109.2 (4.5)

VIQ 88.1 (4.2) 110.3 (4.2)

PIQ 99.8 (3.0) 106.2 (4.2) ∗

target expression, followed by a static period where the virtual
avatar is displaying the target FE for 1000 ms and a final period
where the avatar morphs back to the neutral expression, with the
duration of 250 ms (see Figure 1B). Thus, each stimulus has a
duration of 1.5 s and the inter-trial interval consisted in 1s plus
a jitter of 500 ms. The neutral face of the avatar is always present
during the baseline/inter-trial interval, which creates a stringent
contrast with the FE since the stimuli does not come from no
stimulus/blank screen, but from the neutral face, as naturally
happens in real life.

This part of the experiment is composed by two blocks of 120
randomized trials (60 of each FE), for a total of 240 trials. The
participants were asked to fixate the face of the avatar in the
middle of the eyes and observe the expressions. A rest period
was included between blocks to ensure focus and reduce fatigue
throughout the experiment. A total of 120 trials per condition
were recorded.

Mental Imagery Task
The second part of the experiment consists of a MI paradigm. In
this task, the participant is asked to mentally imagine the avatar
performing the same types of FEs used in the stimulation part
(used to facilitate mental replay). The computer screen shows
the neutral face of the avatar during the whole period, except
for the instruction, when it performs the FE the participant is
asked to imagine. Then, after a cue, the participant imagines the
avatar performing the FE, in a period of 4 s, returning to no
imagery after that period. The (c) section of Figure 1 details the
structure of the trials. This task is composed by two blocks of 40
randomized trials (20 for each expression), achieving a total of 80
trials for the task.

Experimental Setup and Data Recording
The experiment was conducted in a 22-inch LCD Monitor (frame
rate of 60 Hz, 1680× 1050 pixel resolution). The participants sat
about 60 cm away from the screen (distance measured from the
eyes to the center of the screen) and were asked to keep their eyes
open and fixed on the face of the avatar. EEG data were recorded
using a 64 channel actiCHamp system from Brain Products.

The scalp of the participants was first cleaned using abrasive
gel and then the 64 channel actiCAP cap was placed on their head.
Data were recorded from 64 Ag/AgCl active electrodes (Brain
Products), placed across the head according to the international
10–10 standard system. The ground electrode was placed at
AFz position and the reference electrode at the right ear. The
impedance of the electrodes was kept under 10 k� during the
recordings. The electrodes were connected directly to the Brain
Products actiCHamp amplifier and sampled at 1000 Hz. EEG
data were recorded using the Brain Products Recorder software.
For each paradigm, the individuals were informed about the
respective task. The total duration of the experimental procedure
(preparation+ 2 tasks) was around 50 min.

EEG Preprocessing
We used MathWorks Matlab, 2017b and the EEGLAB
toolbox v14.1.1 (Delorme and Makeig, 2004) for EEG signal
preprocessing and analysis. EEG data were filtered with a finite
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FIGURE 1 | Description of the tasks, both regarding structure, and stimuli used. (A) Base stimuli used for each expression at their expression endpoint, comprising
the neutral, happy, and sad facial expressions. (B) Structure of the visual stimulation paradigm: each expression lasted 1.5 s, divided by facial expression morphing
(250 ms), static facial expression (1 s) and facial expression unmorphing (250 ms). (C) Structure of the mental imagery paradigm: the instruction is composed by the
avatar performing the expression to be imagined, as presented in the visual stimulation task, and to facilitate mental replay. After that, an interval of 1.5 s is left for
preparation, and an auditory stimulus (beep) cues the start of the mental imagery process, for 4 s, whereas another beep indicates the end of the mental imagery of
the expression, and the start of the neutral period.

impulse response bandpass filter of frequencies 1 and 100 Hz and
notch filtered with an infinite impulse response filter between
47.5 and 52.5 Hz, as implemented in the EEGLAB toolbox. Bad
channels were removed and data were re-referenced for the
average reference. Epochs were created locked to the stimulus
onsets (please refer to the task-specific analysis for details about
the epoch lengths). Bad epochs were removed based on the
EEGLAB semi-automatic procedures for extreme values and
improbable signal segments. Independent Components Analysis
(ICA) was then run on the data using EEGLAB implementation
of infomax algorithm (Bell and Sejnowski, 1995). Components
were used in order to extract noisy components, such as
blinks, muscular activity or electrical interference. Components
presenting such artifacts were removed and the weights were
projected back to the data (Makeig et al., 2004). Bad channels
previously removed were then interpolated. Further analysis of
EEG data was conducted over these preprocessed signals.

