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Chemokines and their receptors have been shown to affect amyloid-β (Aβ) and tau

pathologies in mouse models of Alzheimer’s disease (AD) by regulating microglia

and monocyte-associated neuroinflammation, microglial movement and monocyte

recruitment into the brain. These cells in turn can promote and mediate Aβ phagocytosis

and degradation and tau phosphorylation. In this review we discuss published work in

this field in mouse models of AD and review what is known about the contributions

of microglial and monocyte chemokines and their receptors to amyloid and tau

pathologies. We focus on the roles of the chemokine/chemokine receptor pairs

CCL2/CCR2, CX3CL1/CX3CR1, CCL5/CCR5, CXCL10/CXCR3 and CXCL1/CXCR2,

highlighting important knowledge gaps in this field. A full understanding of the functions

of chemokines and their receptors in AD may guide the development of novel

immunotherapies for this devastating disease.

Keywords: Alzheimer’s disease, amyloid-β peptide, protein tau, microglia, monocytes, chemokine receptors,

chemokines, neuroinflammation

INTRODUCTION

Neuroinflammation is an important contributor to Alzheimer’s disease (AD) pathogenesis and
progression (1, 2). Indeed, several inflammatory mediators such as tumor necrosis factor (TNF)
and interleukin-1 (IL-1) are elevated in the brains of AD patients and mouse models of AD (3, 4).
In addition, several variants in immune genes such as TREM2, CD33, and CR1 that regulate the
inflammatory response have been identified by Genome-Wide Association Studies (GWAS) as
genetic risk factors for AD (5–9). Microglia and recruited peripheral blood monocytes are the
principal innate immune cells involved in the pathogenesis of AD and extensive evidence indicate
that their functions are in part regulated by chemokines and their receptors (1).
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BETA AMYLOID DEPOSITION AND TAU
HYPERPHOSPHORYLATION ARE
HALLMARKS OF AD

Clinically, AD is associated with dementia and progressive
cognitive decline. Pathologically, AD is characterized by the
presence of extracellular senile plaques and intraneuronal
neurofibrillary tangles (NFTs). These protein deposits
contain aggregates of the amyloid-β (Aβ) peptide and
hyperphosphorylated microtubule-associated protein tau
(p-τ ), respectively. The processes of Aβ production and
tau hyperphosphorylation involve different pathways.
Aβ accumulation is the result of tandem cleavage of the
amyloid precursor protein (APP) by secretases, whereas tau
hyperphosphorylation results from the activity of several kinases.
However, increasing evidence indicate that these abnormal
protein deposits influence each other and have an additive
effect on disease progression and that Aβ deposition appears
to regulate tau pathology (10, 11). Indeed, in experimental
animals, Aβ injection in the brain of P301L mice, a model for
tau pathology, increases formation of NFTs (12). Furthermore,
breeding mice expressing 5 early onset familial AD mutations
(5XFAD) with mice expressing the tau P301S mutation (PS19)
results in a ∼10-fold aggravated tauopathy (13). In contrast,
APP-KO mice subjected to subtoxic doses of soluble oligomeric
forms of tau protein do not exhibit tau-induced defects
in spatial/associative memory and its electrophysiological
surrogate long-term potentiation (LTP), suggesting that
tau pathology is dependent on APP expression (14). Aβ

accumulation appears to promote tau hyperphosphorylation
via activation of glycogen synthase kinase-3β (GSK-3β)
(15).

The effects of Aβ deposition on tau pathology and
neurodegeneration may not be necessarily due only to fibrillar
Aβ deposits in senile plaques. In fact, cognitive deficits start
before these plaques are visible and it has been proposed that
the spectrum of Aβ species, including intraneuronal Aβ, soluble
Aβ and Aβ oligomers also contribute to synaptic disruption and
tau hyperphosphorylation. Regardless of the exact species of Aβ

involved in this process, the co-localization of Aβ and p-τ in
synaptic sites (16) suggest that the deposition of these protein
aggregates and their contribution to neuronal loss is affected
by their interactions. In this regard, strategies for treatment of
AD should consider both Aβ and p-τ aggregates and how they
influence each other (17).

