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Abstract The soft gluon limit of the longitudinal part of the
quark-gluon vertex is studied by resorting to non-perturbative
approaches to quantum chromodynamics (QCD). Based on a
Slavnov–Taylor identity (STI), the longitudinal form factors
is expressed in terms of the quark-ghost kernel, the quark
self energy and the quark wave function. An exact rela-
tion between the non-vanishing longitudinal form factors is
derived for the soft gluon limit and explored to understand the
behaviour of the vertex. Within a Ball–Chiu vertex, the form
factor λ1 was analysed using recent lattice simulations for
full QCD for the soft gluon limit. The lattice data shows that
the gluon propagator resumes the momentum dependence of
such component of the vertex. This connection is understood
via a fully dressed one-loop Bethe–Salpeter equation. The
behaviour of the remaining longitudinal form factors λ2(p2)

and λ3(p2) is investigated combining both the information
of lattice simulations and the derived relations based on the
STI.

1 Introduction and motivation

The quark-gluon vertex is at the heart of all hadron phe-
nomena. Quark confinement and dynamical chiral symmetry
breaking, two open problems in modern strong interactions,
require certainly a good understanding of this one-particle
irreducible function. Despite all efforts towards a first princi-
ple calculation of the quark-gluon vertex, a complete solution
is still lacking.

The information on the structure of the vertex is crucial
also for the continuous approaches to QCD that, typically,
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rely on modelling the functional dependence of the form
factors associated to its various tensor structures, assume
the dominance of one of the form factors, e.g., λ1(p2) and
explore various truncations of the corresponding Dyson–
Schwinger and Bethe–Salpeter kernels.

Progress in computing the quark-gluon vertex and the fun-
damental QCD kernels has been slow and it revealed quite
a difficult problem per se [1–16]. In this perspective, gath-
ering information and combining various non-perturbative
approaches can be useful to learn more about this fundamen-
tal QCD quantity. Efforts along this line has already been pur-
sued in the Landau gauge in [3], where lattice results for the
gluon, ghost and quark propagator have been used together
with the Slavnov–Taylor Identity (STI) for the quark-gluon
vertex to solve the quark gap equation that relates all these
quantities and implicitly defines a coupled set of integral
equations to be solved for the unknown form factors of the
quark-ghost kernel. We remind that the STI allows to express
the quark-gluon vertex in terms of the quark-ghost kernel
form factors. The solution for the vertex obtained from the
gap equation relied on a particular simplification of the full
structure tensor of the quark-ghost kernel and, therefore, of
the vertex. A similar approach to the gluon-ghost vertex can
be found in [17].

In this work, we aim to go further on the above delineated
approach studying the soft gluon limit of the quark-gluon
vertex provided by full QCD lattice simulations for N f = 2
in combination with the information that the STI adds on.
From the STI, that constraints the longitudinal part of the
quark-gluon vertex, an exact relation between λ1, λ2 and λ3

is obtained in the soft gluon limit that links these form factors
and those associated with the quark-ghost kernel.

Furthermore, relying on the soft gluon limit of the STI
for λ1, we explore the results from the recent Lattice QCD
simulation [18]. In particular, we find an empirical connec-
tion linking the gluon propagator Δ(p2) and the soft gluon
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Fig. 1 The quark-gluon vertex
for a general kinematical
configuration. All momenta are
incoming and verify
p1 + p2 + p3 = 0 p2 −p1

p3

limit for λ1(p2) that writes this form factor, for momenta
up to p ∼ 10 GeV, in terms of Δ(p2). As discussed, this
connection can be understood in terms of a dressed one-loop
Bethe–Salpeter equation for the vertex function. Moreover,
the information coming from the STI and the lattice data
for λ1, allows the understanding of the qualitative behaviour
of the remaining non-vanishing longitudinal form factors λ2

and λ3, in the soft gluon limit.

2 Notation and definitions

For the diagonal metric g = (1, −1, −1, −1) defined in
Minkowsky space, the one-particle irreducible Green func-
tion associated to the quark-gluon vertex represented on
Fig. 1 reads

Γ a
μ (p1, p2, p3) = g ta Γμ(p1, p2, p3) , (1)

where all momenta are incoming and, therefore, p1 + p2 +
p3 = 0, g is the strong coupling constant and ta are the
SU(3) generators in the fundamental representation. Herein
we follow the notation of [19].