Experimental Design and Statistical
Analysis
The analysis focused on identifying group differences for both
visualization and MI of the FEs. We specify the different analyses
performed for each task separately.

Visual Stimulation Task Analysis
The visual stimulation epochs comprise 1 s, starting 100 ms prior
to the stimuli onset (baseline) and go to 900 ms after the start of
the expression morphing (during the first 250 ms of the epoch,
the face of the avatar is continuously morphing the FE). ERPs
were computed by subtracting each epoch by the mean of its
baseline (from 100 ms pre-stimulus to 0) and then averaging all
epochs corresponding to the same stimulus condition.

Source analysis were conducted using the sLORETA toolbox
(Pascual-Marqui, 2002). The procedure included exporting
from EEGLAB the preprocessed single-trial epochs, importing
them into sLORETA software, averaging them (per subject
and expression) and converting to the source space. Each
participant electrode locations were co-registered with the
realistic anatomical MR model using landmarks and standard
electrode positions. The source space representation consists
of a current source density (CSD) map computed with the
sLORETA algorithm, a standardized discrete three-dimensional
(3D) distributed linear weighted minimum norm inverse
solution that takes several neurophysiologic and anatomical
constraints into account and has been shown to yield depth-
compensated zero localization error inverse solutions (Pascual-
Marqui, 1999; Pascual-Marqui et al., 2002). sLORETA employs
the current density estimate given by the minimum norm
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solution, and localization inference is based on standardized
values of the current density estimates (Pascual-Marqui, 2002)
and has been shown to outperform its competitor algorithms
in terms of localization error and ghost sources (Grech et al.,
2008).

For each expression and each group, we identified the peaks
of the first and second ERP component for each electrode,
and extracted the latencies for both peaks across the scalp. We
performed the source localization of the mean activity of around
those two ERP components (±125 ms, see Supplementary
Figure S1).

We conducted a voxel-by-voxel between-group comparison
of the mean current source density distribution in those time
windows around the ERP peaks, using the sLORETA software
implementation of SnPM, employing a log-F-ratio statistic for
independent groups (for a similar procedure see, for example,
Velikova et al., 2011). The SnPM method corrects for multiple
comparisons without requiring Gaussian assumptions (Nichols
and Holmes, 2001).

Mental Imagery Task Analysis
For the MI task, we also performed ERP analysis locked to the
sound trigger. For the longer imagery blocks, we performed
a spectral source analysis at more distant time windows
and investigated the statistical classification of putative neural
biomarkers.

Mental imagery ERP source analysis
For the imagery epochs, we investigated the ERP sources
originated by the happy and sad imagery triggers. The participant
receives the instruction beforehand of which expression to
imagine. We segmented the trials from 100 ms prior to the cue
beep and up to 900 ms after it, and subtracted them by the mean
of their baseline (−100 ms to 0).

Similarly to the visual stimulation ERPs, for the source analysis
we looked for the mean global field power in the window of
0–250 ms. The pipeline was analogous to the VEP, as well as the
statistical framework.

Mental imagery spectral source analysis
For the MI periods, we investigated frequency bands of the
signal during the time window of 500–3500 ms, avoiding the
contribution of the beep ERP and covering the main period
of MI, because MI processes are best captured using time-
frequency analysis (Horki et al., 2014). The frequency bands
of interest were θ, α, β, and δ, as defined in the sLORETA
toolbox. This analysis of frequency bands of induced activity
comprised the following steps: we export the single trials from
EEGLAB and imported them to the sLORETA toolbox. Then
we compute the cross-spectrum of each trial and average them
per subject and condition. The average cross-spectrum is used to
compute the source current density maps used in the second-level
analysis.