THE MONONUCLEAR PHAGOCYTE
SYSTEM IN ALZHEIMER’S DISEASE

There is strong supporting evidence that the inflammatory
response in AD is in part driven by the interaction of Aβ

with mononuclear phagocytes, including microglia and recruited
peripheral blood monocytes (1, 18, 19). Multiple forms of Aβ

accumulate in the AD brain before the development of visible
senile plaques and formation of NFT. Since these forms of
Aβ can interact with microglia and/or monocytes and lead

to an inflammatory response, several groups have suggested
that neuroinflammation is an early event in Aβ and tau
pathologies (20–22), preceding the accumulation of larger visible
protein deposits. The mononuclear phagocyte system has been
extensively studied in the context of neuroinflammation in AD.
However, the contribution of different cells types of this system,
such as microglia and monocytes to AD pathogenesis is only
beginning to be understood.

Microglia are the principal resident sentinels in the brain
and can rapidly sense changes in their environment such
as Aβ deposition, using a set of genes termed the sensome
(23). Subsequent to sensing Aβ, the interaction of microglia
with Aβ is a double-edged-sword. On one hand, microglia
can phagocyte and clear Aβ deposits thereby limiting the
progression of AD pathology (24, 25). In support of this pathway,
reduced expression of Aβ-binding receptors in microglia
from aged mice is associated with reduced Aβ phagocytosis
and clearance and increased Aβ accumulation and disease
progression (4). In contrast, the continuous interaction of
microglia with Aβ induces the activation of the inflammasome
pathway and produce several inflammatory mediators and
neurotoxins, thereby contributing to the progression of AD
in several ways (2, 19, 26–30). It is possible that persistent
Aβ-induced microglial activation could also contribute to Aβ

deposition, since continuous production of neurotoxic factors
by microglia can induce neuronal apoptosis and consequent
release of intraneuronal Aβ into the extracellular space. In
addition, inflammatory cytokines as IL-1β, INF-γ, and TNF-
α have been shown to upregulate β-secretase expression
thereby increasing Aβ production (31). Such inflammatory
cytokines also affect LTP in the hippocampus (32), suggesting
that they can influence synaptic plasticity, which is essential
for memory formation. In support of this, during microglia
activation, their branches disappear, giving place to an amoeboid
morphology which may limit their ability to refine and sustain
synapses.

In contrast to what we know about microglia-Aβ interactions,
less is known about microglia and NFTs. Microglia appear
to promote tau propagation and contribute to the spreading
of tau pathology in the brain (33, 34). Microglial activation
also induces tau phosphorylation and aggregation (35).
Some anti-inflammatory drugs have been shown to reduce
p-τ in P301S and 3xTg AD mice (22, 36), but whether the
mechanism is microglia-dependent remains to be determined.
Published reports also suggest that injured neurons exhibiting
tau hyperphosphorylation modulate microglia-mediated
neuroinflammation (37). While these studies are compelling,
they do not provide evidence of direct activation of microglia
by p-τ . However, they suggest that neuroinflammation is closely
linked to tau pathology.

In addition to studies onmicroglia function in AD, monocytes
can infiltrate the AD brain and, although their role in AD
progression is unclear at this time, it has been proposed that
they have both detrimental and beneficial effects depending on
the stage of disease development (38–40). Monocytes infiltrate
the AD brain and clear perivascular Aβ (39, 41, 42). In
support of this, stimulating monocyte infiltration by peripheral
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challenging with macrophage colony-stimulating factor (M-CSF)
and lipopolysaccharide (LPS) or blocking immunosuppressive
transforming growth factor beta (TFG-β) can attenuate AD
pathology (43). While these studies suggest a protective role for
monocytes in AD, monocytes, similar to microglia, can become
activated and promote neuroinflammation and neurotoxicity
(44).

In contrast to the studies supporting a role of monocytes in
AD, a recent report using parabiosis experiments and staining
for CD11b and CD45 suggests that monocytes do not infiltrate
the brain in APP/PS1 and 5XFAD mouse models of amyloidosis
(45). Interestingly, the same group also showed the presence of
monocytes in the brain of 5XFAD mice when single cell RNAseq
was performed on myeloid cells and more cell specific markers
were analyzed (46). Additional mouse and human studies using
single cell RNASeq, flow cytometry with multiple microglia and
monocyte markers and in situ hybridization will help clarify this
apparent discrepancy.