The quark propagator is color diagonal and has the fol-
lowing Dirac structure

S(p) = i

A(p2)/p − B(p2)
= i Z(p2)

/p + M(p2)

p2 − M2(p2)
, (2)

where Z(p2) = 1/A(p2) is the quark wave function and
M(p2) = B(p2)/A(p2) is the renormalization group invari-
ant running quark mass. In the Landau gauge, the gluon prop-
agator is given by

Δab
μν(q) = −i δab

(
gμν − qμqν

q2

)
Δ(q2) . (3)

In the following, we will refer either to Δab
μν(q) or to the form

factor Δ(q2) as the gluon propagator.
The Lorentz structure of the quark-gluon vertex Γμ, see

Eq. (1), can be decomposed into longitudinal Γ (L) and trans-
verse Γ (T ) components relative to the gluon momenta as

Γμ(p1, p2, p3) = Γ (L)
μ (p1, p2, p3) + Γ (T )

μ (p1, p2, p3),

(4)

where, by definition,

pμ
3 Γ (T )

μ (p1, p2, p3) = 0 . (5)

By choosing a suitable tensor basis in the spinor-Lorentz
space, Γμ can be written as a sum of scalar form factors that
multiply each of the elements of the basis. The full vertex Γμ

requires twelve form factors and for the Ball and Chiu [20]
basis one writes

Γ L
μ (p1, p2, p3) = −i

4∑
i=1

λi (p1, p2, p3) L
(i)
μ (p1, p2) (6)

Γ T
μ (p1, p2, p3) = −i

8∑
i=1

τi (p1, p2, p3) T
(i)
μ (p1, p2) . (7)

For the longitudinal vertex studied below, the operators are
given by

L(1)
μ (p1, p2) = γμ , (8)

L(2)
μ (p1, p2) = (/p1 − /p2) (p1 − p2)μ , (9)

L(3)
μ (p1, p2) = (p1 − p2)μ ID , (10)

L(4)
μ (p1, p2) = σμν (p1 − p2)

ν , (11)

where σμν = 1
2 [γμ, γν]. The transverse operator basis

T (i)
μ (p1, p2) can be found in [20].

3 Constraints on the quark-gluon vertex

The global and local symmetries of QCD constraints the full
vertex Γμ and connect several of the Green’s functions of the
theory. For example, the global symmetries of QCD require
that the form factors λi and τi to be either symmetric or
anti-symmetric under exchange of the two first momenta –
see, e.g., Ref. [19] and references therein. On the other hand,
gauge symmetry implies non-trivial relations between the
QCD Green’s functions that can be translated into Slavnov–
Taylor identities [21,22] that play a major role in our under-
standing of the theory. In particular, the transverse part of the
quark-gluon vertex is constrained, in the Landau gauge, by
the following identity

pμ
3 Γμ(p1, p2, p3) = F(p2

3)
[
S−1(−p1) H(p1, p2, p3)

−H(p2, p1, p3) S
−1(p2)

]
, (12)

where the ghost-dressing function F(q2) is related to the
ghost two-point correlation function as

Dab(q2) = − δab F(q2)/q2 (13)

and H and H are associated to the quark-ghost kernel –
see [19] for definitions and discussion. The quark-ghost ker-
nel can be parametrized in terms of four form factors
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H(p1, p2, p3) = X0 ID + X1 /p1 + X2 /p2 + X3 σαβ p
α
1 p

β
2 ,

H(p2, p1, p3) = X0 ID − X2 /p1 − X1 /p2 + X3 σαβ p
α
1 p

β
2 ,

(14)

where Xi ≡ Xi (p1, p2, p3) and Xi ≡ Xi (p2, p1, p3). The
above STI can be solved for the form factors λi (p1, p2, p3)

that can be written in terms of A(p2), B(p2), Xi and Xi as
given in [23]

λ1(p1, p2, p3) = F(p2
3)

2

{
B(p2

1) [X1 + X2]

+B(p2
2)

[
X1 + X2

]
+A(p2

1)
[
X0 +

(
p2

1 − p1 · p2

)
X3

]

