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ABSTRACT Pre-stress bonded composite patch is a promising technique to reinforce steel member
damaged by fatigue. ifhe effectiveness of this technique was verified by fatigue tests on

notched steel plâtes. Results showed that the application of carbon fibre reinforced

plastic (CFRP) strips and, eventually, the introduction of a compressive stress by preten-

sion of the CFRP strips prior to bonding produced a significant increment of the
remaining fatigue life. In this paper, the stress intensiqr factor in the notched plates is

computed by a two-dimensional finite element model in connection with the three-layer

technique in order to reduce the computational effort. Due to high stress concentrâflon

at the plate crack tip, debond is assumed at the adhesive-plate interface. The goal is to

illustrate the influence of some reinforcement parâmeters such as the composite strip

stiffness, the pre-stress level, the adhesive layer thickness and the size of the debonded

region on the effectiveness of the composite patch reinforcement.

Keyvords composite patch; fatigue crack reinforcement; parametric analysis.

In Bassetti5 a novel technique was proposed to reinforce
steel member damaged by fatigue. It consists in the
appiication of carbon fibre reinforced plastic (CFRP)
strips and, eventually, the introduction of a compressive
stress by pretension of CFRP strips prior to bonding.
Note that this new methodology applied to riveted steel
members avoids the drawbacks of standard reinforce-
ment techniques such as hole drilled at crack fiont,
cover plates application, replacement of rivets by high
strength bolts, cold expansion of the rivet hole and
welding of the detected cracks.l As a step towards the
validation ofthis technique, fatigue tests on notched steei
plate reinforced by CFRP strips were performed in Bas-
setti e/ al." This technique is particularly appealing for
the fatigue life extension ofold riveted steel bridges built
up ât the beginning of the last century by non-weldable
steel. Experimental tests were then performed in Bassetti
et al.+ on a 9l-year-old-cross girder in order to prove the
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effectiveness of pre-stress CFRP-strips to stop fatigue
crack emanating from the rivet hole or to prevent further
cracking at other locations.
The carbon fibre reinforced plastic laminates have

physical and mechanical properties particularly interest-
ing for reinforcement of fatigue damaged steel elements.
The high fatigue resistance of CFRP avoids crack propâ-
gation from the cracked steel section into the patch. The
high stiffness of CFRP reduces the stress range in the
cracked steel section and promotes crack bridging. llhe
high tensile strength of CFRP allows also the application
of a pretension to composite strips in order to increase
the effectiveness of the bonded patch on thicker steel
section. Finally, the low self-weight of CFRP plates
limits the dead load increment and simplifies the
strengthening operations. Composite patch reinforce-
ment technique is a standard and reliable procedure in
different engineering branches to reinforce structural
elements subjected to extreme actions (high fatigue
loads, high temperature ranges and exposure to aggres-
sive agents) and nowadays, is also a standard reinforce-
ment methodology in aircraft industries.T In fact the
CFRP laminates is becoming a familiar procedure for
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the strengthening and rehabilitation of the reinforced
concrere br idges (Meier.  loo5).8 The CFRP-laminares.

eventually, could be pre-stressed" in order to increase the
reinforcement effectiveness. Some âttemDts were also
donelO to increase the ioad carrying capacity of steel

bridges.

In this paper, reference is made to the notched steel
plates tested in Bassetti et rtl.; The goal is to invesugare
numerically the effect of CFRP-strips' stifÊress, adhesive
thickness, pre-stress level and debond size region on
the stress intensity factor, the pârâmeter governing
crack propagation rate and then fatigue lifetime. To this
end, a finite element model is developed and is based
on the Mindlin plate theory in order to reduce the com-
putationâl effort connected to a full three-dimensional
analysis.l t

EXPERIMENTAT EVIDENCE

The effectiveness of pre-stressed CFRP-piates to ârrest

the crack propagation was investigated (Fig. 1) on
notched steel plates.* The central notch consists in a
hole and two initiai traversing cracks produced by elec-
troerosion. The plates were reinforced on both sides by

two unidirectional pultruded carbon fibre sheets with

width of 50mm as shown in Fig. 1. A two-component
viscous epory wâs used for bonding the laminate to the

steel plate. All the specimens were tested under constant
amplitude tensile loading (no thermai stresses are then
considered) using a stress range Âo.r-SQX4p" 