For both ERP and frequency analysis we conducted voxel-
by-voxel between-group comparisons of the current density
distribution for each expression, in a way analogous to the VEP
procedure.

Mental imagery biomarkers to classify groups
To explore the MI processes through the EEG data, we defined
several features from the time, frequency, and non-linear domain.
We then performed a ranking analysis and selected the best
features to train a classifier to discriminate participants between
groups. Features were extracted for each channel and trial by trial
and averaged across all imagery trials and electrode clusters.

Feature extraction. We follow the procedure of Simoes et al.
(2015) for extracting features representative of different EEG
characteristics.

Time/frequency domain. For the time and frequency domain,
we selected the signal envelope (env), Teager energy operator
(teag) and instantaneous power (pow) as features. A detailed
description of these features is present in Supplementary
Table S1.

Non-linear domain. To extract signal complexity measures, the
EEG signal was transformed to its phase-space. The phase-space
is a reconstruction of the chaotic dynamics of the system and,
as was proven by Takens (1981), it keeps some of the relevant
properties of the state space representation of the system, such
as the topographic properties, Lyaponov exponents and the
Kolmogorov-Sinai Entropy. Every possible state of the system can
be represented by a point in the multidimensional phase space
and time evolution of the system creates a trajectory in the phase
space (Kliková and Raidl, 2011). We used the time delay method
to reconstruct the phase-space of the signal. Given a time series of
a scalar variable it is possible to construct a vector X(ti), i=1, ..., N
in phase-space in time ti as follows:

X (ti) = [x (ti) , x (ti + τ) , . . . , x (ti + (m− 1) τ)] , (1)

i = 1, . . . , N − (m− 1) τ

where τ is time delay, m is the dimension of reconstructed space
and M=N−(m−1)τ is the number of points (states) in the phase
space.

We reconstructed a 2 and 3-dimensional phase-space
associated to the EEG data, and the time delay was considered
to be the mean of the first local minimum from the signal’s
autocorrelation (hereafter defined as lag).

From the non-linear domain we extracted the spatial filling
index (SFI), largest Lyapunov exponent (Lyap), correlation
dimension (CorrDim), approximate entropy (ApEn) and sample
entropy (SpEn) as features. We provide a detailed description of
these features in the Supplementary Table S2.

The features were extracted from 3 time windows in each trial:
baseline [−500 ms to 0 ms pre instruction], emotion imagery
[500–3500 ms after imagery trigger] and neutral [500–3500 ms
after neutral trigger]. For the emotion and neutral time windows,
we used the absolute value for the non-linear features and the
normalized values (subtracted by the same feature extracted from
the baseline) for the time/frequency domain.

Frequency bands. All features were extracted from signals
filtered at different frequency bands. Band-pass Infinite Impulse
Response (IIR) filters were used as implemented in EEGLAB
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toolbox, for the frequency bands: θ [4–8] Hz, α [8–12] Hz, low
β [12–21] Hz, high β [21–30] Hz and γ [30–40] Hz.

Feature selection. In order to reduce the dimensionality of the
feature set, we averaged the features extracted from each electrode
in spatial clusters, as defined in Supplementary Figure S2.
The clusters were defined by electrode spatial proximity in
a way that covers the full scalp, keeps symmetry and lobule
divisions (frontal, parietal – subdivided in central and posterior
region, occipital and temporal). We then used the a priori
information provided by the source localization and selected only
the clusters closer to the right precuneus region, namely C1, C2,
C4, and C5.

We ended up with 8 different features× 5 frequency bands× 4
clusters, for a total of 160 different features. We then computed
the statistical discriminative value of each feature between groups
with two sample t-tests, using only the samples from the training
set, and the features were ordered by absolute T value, from the
most important to the least.