+A(p2
2)

[
X0 +

(
p2

2 − p1 · p2

)
X3

] }
,

(15)

λ2(p1, p2, p3) = F(p2
3)

2
(
p2

2 − p2
1

)
{
B(p2

1) [X2 − X1]

+B(p2
2)

[
X1 − X2

]
+A(p2

1)
[(

p2
1 + p1 · p2

)
X3 − X0

]

+A(p2
2)

[
X0 −

(
p2

2 + p1 · p2

)
X3

] }
,

(16)

λ3(p1, p2, p3) = F(p2
3)

p2
1 − p2

2

{
B(p2

1) X0

−B(p2
2) X0

+A(p2
1)

[
p2

1 X1 + p1 · p2 X2

]

−A(p2
2)

[
p2

2 X1 + p1 · p2 X2

] }
, (17)

λ4(p1, p2, p3) = − F(p2
3)

2

{
B(p2

1) X3 − B(p2
2) X3

+A(p2
1) X2 − A(p2

2) X2

}
. (18)

By direct inspection one can show straightforwardly that the
solution given in Eqs. (15)–(18) for the λi satisfy the symme-
try requirements due to charge conjugation independently of
the functions A, B, Xi and Xi . This is a particularly important
point for modelling the quark-gluon vertex.

4 The soft gluon limit: an exact relation

A great deal of information can be learned from the above
expressions by taking its soft gluon limit, i.e. by setting
p3 = 0. The interest on this particular kinematical configu-
ration is that it has been investigated using lattice methods
for full QCD with two flavors of quarks. In order to avoid the

apparent singularity in the expressions for λ2 and λ3, one can
set p1 = p, p2 = −p+ δ, p3 = −δ, expand all quantities in
(15)–(18) up to first order in δ and, finally set δ = 0. If one
takes into account the all-order results of [5] which states that,
in the soft gluon limit, X0(p2) = 1 and X1(p2) = X2(p2),
note the different notation concerning the definitions for X1

and X2, it follows that

λ1(p
2) = F(0)

Z(p2)

{
1 + 2 X1(p

2) M(p2) + 2 p2 X3(p
2)

}
,

(19)

λ2(p
2) = F(0)

2 Z(p2)

{
A′(p2)

A(p2)
− X3(p

2)

+∂1X0(p
2) − ∂2X0(p

2)

+M(p2)

[
∂1X1(p

2) + ∂2X2(p
2)

−∂2X1(p
2) − ∂1X2(p

2)

]}
, (20)

λ3(p) = F(0)

Z(p2)

{
B ′(p2)

A(p2)
+ X1(p

2)

+M(p2)

[
∂1X0(p

2) − ∂2X0(p
2)

]

+p2
[
∂1X1(p

2) + ∂2X2(p
2)

−∂2X1(p
2) − ∂1X2(p

2)

]}
, (21)

with λ4(p2) = 0 and where λi (p2) = λi (p,−p, 0),

A′(p2) = d A(p2)

p2 , B ′(p2) = dB(p2)

dp2 ,

Xi (p2) = Xi (p2, p2, 0) = Xi (p2, p2, 0) = Xi (p2) and
∂i X j (p2) is the partial derivative of X j (p2

1, p
2
2, p2

3) with
respect to argument i taken at p2

1 = p2
2 = p2 and p2

3 = 0.
The expressions given in (19)–(21) imply the following exact
relation

Z(p2)

F(0)

{
λ1(p

2) + 4 p2 λ2(p
2) − 2 M(p2) λ3(p

2)

}

= 1 − 2 M(p2) M ′(p2)

+2

(
p2 − M2(p2)

)

×
[
∂1X0(p

2) − ∂2X0(p
2) − Z ′(p2)

Z(p2)

]
(22)

between the non-vanishing longitudinal form factors. The
r.h.s. of Eq. (22) requires only the knowledge of the quark
propagator functions Z(p2) and M(p2) and of the quark-
ghost kernel scalar form factor X0. Further, for on-shell
momenta, i.e. when p2 = M2(p2), the relation between
the various form factors is independent of the quark-ghost
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kernel form factor X0 and requires only the knowledge of
the running quark mass. In principle, the functions M(p2),
Z(p2) and its derivatives seem to smooth which suggest that
the r.h.s. should not diverge either for infrared or ultraviolet
momenta. Our present knowledge of X0 also suggests that
this quark-ghost kernel form factor and its derivatives are
also finite. If this is the case, then the l.h.s. of Eq. (22) should
also be always finite, preventing any divergence of the com-
bination λ1(p2) + 4 p2 λ2(p2) − 2 M(p2) λ3(p2). In other
words, if any of the form factors diverges, its divergence has
to be compensate by the remaining form factors.

