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Abstract: Cellulose is the most abundant renewable polymer on Earth and can be obtained from
several different sources, such as trees, grass, or biomass residues. However, one of the issues is
that not all the fractionation processes are eco-friendly and are essentially based on cooking the
lignocellulose feedstock in a harsh chemical mixture, such as NaOH + Na;S, and water, to break loose
fibers. In the last few years, new sustainable fractionation processes have been developed that enable
the obtaining of cellulose fibers in a more eco-friendly way. As a raw material, cellulose’s use is
widely known and established in many areas. Additionally, its products/derivatives are recognized
to have a far better environmental impact than fossil-based materials. Examples are textiles and
packaging, where forest-based fibers may contribute to renewable and biodegradable substitutes for

common synthetic materials and plastics. In this review, some of the main structural characteristics
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and properties of cellulose, recent green extraction methods/strategies, chemical modification, and
applications of cellulose derivatives are discussed.
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1. Background

The rapid population growth and rise of globalization have been followed by the
depletion of fossil fuel reserves, increasing health/environmental concerns. These have
led researchers worldwide to look for new renewable resources for a more sustainable
future. Cellulose, as the main component of plants (e.g., trees, grasses, agriculture residues,
etc.), is the most abundant biopolymer on earth. Due to its high availability, low cost
(especially from lignocellulosic residues), biodegradability, appealing physical properties,
and chemical reactivity (potential for functionalization), cellulose has been receiving great
attention from the research community over the last decades. Recent renewed interest has
arisen due to its potential use as a renewable energy platform and for the development of
cellulose-based materials.

A crucial contribution to the global climate challenge comes from forests and forest-

Copyright: © 2023 by the authors.

Licensee MDPL, Basel, Switzerland,  P@S€d products, which store ca. 447 million tons of CO; [1]. In fact, it is possible to prevent

410 million tons of carbon emissions per year by substituting fossil-based materials and
fossil energy [2]. Thus, cellulose appears as a very appealing feedstock that can be used for
the production of valuable chemicals through a variety of designed processing technologies
without competing with the food industry or threatening the world’s food supply (contrary
to other resources, such as starch) [3]. For example, glucose is a versatile precursor to obtain
40/). valuable chemicals such as biodegradable plastics and ethanol [3].
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Plant products

However, cellulose processing is challenging due to some important disadvantages,
such as its insolubility in water and in most common solvents and its low resistance against
microbial attacks [4]. Furthermore, cellulose can be chemically modified by substitution
of its native hydroxyl groups with functional groups, such as specific acids, chlorides,
and oxides, to address less favorable properties or to develop new desired characteristics.
Over the last decades, many scientists have dedicated their research to the development of
innovative ways to improve and tune cellulose properties and grant them new functionali-
ties. These strategies typically involve cellulose derivatization by incorporation of cationic,
anionic, or hydrophobic functional groups in its chain [5-7], thus broadening cellulose
properties and applications.

In the current review, we explore the (1) fundamental structural characteristics and
properties of cellulose from various sources; (2) sustainable extraction processes; (3)
chemical modifications used in the preparation of cellulose derivatives; and (4) various
applications for cellulose derivatives. Special attention is given to recent sustainable
strategies engaging extraction, dissolution, and modification of cellulose, with a particu-
lar focus on the utilization of deep eutectic solvents. In the literature, it is possible to find
different reviews dealing with cellulose derivatives and their applications. However,
most of them are focused on specific applications, such as biomedical applications [4],
food packaging [8], or wastewater treatment [9]. The present review also aims at bringing
together the most recent developments regarding cellulose modification and the applica-
tion of such cellulose derivatives, covering a wide range of modification techniques with
a focus on sustainable chemistry.

2. Sources of Cellulose

Cellulose is generated at the plasma membrane in the form of paracrystalline mi-
crofibrils [10]. The hierarchical organization of cellulose in plants is illustrated in Figure 1.
Individual microfibrils form cellulose fibrils that are located on the cell walls of plants.
Cellulose is the main structural component of plants, and it is responsible for its structural
support, providing strength and stability to the plant cell walls [3].
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Figure 1. Illustration of the hierarchical organization of the cellulose chain leading to the formation
of elementary fibrils, microfibrils, and the cellulose fibers from plant wood (adapted from [11] with
permission from Elsevier).

Cellulose can be obtained from various biomass sources, such as hardwoods (e.g.,
poplar wood, acacia, or eucalyptus wood), softwoods (e.g., pine wood or spruce wood),
forestry residues, agricultural wastes, or grasses. Most properties of the obtained cellulose
are strongly dependent on the source of biomass; one of these properties is the molecular
weight, which has deep effects on cellulose application and processability. For example,
hardwood raw materials typically present degrees of polymerization (DPs) ranging from
ca. 1400-1790 [12], but it is also possible to find DPs of 22002300 [13,14]. On the other
hand, softwood raw materials usually present DPs in the range of 2100 to 4750. Other
lignocellulosic biomasses, such as grass, present DP values in the range of 1600-1900 [15].
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The extraction process used to obtain cellulose also has an impact on the DP of the
recovered cellulose. For instance, the sulfite process leads to less depolymerization than
the kraft process [12,16]. Another common cellulose raw material, cotton, presents a DP of
ca. 2150 [12]. Additionally, it is known that high-DP cellulose is more difficult to dissolve
compared with cellulose of lower DP [17,18]. It is important to note that cellulose is also
produced in nature by some bacteria and can be found in marine tunicates [19]. Some
examples of cellulose sources and their relative content are listed in Table 1.

In addition to cellulose, lignocellulosic biomass is composed of two other structural
polymers (hemicellulose and lignin), along with other minor compounds such as proteins
and fatty acids [20,21]. Cellulose can be extracted and isolated from the other components
in the raw material (typically in the form of cellulose fibers) by removing hemicellulose,
lignin, and other impurities. The properties of the extracted cellulose fibers depend on their
chemical composition, which, in turn, varies according to the source and even depending
on the part of the plant where it comes from, as well as on the applied separation process.

Table 1. Various sources of cellulose and relative amounts (adapted from reference [3]).