Classification. We trained a SVM with a linear kernel, for being
one of the most used classifiers applied to EEG signals (Lotte
et al., 2007) and also a WNN. The WNNs are underused in the
literature but present characteristics that generalize well for noisy
domains, like the EEG (Simões et al., 2018a). We implemented a
variation of the WiSARD combined with a bleaching technique
(França et al., 2014) which has been shown to perform at the
same level as the SVM in distinct fields and presents fast learning
curves, achieving good results even with small datasets of data
(Cardoso et al., 2016).

We trained the classifiers to discriminate the group of the
participant, based on the feature vector extracted from his EEG
data. We divided the participants into train and test sets: 80% of
the cases were randomly chosen for training and the remaining
20% for testing. We repeated the procedure more than 30
times, to avoid overfitting, following the guidelines provided by
Varoquaux et al. (2017) regarding the use of machine learning on
brain imaging data. Feature selection was performed every time
using only training-set data.

To explore the relation between accuracy and the number
of features used, the procedure was conducted starting with
5 features and adding 5 more features up to the total of
features.

We repeated the full classification procedure using the EEG
signal from the neutral part of the MI task, in order to check
if the results were specifically improved during over emotion
expression imagery.

RESULTS

Visual Stimulation Task
This section presents the results of the analysis performed on
the ERP responses to the visual stimulation task (observation of
happy and sad FEs), which was used to identify neural signatures
relevant to validate the imagery task.

ERP Source Analysis Results
The ERPs obtained from the visual stimulation task present two
clear independent components, the first one peaking around
300 ms and the second around 600 ms (Figure 2). Since the
morphing occurs during the first 250 ms, we expect a delay
on the first component, as reported by Graewe et al. (2012).
The topography of the first component matches the well-
known topography of the N170 component, with a negativity
around the right and left parietal-occipital regions, but it appears
delayed in time, as expected by the morphing animation. The
second component has a strong parietal positivity, slightly right
lateralized, especially for the ASD group.

For the source analysis of the visual stimulation task ERPs
we defined time-windows of 250 ms around the two component
peaks of activity in the ERPs. We show the results for the first
and the second ERP component, separately. The mean peak
latencies used for each expression and each group is detailed in
Supplementary Table S3.

The mean current source density of activity in the intervals
around the component peaks showed group differences for
both expressions in the first component, using voxel-by-
voxel independent tests between groups, corrected for multiple
comparisons at the 5% level using the SnPM method (two-tailed).
Both expressions show the group differences right-lateralized
and located at the superior parietal region, in the precuneus
area (Figure 3). As for the second component, only the sad
expression presented statistically significant differences, exactly
in the same superior parietal region, which showed also enhanced
recruitment for the ASD group, in the right hemisphere.

Mental Imagery Task
This section presents the results for the MI task. We analyzed
the ERP for the initial imagery period and the longer MI blocks
through source analysis of the power spectrum and the analysis
of several characteristics of the signal using machine learning
techniques.

Mental Imagery ERP Source Analysis Results
After the sound trigger, an initial ERP can be found
corresponding to processing the beep and starting the imagery
procedure (Figure 4). We defined a time window to target at
the source level, between 0 and 250ms, in order to investigate
specific responses at the source level. The mean current source
density in that interval presented group differences for both
expressions with p < 0.01, using voxel-by-voxel independent
tests between groups, corrected for multiple comparisons using
the SnPM method. Importantly, the same region identified group
differences for both expressions. This was also the same region
that was identified during visual stimulation. Accordingly, the
ASD group presented higher activation in the superior parietal
region (precuneus area – Figure 5).

Mental Imagery Spectral Source Analysis Results
For the longer periods of imagery (500–3500 ms), we conducted
a source analysis of the defined frequency bands of the signal.
A statistical significant result was found for in the imagery of sad
expressions, for the theta band (Figure 6). The ASD group shows
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FIGURE 2 | ERPs for both groups and expressions, extracted from the P4 electrode. Topographic maps for each component are present near the ERP plots.
Orange marks represent the TD group and blue marks the ASD. Topographic maps show the scalp distribution of the ERP amplitudes extracted from 250 ms
windows, centered at the peaks of the components of each expression (refer to Supplementary Table S3 for detailed peak latencies).

again higher recruitment of the very same right precuneus area at
this frequency.