5 The lattice soft gluon quark-gluon vertex

In [18] one can find full QCD lattice simulations for the quark
propagator and λ1(p2) for N f = 2, in the Landau gauge, and
for various lattice spacings. For completeness, on Fig. 2 top-
frame we reproduce the bare lattice results for λ1(p2). In
the Landau gauge, at high momenta one expects λ1(p2) to
approach a constant value, up to logarithmic corrections. As
the top of Fig. 2 shows this is not the case for all the lattice
data. In particular, the simulations performed with β = 5.29
and a Mπ = 422 MeV together with that with β = 5.20 and a
Mπ = 280 MeV are hardly constant at high momenta. This is
certainly the result of a relative poor estimation of the lattice
artefacts. A problem that has to be addressed by the lattice
practitioners. In order to avoid possible contaminations of
the lattice artefacts, in the analysis of the lattice data we will
not take into account these two sets of results.

The lattice results for λ1(p2) and Z(p2) provided in [18],
combined with Eq. (19), can be used to estimate

Z(p2)λ1(p
2)

= F(0)
{

1 + 2 X1(p
2) M(p2) − 2 p2 X3(p

2)
}

. (23)

Note the minus sign relative to Eq. (19) due to the Wick
rotation to the Euclidean space. On the bottom-frame of Fig. 2
we report the lattice estimates for Z(p2) λ1(p2). The data for
Z(p2) was interpolated to match the momenta available for
λ1(p2) and, at high momenta, we set Z(p2) to a constant
matching its higher value. The lattice data reported on [18]
show a slightly decreasing function Z(p2) for p � 2.5 GeV.
As discussed in the publication, this seems to be a lattice
artefact and extrapolations to the “continuum” suggest that
Z(p2) should, indeed, take a constant value.

The lattice data reported on the bottom-frame of Fig. 2
show a Z(p2) λ1(p2) that is constant, within the precision of
the lattice simulation, for p � 2.5 GeV. This complies with
the predictions of perturbation theory which, at tree level,
give X1(p2) = X3(p2) = 0. In principle the logarithmic
corrections for λ1(p2) should show up at high momenta.
However, given the relative large errors on the lattice data

p² [GeV²]

1

1.5

2

2.5

3

3.5

λ 1(p
²)

β = 5.40   Mπ = 426 MeV
β = 5.29   Mπ = 422 MeV
β = 5.29   Mπ = 295 MeV
β = 5.20   Mπ = 280 MeV

0.01 0.1 1 10 100

0.01 0.1 1 10 100
p² [GeV²]

1

1.5

2

2.5

3

Z(
p²

)
λ 1(p

²)

β = 5.40   Mπ = 426 MeV
β = 5.29   Mπ = 295 MeV

Fig. 2 Tree level corrected lattice data from the full QCD N f = 2
lattice 323 × 64 simulations for λ1(p2) in the Landau gauge [18] (top-
frame). Z(p2) λ1(p2) as a function of p2 (bottom-frame). See text for
the explanation of the constant lines

for this form factor and given that the lattice data ends at
p ∼ 10 GeV, it is impossible to make any statement about
the high momenta log behaviour for λ1(p2).