Lignocellulose Biomass Cellulose Source Cellulose (%) Ref.
Hardwood Poplar 35-50.0 [21-23]
Oak 404 [24]
Eucalyptus 40-45.0 [25-27]
Acacia 40-45.0 [28]
Softwood Pine 42.0-50.0 [29,30]
Douglas fir 40.0-50.0 [31,32]
Spruce 45.5 [33]
Agriculture waste Wheat straw 35.0-39.0 [34]
Barley hull 34.0 [35]
Barley straw 36.0-43.0 [36,37]
Rice straw 29.2-34.7 [38-40]
Rice husks 28.7-35.6 [41]
Oat straw 31.0-35.0 [42]
Corn cobs 33.7-41.2 [43]
Corn stalks 35.0-39.6 [44]
Sugarcane bagasse 25.0-45.0 [45]
Sorghum straw 32.0-35.0 [46]
Grasses Grasses 25.0-40.0 [47]
Switchgrass 35.0-40.0 [48]

Considering what is referred to above, the choice of the cellulose source will depend on
the desired properties and application, its availability, and economic purposes. Nowadays,
most of the cellulose fibers used worldwide are extracted from wood. Nonetheless, wood is
not widely available in some regions, and there is also a competing interest among several
industries related to construction, furniture, pulp and paper, and the burning of wood for
energy harvesting. Thus, it can be challenging to supply the required quantities of wood at
reasonable prices to all sectors [49]. This encourages the use of other non-woody sources,
such as herbaceous or aquatic plants, grasses, crops, and their by-products, for a variety of
applications. These non-woody plants generally contain less lignin than wood, making the
bleaching methods less demanding in terms of both chemicals and energy consumption.

3. Green Methods for Cellulose Extraction

There are various lignocellulosic biomass fractionation processes that allow the
separation and isolation of the components; the choice of the most efficient method
depends on the target polymer, source, and desired properties of the final product.
Usually, cellulose is obtained by dissolving lignin and hemicellulose, along with low-
molecular-weight compounds.
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Conventional methods for biomass fractionation, such as those used in the pulp and
paper industry (e.g., kraft cooking), are very efficient for the extraction of cellulose, but
the nature of the solvents used and the harsh treatment conditions employed have led the
scientific community to search for new environmentally friendly alternatives. The use of
green solvent systems, such as ionic liquids (ILs) and deep eutectic solvents (DES), has
been reported for biomass fractionation and demonstrated to be very promising systems
(Figure 2), not only because of their high efficiency and selectivity but also due to their in-
herent advantageous properties, such as low environmental impact, low toxicity, biodegrad-
ability, good stability, and easy recycling routes [20,50-52].
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Figure 2. Advantages and disadvantages of green methods for cellulose extraction.

ILs, first reported by Paul Walden in 1914, are known as “molten salts” because they
present a low melting point, usually below 100 °C [53], and are very promising solvents for
the dissolution and/or isolation of large biomolecules, such as cellulose and lignin [54,55].
The ILs contain organic cations, usually quaternary aromatic or aliphatic ammonium ions.
Alkylated phosphonium and, occasionally, sulfonium cations can also be included in the
IL chemistry [56]. The IL anion plays an important role in the IL’s ability to dissolve cellu-
lose. Suitable ILs identified to date contain anions such as chloride, carboxylates, dialkyl
phosphates, dialkyl and trialkylphosphonates, and amino acid anions [57]. The dissolving
ability of these relevant ILs has been typically attributed to strong hydrogen-bonding
interactions between the anions and equatorial hydroxyl groups present on the cellulose
molecules [55,58]. Nevertheless, since the cations are typically bulky with delocalized
charge, this has been argued to also favor the dissolution of amphiphilic-like molecules,
such as cellulose [18]. Biomass deconstruction greatly depends on the ability of the IL
to establish intermolecular interactions with lignocellulosic components, and several ILs
have been reported to selectively dissolve cellulose [50,59]. The strength of the interactions
between cellulose and the IL ions can be tuned by modifying the IL composition [60].
However, IL-based processes have been, so far, mainly applicable for lab-scale experiments.
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Apart from the questionable “green features” of ILs, their relatively high viscosity and high
cost of production and purification still hinder pilot and industrial-scale trials. Therefore,
the development of novel systems capable of efficiently and selectively extracting the
main biopolymers present in biomass is highly desirable, particularly if greener and more
environmentally friendly systems are prioritized.

In this context, DES have emerged as promising solvent systems due to their greener
profile and high efficiency for biomass fractionation [50,61]. The first DES was synthesized
by Abbott et al. in 2004 [62] and was formed by a mixture of Bronsted or Lewis acids
(hydrogen bond donors (HBDs)) combined with quaternary ammonium salts (e.g., Choline
chloride (ChCl)) (hydrogen bond acceptors (HBAs)) [63—-65]. When mixed at a certain
molar ratio, the melting point of the mixture becomes significantly lower than that of the
original components [61]. The physical properties of DES, such as low melting point and
volatility, high thermal stability, conductivity, and surface tension, are similar to those of
room-temperature ILs [62]. These physicochemical properties can be further tuned by
changing the HBD or HBA composition, which will consequently affect their performance
as extraction media. DES systems are easy to prepare in a pure state, do not require the
presence of any other solvent, and produce no waste. DES can be formed by natural bio-
sourced cations and anions, such as those obtained from natural organic acids, amino acids,
non-nutritive sweeteners, or natural compounds like choline or betaine, thus making these
systems low-cost, non-toxic, and highly biodegradable [66]. Itis clear that DESs offer several
advantages over conventional solvents, and, recently, huge interest has been generated
regarding their application in biorefineries [67]. DESs have been reported to selectively
dissolve and extract high-quality lignin with ca. 90% purity and a yield of nearly 60% (w/w)
of the total lignin present in different sources, such as corn straw [68]. Systems composed
of choline chloride (ChCl) and lactic acid [69], ChCl and monoetanolamine [67], and ChCl
and levulinic acid [70] are particularly efficient in biomass pretreatment. These DES are
claimed to promote proton-catalyzed cleavage of various chemical linkages (e.g., ether
and ester bonds) in the lignin-carbohydrate complex and in lignin molecules. Generally,
carboxylic acid-based DESs exhibit stronger performance in lignin fractionation than those
containing other functionalities, regardless of the HBAs used [71]. Despite their favorable
physicochemical properties and performance, DESs are still not widely used. These are
relatively new systems in biomass processing, and thus more research is needed to validate
their full potential and support their application at a larger scale [72].

4. Cellulose Structure

Cellulose is a high-molecular-weight linear homopolymer composed of
D-anhydroglucopyranose units (AGU) connected by [3(1-4)-glycosidic bonds [62]. Each
AGU monomer is rotated relative to its neighbor by 180° around the chain axis, forming a
disaccharide unit known as cellobiose (Figure 3).

Cellobiose based unit

OH OH OH OH
3
HO ~o0 0 HO 7~0 OH
s 2
HO o HO -0 o HO H
OH OH é OH OH
o
n-3

Non-reducing end group Anhydroglucose unit

Reducing end group

Figure 3. Molecular structure of cellulose showing the typical numbering of carbon atoms, the
reducing end containing a hemiacetal group, and the non-reducing end with a free hydroxyl at the
C4 position [66] (adapted from [66]).