"trd "
stress ratio R: or,*,;,r/d1,,rn, - 0.4 in dre nominal section

of the un-reinforced specimen. Tèsts were performed on

a hydraulic testing machine u'ith a dynamic capacity of

800 kN. As is well known, the fatigue crack propagation

is controlled by the stress intensity factor range

100

AK : Aor Y(n) ' fn' a and the stress ratio R. A lower

stress ratio in fact oromotes crack closure that reduces

crack growth rate.'- The crack length and the crack

growth meâsurements were carried out using the

electric potential drop method. Results of the fatigue

tests are shown in the crack length to number of cycles

diagram of Fig. 2 where the reference tests are given
by the un-reinforced steel plates. Composite patch acts

on the notched plate in three different ways. First, it

lessens the stress range 
^oy 

at crack tip, second it reduces

the corrector fâctor Y(a) by bridging the crack lips

Detail B: notch

10 mm

CFRP - laminates

Fig. 1 Notched steel plate specimen
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and third the compressive stress fie1d produced by
the pretension of composite patch reduces the stress
ratio R and then promotes crack closure.

By reinforcing the steel plates with non-pre-stress

CFRP strips with mean Young's modulus in the fibres
direct ion Er-174GPa and thickness h.-1.2 mm, fa-
tigue life of specimens is increased by a factor of about
three. I f  the composite str ips are pre-stress prior to
bonding by applying a tensile stress equal to 632MPa
in the CFRP cross-section, the fatigue life is increased
by a factor of about five. Even longer fatigue life was
achieved by stiffer CFRP-strips (h:216 GPa and
â"- 1.4mm) with the same pre-stress level as before.
With this reinforcement, configuration of the fatig'ue
life is increased by a factor of about 16. As the crack
approaches the interior boundary of the patch, high
stress concentration at the crack tip produces debond
at the plate-adhesive or adhesive-patch interface.

From the inspection of the failed specimens, it was

concluded that debond was present between the steel
plate and the adhesive layer. Debond was also in-
vestigated by Optical Speckle Interferometry tech-
niqoe.t: ' ' t ' I t  was found in Bassett i  et al.6 that an
elliptical debond with an aspect ratio c/b eqral to l/5

produced a dispiacement field, which fitted well in the

experimental one.

FINITE ETEMENT MODET

One of the main aspects of bonded composite reinforce-

ment technology is the stress analysis of the reinforced

strucrure and the consequent stress intensiry lactor

evaluation. Three-dimensional finite element analysesl I

of composite patch repair have been conducted in the

literature. Since the thickness of the adhesive is much

smaller than the plate and composite patch one, a three

dimensional model becomes very expensive due to the
large number of elements required across the thickness
to get acceptable aspect ratios in the adhesive la1-er.
A number of two-dimensional finite element models
were then employed in the literature to reduce the com-

Dutâtionâl effort.rr

In Ratwani et al.ra analyses were conducted by plain

stress two-dimensional elements to model the cracked
plate and composite patch. Shear spring elements were
used to represent the adhesive. In Sun et al.I\ two-
dimensional Mindlin plate elements with transverse
shear deformation capability were used to model both
the cracked plate and the composite patch. Again shear
spring elements were introduced to represent the
adhesive. The shear springs were connected to the
cracked plate and the composite patch through displace-
ment constrâint equations, which satist/ the Mindlin

plate assumptions. In Naboulsi et al.'o t1-le three-layer
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technique was proposed to model a composite bonded
reinforcement of a cracked plate. This technique uses

two-dimensional finite element analysis, cor.rsisting of
three layers, to model the cracked plate, adhesive and

composite patch. It is not required to replace the adhe-

sive layer by shear spring elements (noncontinuum

body) since the adhesive is modelled as an elastic con-
tinuum medium. In this way the characteristics of

the adhesive required to rnodel nonlinear material behav-
iour are also captured. Constraints are used to enforce

the compatibility along the plate-adhesive and the

adhesive-patch interface based on Mindlin âssumptionsz
(Fig. 3).

The Mindiin plate theory âssumes linear displacement
field in the plate thickness. In the three layers technique,
all three layers, cracked plate, adhesive and cornposite
patch, are assumed to have a linear dispiacement field

along the thickness and they sâtisô/ the relations'16

î "-h"

I
Fig. 3 Modelling of bor-rded reinfbrcement and necessarr

constraints at the interfaces.
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where the superscript s, a and c are used to denote the

steel plate, adhesive layer and composite patch, respect-

ively. The co-ordinates z', zo ànd.z' are measured from

the midplane of each layer. At the plate-adhesive inter-

face, where the z co-ordinates for the cracked piate and

the adhesive are equal, and at the adhesive-composite

patch interface, where the z co-ordinates for the adhesive

and the composite patch are equal, the constraint cqua-

Ûons reduce to:-

tr^ -- ri -è,J - trt - )t, T- t i T_ ,

- h.1 h'
u' \ - ï ' -uJ t . t t ; l  

1+pi  2-0

at the plate-adhesive interface and:

(r )

z,w
A V,V
t ,
l , /

l----+ x,u

o 2003 Blackwel Publishing Ltd. Fatigue Fract Engng Mater Struct 26, 59 66



P C0L0lVBl et  a/
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at the adhesive-pâtch interface. In the debonded region
between the steel plate and the adhesive layer, the layers
are independent of each other and the constraint equa-
tions are no longer valid. Note that due to the s)4nmetry
of the reinforcement no overlapping due to translation in
the thickness direction is oossible.