Statistical Classification of Mental Imagery Periods –
Evidence for a Potential Biomarker in ASD
We then tested whether the identified neural signatures of
imagery of FEs could be identified in a data driven manner
using statistical classifiers. The linear SVM and the WiSARD
classifier were able to achieve high test set accuracies (∼77% and
∼81% of accuracy, respectively), with the WiSARD yielding the
best accuracy of 81% with just 15 features (Figure 7). Test set
classification accuracy of the neutral face expression segments of
the signal were far worse, with ∼68% for the SVM and ∼74%
for the WiSARD, suggesting that important group differences
are captured by the features are emotion expression-dependent
(for statistical details see Figure 7). We present also a detailed
exploration of the performance metrics using the top 15 features.
We computed accuracy, specificity, sensitivity/recall, precision
and the F1 score for both classifiers using the MI segments and
the neutral segments.

We checked the correlation value between the extracted
features and the IQ measurements (full-scale, verbal and
performance IQ), and no feature was significantly correlated with
any of the covariates.

We then focused on the top 15 features that generated the
81% of accuracy. We investigated the most selected frequency
bands and clusters of these top features. Figure 8 shows the top
15 feature distribution by clusters and frequency bands, showing
the specific contribution of theta, high beta and gamma bands
for group discrimination. Detailed feature information (Table 2)
clarifies that the most discriminative features originate from the
time-frequency domain, at the high-beta/gamma bands, and that
the non-linear features are mainly from the theta-band.

DISCUSSION

Here we addressed for the first time FE imagery in ASD and
identified a common neural correlate of observation and MI
of dynamic FEs in this condition, in the precuneus. Robust

Frontiers in Neuroscience | www.frontiersin.org 7 November 2018 | Volume 12 | Article 791

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00791 October 31, 2018 Time: 16:49 # 8

Simões et al. Autism Biomarker of Facial Imagery

FIGURE 3 | Source group differences for the first and second ERP components, for happy and sad expressions. We found higher activation for the ASD group in the
right precuneus using a two tailed alpha level of 5%, corrected with the SnPM method. Regarding the second component, this result was statistically significant
specifically for the sad expression.

statistical classification of brain activity patterns using linear and
non-linear features could also be achieved, and the identified
biomarker of abnormal imagery in ASD can potentially be used as
an outcome measure to evaluate clinical interventions addressing
cognitive and behavioral improvement in this condition.

We focused on MI of FEs in ASD as a major research target
in this study. This is a very important cognitive process in
the context of this disease, because mental rehearsal is very
important for action perception cycles, in particular in the
context emotional face recognition. MI is the process of creating
a mental representation and corresponding sensory experience of
an episode or stimulus without a direct external source (Pearson
et al., 2015). In the case of FEs, it also involves MI of motor
patterns (FEs) which requires the involvement of the mirror
neuron system. There are indeed several types of MI, namely
visual, auditory and motor (for a review, see Kosslyn et al., 2001).
Some studies showed the effect of MI on boosting performance
in detection tasks (Tartaglia et al., 2009) and on decision making
bias (Pearson et al., 2009). In our study, participants were asked
to perform visual MI of an avatar performing a FE (mentally
replaying previously observed patterns). This task combines MI,

perspective taking and theory of mind, since the participant is
asked to recreate an expression of another.

A critical aspect that renders the study of imagery difficult
in ASD is that it is important to ascertain that imagery really
reflects the expected visual content. We could achieve this
by showing that similar neural signatures (source localization)
can be found by both observation and imagery of FEs. The
ERP elicited by the imagery cue did indeed reveal that source
differences were very similar as compared to the ERP of the FE
stimuli, with the precuneus showing higher activation for the
ASD group. The right precuneus belongs to task-active networks
(Yang et al., 2015) that are also active during imagery [for a review
of the relation with the precuneus with visuo-spatial imagery
and visuomotor transformations, please refer to (Cavanna and
Trimble, 2006)].