As shown in Figure 3, each AGU has six carbon atoms and three hydroxyl groups
covalently linked to the carbon atoms at the C2, C3, and C6 positions. These hydroxyl
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groups can undergo typical reactions with primary and secondary alcohols. As presented
in Figure 3, the terminal monomers of the cellulose polymeric chain can be divided into
two types: (i) a reducing end, in the form of a hemiacetal, at the C1 position, and (ii) a
non-reducing end, with a free hydroxyl group, at the C4 position [61,62].

The reactivity of the hydroxyl groups combined with their tendency to establish
hydrogen bonds is responsible for some of the characteristics of cellulose, such as its
highly cohesive nature and remarkable mechanical features [63]. Through van der Waals
forces and intra- and intermolecular hydrogen bonds, the cellulose molecules organize into
elementary fibrils that consist of tightly packed and ordered regions (known as crystallites)
and less ordered and amorphous regions, as schematically represented in Figure 4. All the
above-mentioned interactions contribute to the insolubility profile of cellulose in water and
in most of the common solvents.

............. w mwmw

g mom m w ﬁ\» \w

Figure 4. Intramolecular (left) and intermolecular (right) hydrogen bonding networks in cellulose
molecules (from reference [64] with permission of the Royal Society of Chemistry).

The crystalline fraction typically ranges between 40% and 70% (w/w) of the total cellu-
lose fiber, and it is very dependent on the cellulose source and extraction conditions [66]. As
the diffusion phenomena are facilitated in the disordered regions, a notable ease of solvent
penetration into cellulose fibers can be observed. Solvent diffusion into the less-ordered
(amorphous) regions can induce the swelling of the fiber structure, further increasing its
accessibility. The swelling effect can be induced by bases, acids, salts, and some organic
solvents [73,74]. These swelling agents can penetrate into the inner core of the fibers and
interfere with the hydrogen bonds and van der Waals forces, disrupting the fibrillar ag-
gregates, loosening the structure, and thus making available additional surface hydroxyl
groups [64].

In general, cellulose derivatives result from the non-homogeneous substitution of the
hydroxyl groups in each AGU unit by other functional groups. Due to easier chemical
accessibility, cellulose modification is expected to occur preferentially in the amorphous
regions and, if allowed, later in the crystalline regions [64].

5. Cellulose Reactivity

As mentioned, cellulose has the capacity to participate in different chemical reactions
due to the three hydroxyl groups in each AGU. Under heterogeneous conditions, the
reactivity of the hydroxyl groups can be affected by: (1) their inherent chemical reactivity;
(2) steric effects that may arise from the reacting agent; and (3) steric effects that are driven
by the supramolecular structure of cellulose [75]. In most cases, the hydroxyl groups at the
C2 and C3 positions behave as secondary alcohols, while the hydroxyl group located at
C6 acts as a primary alcohol. The average number of OH groups in each AGU that have
been substituted is known as the degree of substitution (DS) [76]. For example, if all three
hydroxyl groups are substituted, DS is 3.0.

One important class of reaction in cellulose is esterification. In this respect, it has
been found that the OH at the C6 position is more prone to react than the OHs at the
other positions. Moreover, the OH at the C2 position reacts twice as fast as the OH at the
C3 position in esterification reactions [77]. In comparison with the other two secondary
hydroxyl groups, the primary hydroxyl group at C6 has an axis of free rotation around
the C5-C6 bond, which leads to a more reactive behavior. Nevertheless, the reactivity of
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this primary alcohol depends on the oxidation conditions, type of oxidant, and pH of the
medium [78].

Despite the favorable presence of reactive OH groups, reactions involving cellulose
are typically not easy, mainly because cellulose is highly heterogeneous in nature. As
discussed above, different parts of its constituent fibrils display very different accessibilities
to the same reagent (amorphous vs. crystalline domains) [79]. The accessibility of the
cellulose fibers can be improved by treatments with distinct solvents that can disrupt
the internal structure of the fibers and promote a swelling effect, or by the application
of mechanical treatments such as grinding [80]. Among these pre-treatments, swelling is
the most frequently used activation method for cellulose modification. Swelling agents
generally penetrate the highly ordered regions and break/weaken interactions among
the fibrils, loosening the internal structure. Depending on the cellulosic raw material and
strength of the solvent, cellulose fibers can be completely solubilized, and, depending on
the prevailing medium conditions, cellulose can behave as an acid, a base, or an amphoteric
compound [81].

The efficiency of the activation process (swelling/dissolution) deeply influences the
capacity to facilitate and control reactions with the three hydroxyl groups in each AGU [72].
It is important to note that cellulose swelling and dissolution are two distinct processes.
However, in order for swelling or dissolution to occur, the chemical agents are required to
penetrate and diffuse into the inner fibrillar core of the cellulose. In the swelling process, the
overall structure of cellulose remains essentially intact, regardless of some significant physi-
cal changes and the increase in volume due to the uptake of the swelling agent. On the other
hand, full dissolution of cellulose implies the transition from a heterogenous two-phase
system to a homogenous one-phase system by disrupting the well-organized and complex
supramolecular structure of cellulose. Depending on the cellulose properties and operation
conditions, a given solvent can either act as a swelling agent or as a dissolving medium [82].
Regardless of the differences between the two processes, from a physicochemical point of
view, they both occur by overcoming the intermolecular interactions responsible for the
cohesion of the fibrillar structure [83]. It is also important to note that, due to the structural
heterogeneity of most cellulose samples, both processes may occur simultaneously during
the treatment, resulting in the partial dissolution of the material and a more or less swollen
fraction [72]. This illustrates how complex these systems and processes are without being
possible to adopt a simple and straightforward standard strategy.

6. Chemical Modification of Cellulose

Cellulose is a fascinating polymeric material and possesses several favorable features,
but it also presents some drawbacks, such as its poor solubility in common solvents and
its lack of thermoplasticity and antimicrobial properties. To overcome such limitations,
controlled chemical modification of the cellulose structure is often a suitable strategy [84,85].

Dimensionally speaking, cellulose derivatives fall into two main categories: macro-
molecular cellulose derivatives and nanoscale particles [86]. Etherification reactions, in
which organic species, such as ethyl and methyl units, react with accessible hydroxyl
groups of cellulose, are frequently performed to produce water-soluble cellulose deriva-
tives. Cellulose-based materials can be developed by chemical modification through surface
functionalization or copolymerization of cellulose ethers, e.g., carboxymethyl cellulose
(CMCQ), hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), hydroxyethyl cel-
lulose (HEC), ethyl cellulose (EC), and cellulose acetate (CA) (see Figure 5). Regarding the
nanoscale cellulose particles, they can be nanofibrils (CNF), nanocrystals (CNC), “hairy”
nanocrystalline celluloses (HNC), and bacterial cellulose nanocrystals (BCNC) [86].
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Figure 5. Schematic representation of the chemical structure of typical cellulose derivatives [86]
(adapted from reference [86] with permission of the Royal Society of Chemistry).