STRE55 INTENSITY FACTOR EVATUATION

Numerical model

The commercial finite element code ABAQUST^' was
used to perform the analyses using the three-layer tech-
nique. llhe main geometric parameters and material
properties of the notched steel plate in Fig. I are sum-
marised in Tàble 1.

Since composite patches are located on both side of the
plate, only 1/8 of the specimen was meshed (Fig. 4) as a
continuum medium. Since tensile loading is applied to
the specimens, no variation of the stress intensity factor is
expected over the thickness. Standard eight-noded shell
elements were used for the adhesive layer and the com-
posite patch, and plane stress elements were used for the
steel plate.

Fig. 4 1/8 of the three layer finite element model.

Tâble 1 Material properties and dimensions

Based on the experimental evidence, the debond crack

was assumed to lie in the plate-adhesive interface with a

semi-eliiptical shape (Fig. 5).

The finite element analysis is performed for a given

delamination shape parameter c/b. The major semiaxis

D was assumed equal to the crack size a plus the dimen-

sion of the plastic zone àt crack front in plate and

was aligned v-ith the crack path. The minor semiaxis r

wâs then located in a direction orthosonal to the crack

or-rel 1Fig. 5). No amemprs were thÀ done to model

the delamination size growing in the finite element

model. A parametric analysis was performed in order to

investigate the sensitivity of the stress intensiry

factor level to variations in the patch stifÊress (81 and

D"), adhesive thickness /:', strips pre-stress level on. and

the size of the debonded region. The strain energy

release rate, G, wâs computed_ by using the standard

virtual crack extension method" and converted into the

stress intensity factor, K, by assuming plane stress for

the local stress field near the crack tio and mode

I crack opening,s

Fig. 5 Detail of the finite element rnodel in the debonding region

(a - 50 nim).
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RESUtTS AND DISCUSSION

Figures 6-12 illustrate the results of the parametric an-
alysis. The reference values of the model pârâmeters âre

h:174 GPa, h"-0.3mm, h"- l2mm, ân el l ipt ical
debonded region with c/b equal to l/5 and no pre-stress
(on.:0) in the composite strips. The corresponding
stress intensity factor values are normalised with respect
to oy. max \Æ 

- 
(o1, 

-", - 1 3 3 MPa is the maximum
stress in the nominal section of the un-reinforced steel
plate) and reported as function of the crack size a (the
crack size is measured from the central axis of the plate
and then includes the hole radius). Results show a differ-
ent behaviour for short cracks, which are outside the
strip areâ, compared to long cracks, which are partially
covered by the patch. Figure 6 shows the stress intensiry
factor for notched plates reinforced by CFRP strips with
and without pre-stress.
Without pre-stress, the effectiveness of the reinforce-

ment is higher for long cracks compared to short cracks.

COI\4PO5ITE PATCH REPAIR OT CRACKED STEEI.  MEMBERS 63

In particular for short cracks the reduction of the stress

intensity factor is marginal and a pre-stress must be

introduced in order to prevent crack propagation. In

fact, in this case the patch reinforcement simply reduces

the stress range in the steel plate. Since the stiffness of

the steel plate is much larger than the composite strips

one, a marginal reduction ofthe stress range is achieved.

The effectiveness of the patch reinforcement is maxi-

mized for a long crack close to the external boundary of

the strip. In this case, in fact, the patch covers a large

amount of the crack and its plastic zone and then an

additional significant reduction of the correction factor

)'(a) is achieved. pre-stress of the CFRP strips does not

produce a reduction of the stress intensity factor range

but a reduction of the stress râtio R that promotes crack

closure. As an example the application of a pre-stress

op:632 MPa reduces the stress rât io to 0.03 (Fig. 6).