One of the common aspects of visualization and MI of the
others FEs is the need to incorporate the perspective of the other.
Because we use a stringent contrast in the visual stimulation
task, we expected the core processing of the face to have less
weight than the perspective taking aspects task. The precuneus
is one of the core regions present in the perspective taking
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FIGURE 4 | ERP and topographic plots for the mental imagery task (PO4 channel). An initial ERP is visible peaking positively at 100 ms and negatively at 200 ms,
with the tonic spectral characteristics overtaking the remaining time period (from 0.5 s onward).

FIGURE 5 | Group differences for the source analysis of the ERPs of mental imagery. Statistical differences (two-tailed p < 0.01, SnPM corrected) were found in the
region of precuneus, with higher activation for the ASD group.

network, as showed by Healey and Grossman (2018). The authors
reviewed the literature and found the precuneus as a key region
in both cognitive and affective perspective taking networks (Abu-
Akel and Shamay-Tsoory, 2011). Those fMRI studies validate the
source we identified in our study.

The link between the precuneus and its role in FEs processing
has already been demonstrated by some studies (Saarimäki et al.,
2016; An et al., 2018), but our study is the first one, to the best
of our knowledge, to identify the over-recruitment of this region
in the ASD population in a social cognition task. Since visual
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FIGURE 6 | Source analysis for the mental imagery segments, in the theta band. Higher activation for the ASD group in the precuneus area (two tailed p < 0.05,
SnPM corrected).

perspective taking and theory of mind skills are impaired in ASD
(Hamilton et al., 2009; David et al., 2010), we believe that ASD
participants needed higher recruitment of the right precuneus as
a compensatory mechanism for the MI of the other’s FE.

Frequency band decomposition of the MI signals showed
that theta and high-beta/gamma bands explained the main
group differences. The source analysis of the theta band further
revealed again a higher activation of the right precuneus for
the ASD group (specifically for the sad FE). It was already
known that FEs elicited higher theta responses than neutral
expressions in healthy participants (for a review, please refer
to Güntekin and Başar, 2014). Although theta band activity
patterning has been linked to the medial frontal cortex and
its role in cognitive control (Cavanagh and Frank, 2014) its
source in our study seems to be different. In agreement with

our own source, Wang et al. (2016) demonstrated a relationship
between the theta band and activity patterns in the posterior
cingulate cortex/precuneus, in a simultaneous EEG-fMRI study.
Furthermore, the study from Knyazev et al. (2009) identified
the same right parietal source from theta responses to FEs.
Therefore, we believe the parietal theta band relation with
the precuneus to be a core neural correlate of emotional MI
processing. Despite using different types of signals (phasic or
tonic in relation to the type of mental process) to perform the
source localization (ERP and time-frequency decomposition),
due to the characteristics of the tasks, it is very interesting to
observe the same region involved in both visualization and MI
processes.

The precuneus is recruited in several types of imagery,
including motor imagery, mental navigation, memory-related
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FIGURE 7 | Accuracy of the classifiers SVM (left) and WiSARD (right) as function of the considered number of features. Mean accuracies are represented with the
lines and the error bars show the standard error of the mean. Classification results with the mental imagery part of the EEG signals are represented in blue and the
neutral signals in orange. Statistically different accuracies between Emotion and Neutral are marked by ∗ (one-sample t-tests with alpha level of 5% and false
discovery rate correction for multiple comparisons). At the bottom we present the performance metrics for both classifiers using the top 25 features. Each cell
presents the mean values followed by the standard error of the mean of the respective metric.