To improve cellulose reactivity and allow further modifications, pretreatments are
often performed to introduce more reactive groups into the cellulose structure. One
example is the oxidation of cellulose to convert the hydroxyl groups into more reactive
aldehyde groups that can then undergo other derivatizations. Regarding the oxidizing
reagents used in cellulose chemistry, many can be enumerated, such as nitrogen oxides,
alkali metal nitrites and nitrates, ozone, permanganates, and peroxides. These agents
usually lead to reactions with low selectivity. However, cellulose oxidation with periodates
presents a very high selectivity [87], while minimizing the degradation of the cellulose
chains and keeping acceptable mechanical and morphological properties [88]. Periodic acid
and its salts, periodates, are known as regioselective oxidation agents capable of converting
vicinal diols, such as those of carbohydrates, to dialdehyde structures [89]. In this case, the
periodate will induce the cleavage of the C2—-C3 bond of the AGU, with the consequent
formation of carbonyl groups at those positions, resulting in dialdehyde cellulose (DAC),
as described in Figure 6 [90].

HO HO HO
0 NalO4 6] -NalO3
° o > |o ——» [0
-Hy
HO .
OH o> o]
n Reo |,
e
Cellulose 0/|\ ) DAC

(0} Na

Figure 6. Reaction scheme of dialdehyde cellulose (DAC) synthesis [5] (adapted from [5] with
permission of Frontiers).

Several reaction parameters may influence the properties of the obtained DAC, such
as the concentration of periodate (i.e., higher concentrations of periodate improve the
formation of aldehyde groups and allow for the cellulose to have higher aldehyde contents),
temperature, and reaction time. The pH effect is also an important parameter to control
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during the oxidation of cellulose. It was reported that, in acidic conditions (pH < 3), the
hydrolysis of cellulose is enhanced, resulting in superior degradation of the fibers [91]. Usu-
ally, selective oxidation with periodate is applied as the first step, in which the cellulose’s
crystalline structure is partially dismantled. Often, during such processes, the degree of
polymerization is also observed to decrease [5].

Although periodate oxidants are toxic, environmentally harmful, and relatively ex-
pensive, their recycling and reuse may make the process more sustainable and feasible,
both from environmental and economic perspectives [89]. Moreover, the highly reactive
aldehyde groups allow several different further derivatizations, such as sulphonates by
bisulfate addition, carboxylic acid derivatives through further oxidation, and imines from a
reaction with an amine [92]. The DAC derivative has been shown to be biodegradable and
biocompatible, which can be beneficial in many potential applications [93]. These DAC
characteristics are suitable to produce environmentally friendly, green-high-end materials
with potential applications as bio-flocculants, complexing agents, and super-adsorbents [5].

6.1. Cationization

Cellulose, usually obtained as cellulose fibers from wood sources, is typically neg-
atively charged due to the ionization of the hydroxyl groups. The functionalization of
cellulosic materials with cationic moieties has been a chosen strategy to confer affinity
toward other negatively charged molecules/particles and expand the applicability of cel-
lulose derivatives. Cationic celluloses have been applied as bio-based flocculant and /or
adsorbent alternatives for water treatments [94,95]. Additionally, the cationic groups can
potentially disrupt the negatively charged bacterial cell walls [96], thus broadening the
application of cationic cellulose towards the biocide area [97,98].

Two main strategies are described in the literature for the cationization of cellulose.
The first one involves the physical adsorption of cationic polymers into the cellulose
surface [99], and the second approach relies on the chemical modification and grafting of
cationic groups into the reactive sites of cellulose. The covalent functionalization can be
further subdivided into direct cationization, when the cationic groups directly attach to
the hydroxyl groups of cellulose [100], or indirect cationization, in which cellulose is first
derivatized to enhance its reactivity (via the introduction of, for instance, carbonyl groups)
and later the intermediate derivative further reacts with the cationizing agent [101].

Although cations from various atomic elements can be used for cationization (onium
salts from elements of the 15th to 17th group of the periodic table, such as quaternary am-
monium or phosphonium and tertiary sulphonium cations), most of the literature focuses
on the use of nitrogen-derived compounds. Depending on the derivative, the charge can
be pH-dependent, with the cationic group being formed due to the protonation of amines
(primary, secondary, or tertiary) or heterocyclic compounds (pyridine and imidazole) under
acidic conditions. On the other hand, quaternary ammonium derivates present a permanent
pH-independent positive charge [102,103].

One common method for cellulose cationization is based on direct modification by
dissolution of short-chain cellulose molecules in aqueous solutions (e.g., NaOH/urea,
NaOH/thiourea, or LiOH/urea), which are pre-cooled to sub-zero temperatures, fol-
lowed by cationization in a homogeneous medium with N-(3-chloro-2-hydroxypropyl)
trimethylammonium chloride (CHPTAC). In this system, the reactive epoxy reagent is pre-
pared in situ by reacting CHPTAC with alkali (Figure 7, Scheme 1). The epoxy reacts with
the available hydroxyl groups of cellulose to form an ether linkage, resulting in cationized
cellulose (Figure 7, Scheme 2). At the same time, an unavoidable competing hydrolysis
reaction occurs, where 2,3-epoxy-trimethylammonium chloride (EPTAC) is converted to the
nonreactive form 2,3-dihydroxypropyltrimethylammonium chloride (Figure 7, Scheme 3).
This undesirable parallel hydrolysis reaction represents a major drawback to the economic
feasibility of this process since it compromises the reaction efficiency [100].
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Figure 7. Simplified reaction mechanisms occurring during the cationization of cellulose with
CHPTAC under alkaline conditions. Conversion of CHPTAC into EPTAC (Scheme 1); Etherification
reaction of cellulose with EPTAC (Scheme 2); Hydrolysis reaction of EPTAC (Scheme 3). Adapted
from reference [100] with permission of John Wiley and Sons.

An alternative approach considers the cationization of pre-modified cellulose by using,
for example, DAC [104], CA, or HEC [5] as raw materials. Regarding the DAC-based
approach, after cellulose conversion to DAC by oxidation with sodium metaperiodate
(described in Section 6 and Figure 6), DAC reacts with the Girard’s reagent T (GT), forming
a stable imine structure with cationic quaternary ammoniums (Figure 8) [105,106].