Since the patch stiffuess is proportional both to the

composite patch Young's modulus E1 and the patch

thickness /:', variations of these two parameters produce

1^

40 60
a (mm)

+ No patch

+ Patch oo=0

+ Patch dp=632MPa

Young's modulus Et

+ 100GPa
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â
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0.0Fig. 6 Normalised stress intensity factor
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and without pre-stress.
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lips and this effect is rnore pronounced for stiff patch.
For short cracks, the CFRP strips simplv produce a
reduction of the stress range. Figure 8 depicts the influ-
euce of the conrposire strip thickness /r '.
Note that, in this case, due to patch shear deformation,

the stress intensity factor decrement is less pronounced
compared to the one produced by a variation of the
composite patch Young's moduius 81. Figure 9 illustrates
the effect ofthe adhesive thickness on the stress intensiry
factor values.
Clearly, the effectiveness of the reinforcement decreases

as the adhesive thickness increases. This is due to sheâr
deformation of the adhesive layer. This effect is more
important for long cracks where the capacity of the
CFRP strips to bridge the crack lips is reduced by shear
deformation of the adhesive layer. On the contrâry the
adhesive has no influence on short cracks that are outside
the patch ârea. The effect of the pre-stress level is
reported in Fig. 10.
A pronounced reduction, in particular for short cracks,

of the stress intensity factor is achieved by increasing the

Fig. 11 Elliptical debond used in the parametric analysis

1.4
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pre-stress value. Note that in this case the stress intensitv

factor range rernains unchanged but the stress ratio is

decreased, and evcn negative stress ratio is achieved as

indicated in Fig. 10. This promotes crack closure effects

that reduces the effective stress intensity factor range and

then the corresponding crack growth rate.

The influence of the size of the debondecl region is

studied with reference to elliptical debond with difTerent

âspect râtio c/b (Fig. 11).

Figrrre 12 illustrates the effect of the size of the

debonded region on the stress intensiw factor values.

llhe effect is more irnportant for long cracks for which

the crack bridging effect is reduced by thc increment of

the debonded area. On the contrary the size of thc

debonded region has no effect on short cracks since, in

this case, the debonded region does not int-luence the

stress fieid at crack tip.

coNcLUsroNs

Experimental result shows that the application of pre-
stress CFRP strip is a promising technique for the re-
inforcement of fatigue damaged steel section. In particu-
lar, it is appealing' for riveted bridges built up at the
beginning of the last century by non-weldable steel.
llhis technique cân be used to reduce or to stop crack
propâgation of existing cracks. Moreover, pre-stress of
the CFRP strips prior to bonding introduces compres-
sive stress, which prevent further cracking by promoting
crack closure effect. Crack closure is a very important
aspect since it rcduces the effective stress intensity factor
range and then decreases significantly the fatigue crack
growth rate. Pre-stressing of the CFRP strips is manda-
tory in order to prevent further crack propagation of
short cracks in steel elements.
Results of the sensitivity analysis clearly indicate a dif-

ferent effect of the pre-stress reinforcement on short
cracks compared to long cracks. llhey shou- that the

E
CFRP StTiD

tr

?

Fig. 12 Normalised stress intensiq,'factor

vs. crack length as function of the

debonded area.
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applicâtion of high stiffness pre-stress CFRP strips
bonded perpendicular to the crack path modifies the
crack geometry by bridging the crack lips. Pre-stress
reduces the corresponding stress ratio and then pro-
motes crack closure that reduces the fatigue crack
growth râte.
For long cracks in steel elements, CFRP patches reduce

the stress intensity factor range, even without pre-sffess,
since the patch covers the plastic zone and a large
portion of the crack. For short cracks in steel elements,
crack bridging effect by CFRP without pre-stress is
negligible (Figs 7 and 8) since the cracks are outside the
strip area.

Shear deformation of the adhesive iayer has a significant
effect of the effectiveness of the bonded reinforcement.
Figrrre 9 shows that as the adhesive shear deformation
increases with adhesive thickness, the effectiveness of the
bonded reinforcement technique is reduced. Adhesive
thickness effect is more importânt for long cracks com-
pared to short ones since shear deformation reduces
crack bridging.
Pre-stress of the composite strips is inroduced to

reduce the stress râtio in the cracked plate and then to
promote crack closure. This phenomenon is very import-
ânt for short crack since crack bridging has a negligible
effect in this case.
Debond of the composite patch ât the plate-adhesive

interface plays an important role for long cracks
(Fig. 12). It reduces the bridging effect of composite
patch due to the deformation of the debonded patch.
The corresponding increment of the stress intensity
factor in the plate is similar, for long cracks, to the one
produced by the reduction of the CFRP strips stiffness.
Then, for long cracks, t}re influence of the debonded
region cannot be discharged.
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