The observed constant value is an estimation of the bare
F(0) value. To get a reference number for F(0) we fit-
ted the lattice data for p > 3 GeV onwards to a constant.
For the data referring to the β = 5.40 and Mπ = 426
MeV simulation, the fit taking into account the correlations
between the momenta gives a bare F(0) = 1.2444(55) with
a χ2/d.o. f. = 0.05, while for the simulation using β = 5.29
and having a Mπ = 295 MeV the correlated fit give a bare
F(0) = 1.4665(90) for χ2/d.o. f = 0.08. These figures are
the constant lines appearing on the bottom-frame of Fig. 2.
If one takes the smallest lattice momentum for each simula-
tion as reference, it follows that relative to the constant fitted
value Z(p2)λ1(p2) increases by a multiplicative factor of
1.86, for the β = 5.40 and Mπ = 426 MeV simulation, and
of 1.72, for the β = 5.29 and Mπ = 295 MeV simulation.
Then, from Eq. (23) one gets[
2 X1(p

2) M(p2) − 2 p2 X3(p
2)

]
p2=0

= 0.86
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10010.01
p² [GeV²]

0
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Z(
p²

)
λ 1(p

²) 
 - 

F(
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β = 5.40   Mπ = 426 MeV
β = 5.29   Mπ = 295 MeV
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Δ(p²) β = 4.20   Nf = 2   483 x 96

Δ(p²) β = 3.90   Nf = 2   243 x 48

Fig. 3 Full QCD N f = 2 lattice 323 × 64 simulations for λ1(p2)

for the Landau gauge [18] together with rescaled Landau gauge gluon
propagator for pure Yang–Mills theory [24,25] and full QCD [26] for
N f = 2

for the β = 5.40 simulation and

[
2 X1(p

2) M(p2) − 2 p2 X3(p
2)

]
p2=0

= 0.72

for the β = 5.29 simulation. The finiteness of such a quantity
means that either there are no infrared divergences on X1(p2)

and p2X3(p2) or they cancel exactly.
In what concerns the form factor λ1(p2) we observe that

Z(p2) λ1(p2)−F(0) seems to be proportional to the Landau
gauge lattice propagator. This can be seen on Fig. 3 where
the lattice data is plotted together with the rescaled quenched
Landau gauge gluon propagator, from a simulation using a
644 lattice and β = 6.0 [24,25], and the two full QCD Lan-
dau gauge rescaled gluon propagators from simulations using
N f = 2 reported in [26]. The good agreement between the
set of data closer to the physical limit is impressive. On Sect. 6
we are able to link λ1(p2) and the gluon propagator relying
on a Bethe–Salpeter equation for the vertex.

The understanding of the remaining soft gluon form fac-
tors λ2(p2) and λ3(p2), see Eqs. (20) and (21), is more cum-
bersome as their dependence on the quark propagator and
quark-ghost kernel form factors is more elaborated.

For λ2(p2), the estimates performed in [5] do not pro-
vide a very clear picture. Indeed, the authors discuss two
different calculations. In their simplest analysis for λ2(p2),
this form factor is small over the full range of momenta.
However, by improving the angular dependence, that is taken
into account partially, then λ2(p2) seems to have an infrared
divergence. This later result does not seem to comply with
our analysis. The computation of λ2(p2) within the Curci–
Ferrari model [27] points towards a small contribution from
this form factor that reaches a maximum of ∼ 0.2 GeV−2 at
zero momenta or close by. The results of one-loop dressed
perturbation theory [12] also suggest a small λ2(p2) at small

0.001 0.01 0.1 1 10 100
p²  [GeV²]

-0.2

0

0.2

0.4

0.6

0.8

1

F(
0)

 {
 λ

1(p
²) 

- 4
 p

² λ
2(p

²) 
- 2

 M
(p

²) 
λ 3(p

²) 
}

Fig. 4 Estimation of the r.h.s. of the Eq. (22) multiplied by Z(p2) using
the fits provided in [3]. Note the change on the sign for the λ2(p2) due
to the Wick rotation to the Euclidean space

momenta. In what concerns lattice estimations of λ2(p2),
one can find in the literature only results for quenched sim-
ulations [28]. The lattice form factor does not agree with the
estimates just mentioned for λ2(p2) and suggests a functional
behaviour that is not necessarily closer to the other estima-
tions. There is an ongoing discussion about the estimation
of the lattice artefacts and a possible contamination of the
lattice calculation due to the transverse form factors; see e.g.
Ref. [27].