ﬁ' OH
2H. _N |
OH N Y\Nf o

OH l-ll 0o | //Q/O + 2

0 Nalo4 o) = - N/hll

R
HO Cat.H
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. N
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Figure 8. Dual step cationization of cellulose with GT via DAC. Firstly, a periodate oxidation of
cellulose to create DAC is conducted, followed by the synthesis of cationic cellulose using Girard’s
reagent. Adapted from [106] with permission of Springer.

The direct cationization of wood cellulose fibers with CHPTAC and the indirect
method with GT were both tested by Pedrosa et al. [107] as a pretreatment to produce
micro/nanofibrillated cellulose by high pressure homogenization. The morphological
analysis demonstrates that the samples subjected to sodium metaperiodate oxidation
(opening of the anhydroglucose ring) suffered significant degradation of the cellulosic
structure, leading to the formation of short fibrils and enhanced solubilization of the
material. A DS of 0.36 resulted in the complete solubilization of the cellulose fibers. The
cationization with CHPTAC allowed for longer fibrils that conferred a more cohesive 3D



Polymers 2023, 15, 3138

11 0f 25

1

R = Lignocellulose

structure (forming a gel-like material at ca. 1% (w/w)). The solubilization of the fibrils was
not detected.

Sirvio et al. [108] reported the cationization of cellulose using betaine hydrochloride as
a cationic reagent, tosyl chloride as a coupling agent, and a DES based on triethylmethylam-
monium chloride (TEMA) and imidazole (molar ratio 1:2). The reaction conditions, such as
temperature, amount of cellulose, and reagents, were evaluated, and the DS was observed
to vary from 0.07 to 0.44. From a mechanistic point of view, the imidazole acts first as a
catalyst by deprotonating the betaine carboxylic acid group (Figure 9). Furthermore, the
deprotonated betaine reacts with tosyl chloride to form a mixed anhydride. At this stage,
the imidazole works as an acid scavenger that neutralizes the hydrogen chloride formed
as a by-product. Moreover, the oxygen atoms of the hydroxyl groups of lignocellulose
react with the anhydride to form an intermediate species. The intermediate species is then
deprotonated by imidazole, resulting in the formation of cellulose betaine ester as the main
product and p-toluenesulfonic (tosylic) acid as a by-product. Tosylic acid is then neutralized
by imidazole. During the cationization process, the tosylation of cellulose occurs as a side
reaction, possibly due to the presence of basic imidazole that may catalyze the formation of
tosyl cellulose. By decreasing the tosyl chloride content, the authors were able to limit the
occurrence of undesired side reactions and decrease the chemical consumption without
significantly compromising the cationic group content, thus improving the environmental
impact and economic feasibility of the procedure [108].

CH;

ar
. a N c TH3 (o
H
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+ I|\ / H,C\I /+ 0/
OH N /j o N\ H;C OH
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Cl \ R
Cl
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HaC—_ H,C 0.
R
/H\)Lo - e +\R
HsC L

[ivien N
[IMi][Tos] O

Figure 9. Cationization of cellulose via imidazolium-catalyzed tosylation of betaine hydrochloride.
Imidazolium chloride ([IMI][C]]) and tosylate ([IMI][Tos]) are formed as by-products [108] (adapted
from [108] with permission of Elsevier).

Emam et al. [109] reported the cationization of viscose fibers via a two-step reaction
with a quaternary ammonium salt. Initially, viscose fibers are activated by an alkalization
step using sodium hydroxide. The authors suggested that the hydroxyl groups of cellulose
fibers are deprotonated in the presence of NaOH, and cellulose fibrils become more accessi-
ble through swelling. In the second step, cationic cellulose is obtained by modification of
the activated fibers with N-2-chloroethyl-N,N-diethylammonium chloride (CEDAC). Via
solvolysis, CEDAC forms an aziridinium ion, which is prone to react with the deprotonated
hydroxyl groups of cellulose and form the cationized cellulose derivative (Figure 10). As
suggested by the nitrogen content analysis, the DS is observed to be dependent on the
concentration of quaternary amine.
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Figure 10. Schematic representation of cellulose quaternization with CEDAC, obtained from the
chemical reaction between cellulose and quaternary amine [109] (adapted from reference [109] with
permission of Elsevier).

6.2. Anionization

Although cellulose anionization is not as well explored as cationization, there are
some procedures described in the literature. For example, Rajalaxmi et al. [110] and Grenda
et al. [5] studied the synthesis of water-soluble anionic lignocellulose by sulfonation of
DAC. Anionic DAC (ADAC) was obtained by dispersing DAC in deionized water and
reacting it with sodium metabisulfite [5] or sodium bisulfite [110] (Figure 11).

Oxidation Anionization
HO
Na|04 /%/ 2N325205 /ﬁ/
Lol HO 50, HO 803

DAC ADAC

Figure 11. Dual-step anionization of cellulose through sulfonation of DAC (adapted from reference [5]
with permission of Frontiers).

In Grenda et al. [5], after the anionization reaction with sodium metabisulfite, the
resultant transparent solution was mixed with isopropanol to precipitate the soluble prod-
uct. The authors observed that as the reaction time increased, greater homogeneity in the
product was achieved. It was reasoned that the presence of lignin restricts the penetration of
sodium metabisulfite into the lignocellulose dialdehyde, requiring longer reaction times to
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provide sufficient sulfonation in the final product. However, the sulfur content in ADACs
revealed that too long reaction times did not necessarily translate into higher degrees of
sulfonation because the product undergoes chemical degradation for reaction times longer
than 72 h. The authors suggest that, for anionization of DAC with sodium metabisulfite at
room temperature, the optimal reaction time ranges between ca. 34 h and 72 h.

Cao et al. [111] have synthesized carboxylated cellulose by reacting cellulose with
different acidic DES (Figure 12). Cellulose and the DES of interest were initially ball milled
at 500 rpm for 30 min and then mechanically stirred for 2 h at 800 rpm and 100 °C. After
the reaction, the product was thoroughly washed with ethanol and freeze-dried. Several
DES composed of choline chloride as HBA and five different carboxylic acids (i.e., citric
acid, malic acid, oxalic acid, malonic acid, and succinic acid) as HBDs were evaluated.
It was observed that the acid’s chain length, molecular size, and number of hydroxyl
and carboxylic groups affect the carboxylation efficiency of the DES. The decrease in the
chain length of the carboxylic acid and, consequently, the increase in acidity lead to higher
carboxylation efficiencies. However, carboxylation with DES containing citric acid—which
has stronger acidity and more carboxylic groups—is somehow sterically hindered due to
its molecular size. The most favorable ratio between acidity and molecular size of oxalic
acid resulted in the highest carboxylation efficiency. The addition of a small amount of
water improves the fluidity and mass transfer rate of the DES, thereby increasing the
carboxylation efficiency of cellulose. Moreover, it also allows an easier penetration of
chloride ions from HBA into the cellulose, which eventually contributes to dismantling the
crystalline structure while promoting efficient cellulose carboxylation. Overall, the DES
composed of choline chloride and oxalic acid at a molar ratio of 1:5 and containing 10%
(w/w) water was found to be the most promising mixture. The use of ball milling in the
process reduces the cellulose particle size, increases the surface area of cellulose, promotes
the interaction between DES and the cellulose molecules, and disrupts the crystalline
structure, thus increasing the carboxylic content in the modified cellulose.