CHEMOKINES ARE ESSENTIAL FOR THE
ACCUMULATION OF MONONUCLEAR
PHAGOCYTES IN THE ALZHEIMER’S
DISEASE BRAIN

Chemokines are chemotactic cytokines which mediate immune
cells migration to sites of inflammation. Initially designated with
specific protein names, chemokines are now classified based
on the number of amino acids between two cysteine residues:
α-chemokines, with the first cysteine residues separated by
one amino acid (CXC); β-chemokines, with adjacent cysteine
residues (CC); lymphotactin, with only two cysteines, and
fractalkine (CX3CL1) in which the first two cysteine residues
are separated by three amino acids (47, 48). These small
chemoattractant proteins bind to chemokine receptors classified
in the samemanner. Different chemokine receptors are expressed
on different immune cells. Monocytes, for example, express
CCR1, CCR2, CCR5, CCR8, CXCR4, and some CX3CR1 (49). In
contrast, microglia express very high levels of CX3CR1 and CCR5
and, to a lesser extent CXCR4, CXCR3, and CXCR2 (23).

Since chemokines mediate the infiltration of peripheral
monocytes into the inflamed central nervous system (50), we
proposed that the same occurs in AD (47, 48). The association
between chemokines and AD is supported by studies showing
that CCL2 and CCL5 expression are increased in the AD brain
(51, 52). In vitro, microglia express CCL2 when incubated with
Aβ (19) and neurons from AD brains have been shown to
upregulate CCL5 expression (53). Moreover, CCL5 is essential
to Aβ induced-microglia chemotaxis (54, 55). Similarly, the
CX3CR1 ligand CX3CL1 is highly expressed on neurons. These
studies suggest that chemokines are important in AD and
possibly mediate the infiltration of peripheral monocytes into the
AD brain and/or the accumulation of microglia at sites of Aβ

deposition. Additional insights into the roles of chemokines, their
receptors and mononuclear phagocytes in AD progression come
from animal models where the function of chemokine receptors
have been challenged.

CCL2/CCR2 AXIS

When combined with Aβ and p-τ levels, CCL2 expression in
the brain and cerebrospinal fluid (CSF) is a reliable predictor of
AD severity (51, 56). In support of these observations, the CCL2
receptor, CCR2, was the first chemokine receptor shown to be
associated with AD. We found that, in Tg2576 AD mice, CCR2
deficiency accelerates early disease progression by impairing the
accumulation of mononuclear phagocytes (39). APP-CCR2−/−

mice exhibited higher Aβ levels and reduced CD11b+ cell
recruitment into the brain. Importantly, these mice showed
higher mortality in a CCR2 gene dosage-dependent manner.
Subsequent studies showed that the decrease in perivascular Aβ

observed in our study was due to the lack of blood monocytes
accumulation at these sites and possibly their infiltration in
the brain parenchyma (39). These findings were corroborated
by the finding that CCR2 deficiency worsened memory deficits
and increased soluble Aβ in APP/PS1 mice (57). This study
also showed that lack of CCR2 stimulated the expression of
TGF-β receptors and CX3CR1 in plaque-associated microglia,
implicating another chemokine receptor in AD pathology. The
progressive cognitive decline in these mice was associated with
a decrease in the numbers of CX3CR1lowLy6-ChighCCR2+Gr1+

circulating inflammatory monocytes (58) and restoring CCR2
expression in bone marrow cells reestablished memory capacities
and decreased soluble Aβ accumulation (58). Altogether, these
reports show that CCR2+ monocytes can be protective in AD.

We propose that CCR2 promotes the recruitment of
monocytes initially from the bone marrow into the blood, then
from the blood across the blood-brain barrier (BBB), to the
perivascular space, then from the perivascular space to sites of Aβ

deposition in the parenchyma where these cells can potentially
clear Aβ by phagocytosis (Figure 1). In support of these findings,
we recently showed that the CCL2/CCR2 axis was impaired in
blood-derived monocytes from AD patients, causing a deficit in
cell migration (59).