For the form factor λ3(p2) the estimates of [5,12,27] and
the results of quenched lattice simulations [28] point towards
a sizeable form factor. Given our lack of knowledge of the
various terms in (21) it is difficult to provide any information
on the form factor directly from this equation. However, after
dividing Eq. (22) by Z(p2), its r.h.s. contains only informa-
tion about the quark propagator and the derivatives of X0.
This relation is a non-trivial constraint on the non-vanishing
λi (p2). Unfortunately, the r.h.s. of the equation requires the
knowledge of the derivatives of the mass function and of the
quark wave function that are difficult to evaluate directly from
the lattice data. One can estimate the r.h.s. of the equation
using the fits provided in [3] as shown on Fig. 4 if one ignores
the contribution of the X0 derivatives. In the UV region it is
essentially flat for momenta p � 1 GeV and it decreases
significantly only for p � 300 MeV. Given that λ2(p2) is
always small and is multiplied by p2, that λ1(0) ≈ 1, as
shown on Fig. 2, this can be seen as an indication that λ3(p2)

takes large values only for p � 300 MeV, in agreement with
the results observed in the cited articles.

6 Discussion

The observations reported on the previous section for the soft-
gluon limit can be understood looking at the one-loop Bethe–
Salpeter equation (BSE), in the fully dressed ladder approx-
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Fig. 5 One-loop dressed
Bethe–Salpeter equation for the
quark-gluon vertex. The big
blobs represent the dressing, and
small blobs are bare vertices

imation. The BSE is represented diagrammatically on Fig. 5
where blobs stand for fully dressed quark and gluon prop-
agators, with the dressed vertices represented by big blobs.
Coming from left to right in the figure the diagrams represent:
(i) the abelian like dressed-one gluon exchange ladder kernel
contribution; (ii) the non-abelian like contribution due to the
dressed three-gluon vertex; (iii) the bare quark-gluon vertex.
These contributions add up to define the self-consistent non-
perturbative dressed quark-gluon vertex represented on the
right-hand side of the equality.

The kernel of the BSE represented on Fig. 5 contains
a plethora of other types of diagrams as, for example
the cross-ladder contributions associated to non-planar dia-
grams. However, as shown in [29,30], in an expansion in the
number of colors, the non-planar diagrams and the diagrams
not represented are subleading. In addition, the numerical
solution of the BSE [31] for a bosonic model with color
degrees of freedom, using a kernel of the BSE for the two-
boson bound state amplitude that contains the ladder and the
lowest non-planar cross-ladder contribution, shows that the
cross-ladder kernel contributes less than a few-percent to the
binding energy and to the elastic electromagnetic form factor.

In principle the driving contribution in the diagrams rep-
resented on Fig. 5 is the diagram with higher number of full
vertices, i.e. the abelian-like term of the left, and its contri-
bution is proportional to

∫
d4q

(2 π)4 γβ S(p2 − q)Γμ(−p2 − p3 + q, p2 − q, p3)

×S(−p1 − q)Γα(p1, −p1 − q, q)

(
gαβ − qαqβ

q2

)
Δ(q2),

(24)

where p2 is the incoming quark momenta, −p1 the outgoing
quark momenta and p3 the incoming gluon momenta. Note
that the second diagram from left on Fig. 5 is proportional to
the three-gluon non-abelian vertex, whose coupling is pro-
portional to the momentum of the gluons attached. Due to the
presence of the gluon momenta, in the soft gluon limit we
expect this contribution to be subleading. In the soft gluon
limit p1 = p2 = p, p3 = 0 andΓμ(−p2−p3+q, p2−q, p3)

is replaced by its soft gluon version that is dominated either
by λ1((p2−q)2) or λ3((p2−q)2). In both cases the form fac-
tors reach their maximum values in the deep infrared region
and, therefore, the major contribution due to the momentum

integration in Eq. (24) occurs for p2 − q ≈ 0. Then, in the
soft gluon limit, the BSE predicts a contribution to the vertex
that is proportional to Δ(p2) and that adds to the tree level
vertex, as observed on Fig. 3. This analysis suggests that we
may write