I

o C C OH

(o] Oxalic acid: ChCl (1:5)

100 °C, 2h o

OH ~—o

HO OH

Figure 12. Development of carboxylated cellulose with a DES containing carboxylic acid [111,112].

6.3. Hydrophobic Modification

Cellulose molecules possess a great number of hydroxyl groups, leading to fibers
with a strong polarity and high water sorption capacity. However, most of the synthetic
polymeric matrices are nonpolar, such as plastics (polyethylene or polypropylene are
among the most common) [113]. Therefore, the interfacial compatibility between cellulose
fibers and polymeric systems is rather poor. For example, the addition of unmodified
cellulose fibers to polymer composites often leads to a significant reduction in impact
strength due to the poor compatibility between hydrophilic fibers and the hydrophobic
polymer matrix. Thus, it is important to ensure that the bonding or adhesion between
fibers and the polymeric matrix is sufficiently high to enhance the interfacial compatibility,
which governs the mechanical properties of the composite materials. This can be achieved
by chemically modifying cellulose and introducing hydrophobic groups in the cellulose
chain. For example, Vehvilainen et al. modified enzyme-treated cellulose in alkaline
aqueous tert-butanol, using allyl glycidyl ether as the modifying reagent, to obtain 3-
allyloxy-2-hydroxypropyl cellulose (Figure 13) [114]. The modification was performed in a
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homogeneous medium, and cellulose with a high degree of substitution could be attained.
However, its application is still restricted due to the harsh alkaline conditions required and
the demanding operational details.

fr mw1 e mw1

Figure 13. Synthesis of 3-allyloxy-2-hydroxypropyl cellulose [114]. R = H, or 3-allyloxy-2-
hydroxypropyl. Reprinted from [114] with permission of Springer.

Homogenous acetylation and carbanilation reactions of wood-based lignocellulosic
materials in ILs have also been investigated, resulting in highly substituted lignocellulosic
esters (Figure 14). A high DS of 92.6% and 89.7% (based on the amount of OH groups
substituted in lignocellulosic material, determined by 3'P NMR) can be achieved under
mild conditions for acetylated and carbanilated wood, respectively [68]. The optimal
conditions were found to be 2 h for both reactions and a temperature of 70 °C and 80 °C for
acetylation and carbanilation reactions, respectively. It was also reported that the IL can be
recycled and reused without negatively affecting the reaction efficiency. This is considered
a promising approach for surface modification of cellulose if ILs become routinely applied
beyond the laboratory scale.
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Representative Structure of wood

Figure 14. Representative structures of wood components and the homogenous functionalization
reactions performed in ILs (adapted from reference [68] with permission of ACS).

The preparation of hydrophobically modified cellulose from renewable feedstocks
(based on green chemistry principles) can be met using plant oils. Plant oils are triglycerides
with hydrophobic long hydrocarbon chains, which have been exploited as sustainable alter-
natives to materials derived from non-renewable resources [115]. Yoo et al. have reported
the surface hydrophobization of CNC with bio-derived fatty acids using aqueous lactic
acid as a reactive solvent without affecting the structural morphology and crystallinity of
the grafted CNCs [116]. Similarly, Wei et al. have investigated the chemical modification of
CNCs using canola oil fatty acid methyl ester via a transesterification reaction, as schemat-
ically illustrated in Figure 15 [117]. This transesterification strategy can be employed to
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modify other cellulose nanomaterials with a high availability of OH groups on the surface.
Shang et al. have grafted diisocyanate-functionalized castor oil onto the CNC surface to
enhance its hydrophobicity [118].

H,C-0-C—R Glycerol
2
Step 1: | 9 Methanol Hz?-o H
HC-0-C-R . 340-CH, —N2OH, KOH _ it on | 3R-G-0-CH,
H,C-0-C—R e hige=ai] 0
. . Canola oil fatty acid methyl ester
Triglycerides (CME)

(Triester of glycerol)

—o”\H 0f&o— R—C-O-CH3 Kzf\m

Cellulose nanocrystals )
(CNCs) CNC fatty acid methyl ester

R is long chain hydrocarbons (CNCFE)

Step 2:

Figure 15. Reaction mechanism for the synthesis of canola oil fatty acid methyl ester (CME) (step 1)
and cellulose fatty acid methyl ester (step 2). R represents the long hydrocarbon chain (adapted from
reference [117] with permission of Elsevier).

Another widely used way to modify the surface of polysaccharides and make them
more hydrophobic relies on the introduction of acrylates and methacrylates into the chain.
Littunen et al. studied the filling of various acrylates and methacrylates as monomers
through a free radical copolymerization initiated by ammonium cerium (IV) nitrate
((NHy4)>Ce(NOg3)g) [119]. Initiation occurs via a redox reaction as the cerium ion reacts with
two adjacent hydroxyl groups on a cellulose chain, resulting in the formation of a radical
on an open glucose ring (Figure 16).

e

Figure 16. Mechanism of cerium-initiated copolymerization (adapted from references [119,120] with

O

permission of Elsevier).

An important advantage of this method is that the entire synthesis can be performed
in an aqueous medium. The macrostructures formed by the grafted polymers ranged
from a thin coating to a continuous matrix completely enveloping the fibrils. This type of
modification can offer a simple way of improving the compatibility between lignocellulosic
materials and synthetic polymers.

The introduction of siloxane groups into the cellulose structure is another suitable
approach to enhancing the hydrophobicity of the molecule. Schuyten et al. introduced,
almost 70 years ago, the first cellulose derivative, trimethylsilylcellulose (TMSC) [121-123].
The TMSC was synthesized through the reaction of cellulose with different organochlorosi-
lanes in the presence of pyridine. The 3C NMR spectrum in Figure 17 reveals the typical
fingerprint of the synthesized TMSC. Only the signals for the substituent (0.0-2.0 ppm)
and the AGU (103.0-60.8 ppm) are found. The authors have obtained TMSC with different
degrees of substitution in a controlled manner, despite the observed low solubility in some
relevant organic solvents, such as in a toluene/ethanol (80/20) mixture [124].
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Figure 17. 13C NMR spectrum of trimethylsilyl cellulose (degree of substitution, DS ~ 0.43) in DMSO-
dg, where R means trimethylsilyl group or H according to DS [121]. Reproduced from Reference [124]
with permission from Wiley and the Copyright Clearance Center, 2008.