CX3CL1/CX3CR1 AXIS

Another chemokine receptor thoroughly studied in AD is
CX3CR1. This receptor is highly expressed in microglia
and CX3CR1-GFP knock-in mice (where GFP replaced one
CX3CR1 allele) have been used to specifically study, in vivo,
the role of microglia in AD and other brain diseases. In
physiological conditions, disruption of CX3CR1 function affects
cognitive functions in a IL-1β-dependent manner (60) and
exacerbates LPS-induced inflammation (61), suggesting that
CX3CR1 maintains microglial homeostasis, being essential for
their function in synaptic support and limiting their activation.
In contrast to its clear role in maintaining microglial homeostatic
functions under physiological conditions, dysregulation of
the CX3CL1/CX3CR1 axis in AD mouse models can have
both neuroprotective and neurotoxic effects depending on
the mouse model used. CX3CR1 deficiency in three different
AD mouse models—APP/PS1, R1.40 and CRND8—reduced
amyloid deposits and enhanced Aβ phagocytic ability by
microglia (62, 63). These effects were associated with decreased
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FIGURE 1 | Major chemokine receptors expressed on monocytes and microglia and their possible roles in Aβ and Tau pathologies.

microglia activation and TNF levels and increased IL-1β
levels. Similarly, following injection of Aβ1−40 fibrils in the
hippocampus, downregulation of CX3CR1 with siRNAs also
suppressed microglial activation, increasing synaptic strength
and cognitive functions (64). On the other hand, CX3CR1
deficiency in hAPP mice worsened behavioral deficits associated
with cytokine production independent of plaques deposition
(65). Although these mice do not express tau mutations, the
effect of CX3CR1 disruption was associated with enhanced
tau pathology. Moreover, hTau mice (which exhibit p-τ )
lacking CX3CR1 exhibited enhanced tau phosphorylation and
aggregation associated with microglial activation, as well as
behavioral impairments (35, 66). Analyzing these studies, it is
interesting to observe that the neuroprotective role of CX3CR1
is always associated with tau and not Aβ. In support of these
findings, overexpression of soluble CX3CL1 in mice with Tau
but not Aβ pathology led to substantial improvements (67).
Interestingly, CX3CR1 deletion in 3xTg mice, which have both
Aβ and tau pathologies, prevented neuronal loss, suggesting that
the effect of CX3CR1 deficiency on Aβ pathology may be more
dominant than its effect on tau pathology (68). It is possible,
however, that CX3CR1 is involved in the killing of neurons with
intracellular tau deposits and the subsequent release of tau (68)
(Figure 1). Additional studies with AD models that exhibit both
Aβ and tau pathologies are needed to definitively clarify the role
of CX3CR1 in AD.

CCL5/CCR5 AXIS

CCR5+ reactive microglia are found associated with Aβ deposits
in AD patients (69). CCR5−/− mice have higher levels of Aβ,
C99 [a product that results from APP cleavage by β-secretase
1 (BACE1)] and BACE1 itself compared to normal mice (70).
These levels were associated with astrocyte activation and CCR2

overexpression leading to cognitive impairments. Also, following
injection of Aβ1−40 into the lateral ventricle of CCR5−/− mice,
a reduced activation of microglia and astrocytes was observed
compared to wild-type mice (71). Interestingly, CCR5 appears to
be essential for the transendothelial migration of T cells across
the BBB in the hippocampus of rats injected with Aβ (72),
suggesting that CCR5 may be essential for the infiltration of non-
phagocytic peripheral immune cells to the AD brain. Since CCR5
is also expressed on a subset of monocytes and on microglia, it
is possible that it plays an additive role to CCR2 in mediating
monocyte movement across the BBB, as well as in the movement
of microglia toward sites of Aβ deposition in the parenchyma
(Figure 1).

In addition to CCL5, we have shown that microglia and
macrophages stimulated with Aβ, in vitro, show increasedmRNA
levels for the chemokines CCL3 and CCL4 also known as
MIP1α and MIP1β respectively (19). These two chemokines are
also upregulated in adult human microglia isolated from post-
mortem brains and stimulated with Aβ (73) and in plaque-
associated microglia in AD patients (74). The exact roles of these
chemokines in AD is not clear. However, both chemokines are
ligands for CCR5, suggesting possible complementary roles to
CCL5 in the accumulation of T cells, monocytes or microglia in
the AD brain. To date, there are no published reports describing
the effects of CCL3, CCL4, or CCL5 deficiency on Aβ deposition
or tau pathology in a transgenic Aβ or tau model. Such studies
will help clarify the role of CCR5 ligands in AD development and
progression, an important current knowledge gap in the field.