FIGURE 8 | Top 15 features distribution by frequency band (left) and clusters (right). The histogram on the left depicts the exploitability of theta and
high-beta/gamma frequency features. The histogram of the right shows the scalp distribution of features within the right parietal-occipital region, showing a
preference for the posterior clusters of the region.

imagery, episodic source memory retrieval and emotional state
attribution (Cavanna and Trimble, 2006). Specifically regarding
attributing emotions to others, several studies identified the role
of the precuneus in Theory of Mind scenarios (Vogeley et al.,
2001; Takahashi et al., 2015). Moreover, a connectivity analysis
study of resting state fMRI data showed decreased connectivity

of the precuneus region with the middle temporal gyrus and
the ventromedial frontal cortex in the ASD population, in both
hemispheres (Cheng et al., 2015). All these observations pinpoint
the precuneus as playing a pivotal role in FE MI. Furthermore,
the group difference in the right hemisphere, which is also
known to dominate in attention and imagery, suggests that the

Frontiers in Neuroscience | www.frontiersin.org 11 November 2018 | Volume 12 | Article 791

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00791 October 31, 2018 Time: 16:49 # 12

Simões et al. Autism Biomarker of Facial Imagery

ASD group processes the FEs of the other in a more effortful,
attention-based mechanism than the TD group. This view has
been suggested by Harms et al. (2010). Our study is the first one,
to our knowledge, to show that the same neural pattern that is
observed during FE recognition is replicated for MI of the FEs, in
ASD.

Based on the observed group differences, we investigated
whether we could extract features that would function as
biomarkers (not necessarily as diagnostic, but as intervention
targets) of ASD, based on the MI process. The need for
diagnostic, prognostic and intervention biomarkers in ASD is
well recognized. While ASD biomarkers range from genetics
to clinical (for a review, please refer to Ruggeri et al., 2014),
the inter-subject variability observed in this disorder justifies
the use of machine learning techniques combining multiple
features to generate potential biomarkers (Huys et al., 2016).
Therefore, we developed two classifiers – a SVM and a WNN
to classify each subject (represented by a feature vector extracted
from his EEG data) into ASD or TD group. Our purpose is to
show that the features used by the classifiers provide exploitable
group differences, that can also be used to characterize neural
mechanisms underlying ASD (in this case, FE processing) and
therefore be used to monitor, for example, rehabilitation efficacy
(outcome measure) or aid at subgroup stratification in the
ASD population (Castelhano et al., 2018), albeit not for early
detection.

We verified that the WNN method achieved around 81%
of accuracy using 15 features. When compared to the same
classifiers trained with features extracted from EEG of the
neutral periods, the accuracy was significantly lower (around
73%).

TABLE 2 | List of the top 15 features used in the classifiers, showing their
frequency band, cluster, and statistical value.

FEATURE FREQ. BAND CLUSTER RANK T P

ENV [21–30] Hz 4 2.57 (0.41) 4.23 0.0002

TEAG [21–30] Hz 1 4.30 (0.53) 3.84 0.0005

POW [21–30] Hz 1 6.87 (0.77) 3.61 0.0010

ENV [30–40] Hz 4 7.67 (0.83) 3.67 0.0009

TEAG [21–30] Hz 4 8.73 (0.87) 3.56 0.0012

SPEN [4–8] Hz 4 8.80 (1.16) 3.43 0.0017

LYAP [4–8] Hz 4 9.83 (1.27) −3.36 0.0020

ENV [30–40] Hz 5 10.03 (0.99) 3.53 0.0013

POW [21–30] Hz 4 11.37 (1.11) 3.41 0.0018

ENV [21–30] Hz 1 12.03 (1.23) 3.22 0.0029

ENV [30–40] Hz 1 13.37 (1.65) 3.24 0.0028

SPI [4–8] Hz 4 13.43 (1.33) 3.25 0.0027

ENV [21–30] Hz 5 13.83 (1.30) 3.37 0.0020

APEN [4–8] Hz 4 14.37 (1.77) 3.15 0.0036

POW [30–40] Hz 1 14.97 (1.14) 3.08 0.0042

Non-linear features are presented with gray background and time/frequency
features with white background. Rank values correspond to the mean order of
the feature across training sets, with the respective standard error of the mean.
T and P values for each feature are presented, resulting from an independent t-test
between the groups. All the 15 features are statistically significant (corrected for
multiple comparisons using the false discovery rate algorithm).