Later, some improvements in the TMSC synthesis led to products soluble in organic
solvents, such as chloroform, 1,1,1-trichloroethane, and o-xylene [125]. The disadvantage
of the process is the use of chemicals that pose risks for the user and the environment, such
as pyridine and chloroform. Generally, the synthesis of TMSC is composed of several steps,
involving cellulose dissolution in a non-volatile solvent, such as N,N-dimethylacetamide
with LiCl, derivatization in the homogenous phase, and phase separation of the obtained
TMSC. The final product can be dissolved in a suitable organic solvent (e.g., tetrahydrofuran
or toluene) [123]. The obtained silylated cellulose is highly hydrolyzable in the presence of
water or other hydroxylated compounds.

From the examples discussed above, it is clear that lignocellulosic materials can be
modified in many different ways. The choice of the most suitable method will depend on
the desired properties of the cellulose derivatives and the application foreseen.

7. Applications of Cellulose Derivatives

Chemical modification of low-cost, naturally occurring raw materials, such as cel-
lulose, is an important and promising route for the development of green value-added
products. Cellulose derivatives are currently used in different areas, such as food for-
mulations, coatings, or films with barrier properties [4,11,126,127] (Table 2). Studies for
the development of adhesives and composites have also been conducted, such as the
production of cement-based composites from cellulose-modified fibers. Tonoli et al. [128]
evaluated the effect of cellulose modification on the microstructure and mechanical proper-
ties of fiber-cement composites. Surface modification of cellulose fibers was conducted with
methacryloxypropyltri-methoxysilane (MPTS) and aminopropyltri-ethoxysilane (APTS).
The composites reinforced with APTS-modified fibers presented a higher modulus of
rupture than those reinforced with unmodified or MPTS-modified fibers. The elasticity
was observed to increase for both modified pulps due to the increased fiber-to-matrix
adhesion [128].

An edible cellulose-based film for probiotic entrapment was prepared by
Singh et al. [127] using sodium CMC and HEC. The use of non-toxic citric acid as a
natural crosslinker makes these materials acceptable in the food and medical fields due
to their excellent biocompatibility and hydrophilicity [129,130]. The mechanical, swelling,
and release properties can be tuned by controlling the HEC/CMC ratio and amount of
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crosslinker. For example, HEC-based films show a higher swelling capacity than those
containing CMC. On the other hand, the CMC films presented the highest tensile strength.
In another study, Alves et al. developed composite films using TEMPO-oxidized cellulose
nanofibers (CNF) and minerals. It was proven that those films have potential applications
in food packaging and printed electronics [131]. The authors concluded that the presence
of negatively charged groups resulted in higher fibrillation and, consequently, films with
improved transparency and good mechanical and barrier properties. It was also observed
that the TEMPO CNF films did not face a depletion in properties with the introduction of
minerals, contrary to films prepared with non-modified CNF.

In the biomedical area, the use of cellulose derivatives as controlled drug release
systems is very appealing [4,132]. Nanocrystalline cellulose is a promising material for
biomedical applications because of its excellent mechanical properties and biocompatible
nature. In addition, its high aspect ratio building blocks may construct natural crystals
or nanorod networks that are held together by hydrogen bonding and physical entangle-
ments. Such a network could be even further mechanically reinforced by cross-linking the
individual nanofibers [4].

There are numerous cellular species that can be cultured on nanocellulose biomaterials,
such as hydrogels, electrospun nanofibers, sponges, composites, and membranes [133].
Among the sources of nanocellulose, bacterial nanocellulose is believed to be the most
suitable choice for cell culture due to its high purity, porosity, biodegradability, and low
toxicity [134]. Other cellulose derivatives were employed in biomedical areas. For example,
Bianchi et al. [135] prepared hydrogels with wound dressing capability in association with
-cyclodextrin; Suliwarno et al. [136] developed hydrogel-based materials, formed by elec-
tron beam irradiation crosslinking of methyl cellulose, also with wound dressing potential;
Niemczyk-Soczynska et al. [137] used methyl cellulose to produce hydrogels, by thermally
induced crosslinking, to create scaffolds for tissue engineering; Pasqui et al. [138] pre-
pared carboxymethyl cellulose—hydroxyapatite hybrid hydrogels for composite materials
for bone tissue engineering applications; and Dai et al. [139] developed PEG—carboxy-
methylcellulose nanoparticles hydrogels for injectable and thermosensitive drug delivery.

Fuller et al. [140] studied the removal of munition constituents from stormwater
runoff with native and cationic cellulose. The cationization of cellulose with CHPTAC was
revealed to greatly improve the removal of 3-nitro-1,2,4-triazol-5-one (NTO) from both
artificial and real stormwater runoff. An increase in the concentration of CHPTAC from 38
to 225 g/L was also revealed to positively enhance the removal. It was also demonstrated
that the cationic materials tend to buffer the pH of the solution towards circumneutral
values. This advantageous effect enables the NTO removal to not be affected by the initial
pH of the medium [140].

Cellulose derivatives are also reported as efficient flocculants, namely for the floccula-
tion of pigments [5] and calcium carbonate in papermaking [141]. Grenda et al. prepared
cationic cellulose-based polyelectrolytes (PELs) to act as flocculants for dye removal in
colored effluents [104]. The bleached Eucalyptus kraft pulp fibers were modified in a
two-step reaction: DAC was initially prepared by the oxidation of cellulose with sodium
periodate, and then the cationic groups were introduced by reacting the aldehyde groups
with Girard’s reagent T. Cationic cellulose-based PELs with different properties (e.g., lignin
content and charge) were tested at different concentrations and pH for the removal of dyes,
and the addition or absence of an inorganic agent (bentonite) was also evaluated. The
authors concluded that the dual system, with the addition of the inorganic agent followed
by the flocculant, results in a generally higher color removal. Natural-based flocculants
provided similar or even better performance in comparison to synthetic polymers. This
ability to efficiently flocculate dyes with different structures and charge densities is of great
importance due to the increasing number of industrial sectors that use dyes in their daily
processes, such as the textile, pharmaceutical, paper, and cosmetic industries.