CXCL10/CXCR3 AXIS

CXCL10 levels in CSF are significantly increased in patients with
amnestic mild cognitive impairment (MCI) and patients with
mild AD, but not in patients with severe AD (75). Unlike its
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receptor CXCR3, which is constitutively expressed on microglia
and neurons, CXCL10 is expressed in a subpopulation of
astrocytes in the normal brain and is markedly elevated in
astrocytes in AD (76, 77). Peripheral injection of LPS strongly
induces CXCL10 the brain of rats, as well as in cultured
astrocytes and microglia (78), indicating its involvement in
the response to inflammatory stimuli. Although CXCL10 was
found to co-localize with Aβ plaques in APP mice (79), its
function in regulating Aβ pathology remains unclear. A recent
study using CXCR3-deficient AD mice showed that deletion
of CXCR3 significantly reduced plaque burden and Aβ levels
in APP/PS1 mice with morphological evidence for microglial
activation, but reduced plaque association. This study suggests
a possible role in the recruitment of microglia to Aβ deposits
(80). CXCR3 deficiency also increased microglial uptake of
Aβ, reduced concentrations of proinflammatory cytokines and
attenuated behavioral deficits in APP/PS1 mice (80), suggesting
an important role for CXCL10/CXCR3 signaling in mediating
Aβ-induced pathology in mouse models. The role of CX3CR1 in
tau pathology is not clear and needs to be investigated (Figure 1).

CXCL1/CXCR2 AXIS

CXCR2 is expressed at low levels on microglia (23). CXCR2
deficiency results in reduction of Aβ with concurrent increases
of γ-secretase substrates in the APP/PS1 mice (81). Whether
microglia play a direct role in this process is not clear and
requires a more detailed analysis of CXCR2- deficient APP/PS1
mice. Insights into a possible microglial role on the effect of
CXCR2 depletion came from studies performed in rats injected
with Aβ. Administration of a competitive CXCR2 antagonist to
Aβ-injected rats significantly reduced expression of CXCR2 and
microgliosis (82). Similar studies in mouse models of AD need to
be done to further validate these findings.

CHEMOKINES RECEPTORS AS TARGETS
FOR AD THERAPY

Based on the above discussion, it may be possible, in the
future, to consider chemokine receptors as potential targets for
the treatment of AD. One could envision upregulating CCR2
expression to increase influx of monocytes into the AD brain,
therefore leading to increased removal of Aβ deposits and
reduced Aβ burden. However, it will be difficult to devise such a
strategy for CX3CR1 and CCR5, until the effects of deleting these
receptors on both Aβ- and tau-associated pathologies are defined

in animal models that exhibit both features. Importantly, one

must consider that these receptors can display different functions
in different stages of AD progression.

CONCLUSION

The work summarized in this review suggests that chemokines
and their receptors are important for AD pathogenesis and
in the development of the two main pathological hallmarks
of AD—Aβ deposition and tau hyperphosphorylation. These
receptors are associated with innate and adaptive responses
regulating microglia and peripheral immune cells activation,
and are essential for the infiltration of immune cells to the
AD brain and movement of recruited monocytes and microglia
toward sites of Aβ deposition. These studies clearly point to the
importance of the neuroinflammatory component of AD as an
active process which contributes to AD development and suggest
that the presence of immune cells in the AD brain is tightly
regulated during different stages of AD progression, constituting
a double-edged sword that may lead to neuroprotective or
neurotoxic outcomes. However, in spite of the significant amount
of knowledge gained so far, there are important knowledge
gaps that limit our understanding of the roles of chemokines
and their receptors in AD. Additional studies to explore how
these receptors and their ligands influence Aβ deposition, tau
hyperphosphorylation, microglia and monocyte accumulation,
the overall inflammatory response and neuronal degeneration are
needed. A full understanding of the roles of chemokines and their
receptors in AD may guide the development of multiple novel
immunotherapies targeted to various stages of the disease.
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