We then performed a further analysis of the top 15
features selected for classification. The most representative
frequency band, when using non-linear features, was the
theta band, while the most discriminative features were
from the time/frequency domain and high-beta/gamma
frequency bands. Those bands and their relation with the
precuneus have been explored in the literature by Fomina
et al. (2016), which attempted to train the self-regulation of
gamma and theta bands in the precuneus in amyotrophic
lateral sclerosis patients. This is consistent with our results,
showing that the precuneus activity at the theta and high-
beta/gamma bands represent important MI information that
can be used for clinical purposes, for instance in BCI based
neurofeedback.

The overall use of dynamic FE morphing enabled a more
realistic and ecologic approach, because the stimuli featured more
realistically the daily life characteristics of social interactions than
the commonly used static stimuli. Moreover, we used a specific
face expression contrast (emotional expressions vs. neutral
expression). As stated by Krumhuber et al. (2013), the dynamic
characteristics of FEs are possibly also understudied which is a
limitation for the validity of neurocognitive approaches.

Our approach to morph the expression into a virtual avatar
makes a potential bridge between dynamic FEs and rehabilitation
possibilities using, for instance, virtual reality. Understanding
how the FEs are processed in virtual environments opens
the door for intervention solutions, where the environment is
completely controlled (Miller and Bugnariu, 2016; Simões et al.,
2018b). This is important because the neural markers identified
in this study could potentially be used as intervention target
measures.

A common characteristic of most studies in the literature
using EEG and observation of FEs is the use of a blank-
screen as baseline for the visual stimulus (Monteiro et al.,
2017), thus eliciting ERPs that mix the processing of the FE
with face and other non-specific visual features. We argue that
the use of a more specific contrast (expressionless/neutral face
as baseline) elicits an ERP specific to the dynamic expression
characteristics of the face, not the face itself. Moreover, Monteiro
et al. (2017) demonstrate disparate findings in the literature
when evaluating EEG responses to FEs in ASD. Several studies
found expression effects accompanied by group effects. Using
a very specific contrast, we were able to identify, even for
FE observation, group differences in the right precuneus, with
the ASD group showing higher activation in this region. The
functional role of precuneus in attentional deployment and
imagery is well recognized (Cavanna and Trimble, 2006), with
some studies also suggesting a relation to perspective taking
(Vogeley et al., 2001; Kircher et al., 2002; Schurz et al., 2015),
face familiarity (specifically for the left precuneus) (Lee et al.,
2013) and emotional state recognition and attribution (Ochsner
et al., 2004; Spies et al., 2017). Our right precuneus group effect
for both happy and sad expressions is consistent with several
studies using fMRI that reported the same effect for ASD in
the right precuneus (see the meta-analysis of Aoki et al., 2015,
which found hyperactivation of bilaterate thalamus, caudade and
right precuneus for the ASD group). Especially in tasks requiring
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taking the others perspective, the recruitment of the precuneus is
key in both cognitive and affective perspective taking networks
(Healey and Grossman, 2018). We hypothesize that the ASD
group performs a higher recruitment of the precuneus region
to compensate for emotional processing and perspective taking
behavioral deficits.

Our study focused only on male subjects to avoid an effect
of gender in the analysis. There is evidence for sex differences
in brain connectivity in ASD which might influence the EEG
analysis we conducted (Alaerts et al., 2016; Irimia et al., 2017;
Fu et al., 2018). The replicability of these results in female
ASD cohorts lacks further validation. Moreover, in spite of
the limitations of our sample size, it paves the way for future
replication studies in larger groups.

In conclusion, we found for the first time, a neural correlate
of emotion expression imagery in ASD, which was validated as a
replication of the neural signatures evoked by visual observation
of specific FEs. We developed an innovative approach to study
FE processing in ASD, combining visualization of dynamic FEs
(with a very selective contrast, isolating pure FEs from the mere
presence of a face) and MI of FEs in others. Our results emphasize
the important role of the precuneus in the ASD facial processing
circuit and suggest that its increased recruitment may serve as a
compensatory strategy to overcome the natural deficits in their
emotional processing. Furthermore, we extracted a set of features
and trained a classifier that was able to discriminate between
groups with high accuracy. The features were then observed to
match topographically and spectrally the group effects, and can
therefore be potentially used as intervention targets.
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