In the textile industry, cellulose modification can also be applied to enhance dye uptake
into textile fibers. A potentially environmentally friendly dyeing method using a cation-
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ization method in combination with mercerization was proposed by Fu et al. [142]. The
cationization of cotton was performed with CHPTAC, and it was observed that the dyeing
performance of the cationized cotton fabrics is enhanced with the increase in cationizing
agent. The dye uptake was higher than 95%, and an improvement in both color depth and
colorfastness properties was observed. This method also allows the use of lower concen-
trations of dyes and avoids the extensive use of salt required by conventional methods,
thus showing that this procedure is more environmentally benign than the conventional
ones using fiber-reactive dyes. Pereira et al. have also recently reported the cationization
of regenerated wood pulp fibers with glycidyltrimethylammonium chloride (GTAC) to
improve dye uptake. The results show that GTAC-modified cellulose exhibits higher dye
exhaustion (89.3%) and dye fixation (80.6%) values than non-modified cellulose [143].

Table 2. Summary of some selected applications of cellulose derivatives.

Reference

Molecular Weight/Degree Application of Cellulose

of Polymerization

Type of Derivatization

Degree of Substitution

Derivative

Tonoli et al. [128]

Singh et al. [127]

Alves et al. [13]

Fuller et al. [140]

Chambin et al. [132]

Bianchi et al. [135]

Suliwarno et al. [136]

Niemczyk-Soczynska
etal. [137]

Pasqui et al. [138]

Not provided

Carboxymethyl cellulose
(CMC)—250 kDa;
Hydroxyethyl cellulose
(HEC)—720 kDa

Degree of polymerization of

381

Not provided

Hydroxypropylmethyl
cellulose (HPMC)—low
MW; Ethyl cellulose
(EC)—230 kDa

Hydroxypropylmethyl

cellulose (HPMC)—medium

MW—500 kDa

Methyl cellulose
(MC)—18-27 kDa

Methyl cellulose
(MC)—13-16 kDa

Carboxymethyl cellulose
(CMC)—700 kDa

Silane grafting—
methacryloxypropyltri-
methoxysilane (MPTS)

and aminopropyltri-
ethoxysilane
(APTS)

Cellulose etherification

Oxidation with NaOCl in
the presence of catalytic
amounts of TEMPO and

NaBr

Cellulose cationization
with CHPTAC

Cellulose etherification

Cellulose etherification

Cellulose etherification

Cellulose etherification

Cellulose etherification

Not provided

CMC—0.80-0.85; HEC 2.5
mol/mol cellulose

Carboxylic group content:
0.74 mmol/g

ca. 700 pmol/g

HPMC—1.9 methoxy
groups per
anhydroglucose unit;
EC—Ethoxyl content%
(w/w)—48-49.5

Methoxy content: 19-24%
(w/w); Hydroxypropyl
content: 1-7% (w/w)

DS:1.4-2.0

DS: 1.8

Degree of
carboxymethylation of
95%

Fiber-cement composite
reinforcement

Edible cellulose-based
films for probiotic
entrapment

Cellulose-based composite
films for food packaging
or printed electronics

Cationized cellulosic
sorbents for the removal
of insensitive munition
constituents

Matrices (granules and
tablets) for drug release

Hydrogels with wound
dressing capability, in
association with
-cyclodextrin
Hydrogel-based material
formed by electron beam
irradiation crosslinking,
with wound dressing
capability
Hydrogels based on
thermally induced
crosslinking to produce
scaffolds for tissue
engineering
Carboxymethyl
cellulose-hydroxyapatite
hybrid hydrogels for
composite materials for
bone tissue engineering
applications
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Table 2. Cont.

Molecular Weight/Degree

Application of Cellulose

Reference of Polymerization Type of Derivatization Degree of Substitution Derivative
PEG-carboxy-
. methylcellulose
. Sodium carboxymethy] P nanoparticle hydrogels for
Dai et al. [139] cellulose (NaCMC)—275 Cellulose etherification DS: 0.82 injectable and
kDa thermosensitive drug
delivery
Periodate oxidation to
form cellulose dialdehyde S Anionic and cationic
is followed by A?ﬁi;?r1)1.ozllc;t_}; 1;6:1 X pulp-based flocculants for
Grenda et al. [5] Not provided anionization with sodium CDAC—ec fti.on.icit .in ciex application in effluent
metabisulfite (ADAC) or (mmol/g): 2.8 42’3 56 treatment from the textile
cationization with Girard’s Mo/ g): = ’ industry
T reagent (CDAC)
Cellulose dialdehyde Charge density (mmol/g)
prepared through of CDAC: 0.23-3.44;
) . pgrlqdate 0>.<1dat1‘on ar,1d Charge density of Flocculants for calcium
Pedrosa et al. [141] Not provided cationized with Girard’s T CHPTAC modified carbonate in papermakin.
reagent (CDAC) or direct cellulose (mmol/g): pap &
cationization of cellulose 0.46-0.92 &
with CHPTAC ' '
Environmentally benign
) . Direct cationization with . method for dyeing textiles
Fu et al. [142] Not provided CHPTAC Not provided as a substitute for reactive
dyes
Direct cationization of
cellulose with gly- Dye fixation and dye
Pereira et al. [143] Not provided cidyltrimethylammonium DS: 0.13-0.33 exhaustion lead to textiles

chloride (GTAC) in a

with enhanced dye uptake

water/ THF mixture

8. Concluding Remarks

Cellulose is the most abundant natural polymer on Earth. Due to its wide availabil-
ity, it is a very promising raw material for the replacement of non-renewable feedstocks.
To overcome some limitations of its application and expand its valorization and uti-
lization, cellulose can be chemically modified to improve its chemical and/or physical
properties. Numerous studies reporting the modification and application of cellulosic
materials are available in the literature. In the present review, some of the most common
chemical modifications of cellulose (i.e., cationic, anionic, and hydrophobic modifica-
tions) are briefly described, and selected applications of these derivatives are presented.
Cellulose and its derivatives can be obtained from different sources, including biomass
such as agroforestry residues, and are suitable for a wide range of applications. A brief
review of possible fractionation procedures is also presented, including greener alter-
natives. By understanding cellulose structure and reactivity, it is possible to tune the
properties of the resultant material, such as by modulating the hydrophilic/lipophilic
balance, charge, or degree of polymerization, to obtain materials with improved per-
formance for the intended application. The overall range of material applications for
cellulose derivatives is virtually limitless.

In summary, cellulose appears to be a sustainable, environmentally friendly feedstock
with valuable properties such as its biocompatibility, non-toxicity, and wide availability,
and the study of new routes to improve its properties and applications is of great interest.
The cellulose derivatives are suitable for the replacement of fossil-based products and are
an important alternative to reduce the environmental problems derived from the use of
petroleum-based materials and fuels. Indeed, cellulose and its derivatives can provide the
biological, chemical, physical, and engineering communities with new opportunities for
exciting advancements and discoveries.
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