λ1(p
2) Z(p2) ≈ aL + bL Λ2

QCD Δ(p2) , (25)

where the ultraviolet constant term is represented by aL and
the dimensionless quantities aL and bL should be of order
O(1). The previous discussion when building Fig. 3 give a
aL = F(0) ≈ 1.24 for the β = 5.40 (Mπ = 426 MeV)
data and a aL = F(0) ≈ 1.47 for β = 5.29 (Mπ = 295
MeV) data. The quenched gluon propagator in Fig. 3 was
renormalized in the MOM-scheme at μ = 3 GeV and it was
rescaled by a factor of ∼ 0.12 GeV2 to produce the figure.
The full QCD gluon propagator for the β = 4.20 simulation
was also renormalized in the MOM-scheme at μ = 4.3 GeV
and rescaled by a factor of ∼ 0.19 GeV2 to produce the
figure. From its definition we have that bL = c F(0), where
c is a dimensionless factor that corrects for the momentum
integration. For a ΛQCD = 0.3 GeV and taking into account
the above quoted values for F(0), the prediction being that
bL Λ2

QCD ≈ c(0.11−0.13) GeV2 and a c ∼ 1, in agreement
with the numbers discussed. Note that both the propagator
and the constant c are not independent of the renormalization
scale and, therefore, the quoted figures should be read as
orders of magnitude. Note also that the above picture applies
to the data closer to the physical limit. Indeed the form factor
depends on the quark (pion) mass in such a way that for larger
values of the mass, the decrease of Z(p2) λ1(p2) or λ1(p2)

is slower and, therefore, the above argument does not apply
for sufficiently heavier quark masses.

Despite the relative large statistical and lattice artefacts
observed on the lattice data, our empirical analysis based on
Eqs. (23) and (25) supports the factorization of λ1(p2) Z(p2)

in such a way that

F(0)

(
2X1(p

2)M(p2) − 2p2X3(p
2)

)

≈ a′
L + bL Λ2

QCD Δ(p2) , (26)

with a′
L = aL − F(0) ≈ 0. It is the gluon propagator that

dominates the relevant momentum behaviour of the prod-
uct λ1(p2) Z(p2) at infrared scales. Furthermore, this results
evidences the ladder dominance, as already suggested by
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the rainbow-ladder approximation of the Dyson–Schwinger
equation for the quark propagator and used in many phe-
nomenological applications of continuum methods to treat
strong QCD to study mesons and baryons properties [4]. If
one assumes that the product X1(p2)M(p2) carries the dom-
inant momentum behavior, then X1(p2)M(p2) ∝ Δ(p2).
Such a feature is important in building a quark-gluon vertex
model having dependence not only on the gluon momentum
but also on the quark momentum. Eventually such factoriza-
tion can be extended to the other components of the quark
gluon vertex in the soft gluon limit.

7 Summary

The longitudinal component of the quark-gluon vertex in
the soft gluon limit is studied combining information from
Lattice QCD simulations and a Slavnov–Taylor identity. In
the soft gluon limit, the Slavnov–Taylor identity allows to
write the longitudinal form factors in terms of the quark-
ghost kernel and the quark propagator functions. Further, the
STI implies, in the soft gluon limit, an exact relation that
combines linearly λ1, λ2 and λ3 with differences between
derivatives of X0, the quark self energy and the quark wave
function.

From full QCD lattice simulation data for λ1(p2) in the
Landau gauge we are able to estimate some of the quark-
ghost kernel form factors. The data also allows to explore
the remaining non-vanishing quark-gluon vertex functions
λ2(p2) and λ3(p2). We found that the provided estimations
are within typical values found in the literature.

In particular for λ1(p2) the analysis of the recent full QCD
Landau gauge lattice simulations reveals an empirical rela-
tion linking λ1(p2) with the gluon propagator Δ(p2). This
relation seems to hold for the momenta accessed on the lat-
tice simulations and within the statistical errors of the lattice
data. The relation between λ1(p2) and Δ(p2) is found in the
solution of a fully dressed one-loop Bethe–Salpeter equation
for the quark-gluon vertex. The analysis of the BSE suggests
that the factorisation holds for other components of the vertex
in the soft gluon limit and, eventually, also for its transverse
components. Such challenging investigation is left for future
work. The connection between the λi and the gluon propaga-
tor can contribute to model the quark-gluon vertex including
not only the dependence on the gluon momentum but also
the quark momentum.
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