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Abstract 

Background:  Detection and quantification of cyclic alternating patterns (CAP) 
components has the potential to serve as a disease bio-marker. Few methods exist to 
discriminate all the different CAP components, they do not present appropriate sensi-
tivities, and often they are evaluated based on accuracy (AC) that is not an appropriate 
measure for imbalanced datasets.

Methods:  We describe a knowledge discovery methodology in data (KDD) aiming the 
development of automatic CAP scoring approaches. Automatic CAP scoring was faced 
from two perspectives: the binary distinction between A-phases and B-phases, and 
also for multi-class classification of the different CAP components. The most important 
KDD stages are: extraction of 55 features, feature ranking/transformation, and clas-
sification. Classification is performed by (i) support vector machine (SVM), (ii) k-nearest 
neighbors (k-NN), and (iii) discriminant analysis. We report the weighted accuracy 
(WAC) that accounts for class imbalance.

Results:  The study includes 30 subjects from the CAP Sleep Database of Physionet. 
The best alternative for the discrimination of the different A-phase subtypes involved 
feature ranking by the minimum redundancy maximum relevance algorithm (mRMR) 
and classification by SVM, with a WAC of 51%. Concerning the binary discrimination 
between A-phases and B-phases, k-NN with mRMR ranking achieved the best WAC of 
80%.

Conclusions:  We describe a KDD that, to the best of our knowledge, was for the first 
time applied to CAP scoring. In particular, the fully discrimination of the three different 
A-phases subtypes is a new perspective, since past works tried multi-class approaches 
but based on grouping of different sub-types. We also considered the weighted 
accuracy, in addition to simple accuracy, resulting in a more trustworthy performance 
assessment. Globally, better subtype sensitivities than other published approaches 
were achieved.

Keywords:  Cyclic alternating pattern, A-phase detection, EEG processing, Knowledge 
discovery in data
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Background
A cyclic alternating pattern (CAP) sequence is composed by a succession of CAP 
cycles, each one composed by two types of phases: The A-phases and the B-phases. 
The A-phases in lighter stages of comas are closely related to hyperventilation, restless, 
increase of pulse rate, and can be associated with increase in muscle activity. In con-
trast, autonomic and muscular activities are attenuated during the B-phases. Investiga-
tions discovered also that CAP is a physiologic component of non-rapid eye movement 
(NREM) sleep stages and do not occur, under normal conditions, in rapid eye movement 
(REM) [1, 2]. CAP sequences tend to appear associated with some dynamic sleep events 
like a change in sleep stages, falling asleep, or arousal without awaking [3]. However, 
some pathological conditions generate CAP sequences in REM, therefore it has potential 
to be used as a prognostic element of such diseases. Higher CAP rates are present in 
some types of insomniac patients [4], epilepsies [5], among other disorders. Thus, CAP 
quantification could be used as diseases biomarker, for example for seizure prediction 
[6].

The CAP definition and scoring rules are described in [7]. CAP is defined there as “a 
periodic EEG activity of NREM sleep characterized by sequences of transient electrocor-
tical events, that are distinct from the background electroencephalogram (EEG) activity 
and reoccur at up to 1-minute intervals”. An A-phase is considered as a transient phe-
nomenon translated by an increase in amplitude and/or frequency which is clearly dis-
tinguishable from background activity, i.e. from the B-phase, and is associated to a brain 
activation, including cortical arousal. For this reason, an A-phase is a potential trigger of 
somatomotor activities. Each phase can have a duration between 2 and 60 s. The mean 
duration of CAP sequences in young adults is two and half minutes, which contains in 
average six CAP cycles [1]. If an A-phase is not preceded and succeeded by another 
A-phase in 60 s, it is considered an isolated A-phase and defined to not belonging to a 
CAP cycle. To form a CAP sequence, at least two consecutive CAP cycles are required. 
An A-phase can be composed by high-voltage slow waves which are manifestations of 
EEG synchrony, by low-amplitude fast rhythms that are evidence of the EEG desyn-
chrony and be associated with typical waveforms (for example K-complexes). Depending 
on the associated waveforms and on the percentage of each wave type, a given A-phase 
is classified into three different subtypes:

•	 Subtype A1: It is composed by high-voltage slow waves. This subtype can be classi-
fied by an increase in amplitude of at least a third of the normal background activity. 
The synchronized EEG pattern must occupy more than 80% of the epoch to be clas-
sified as A1. The associated waveforms with this subtype are bursts, and K-complex 
sequences.

•	 Subtype A2: This subtype has elements from subtypes A1 and A3, and, therefore, it is 
composed by a mixture of fast and slow rhythms. The elements from the subtype A1 
must occupy between 50 and 80% of the length of an entire A-phase. In this subtype, 
the typical waveforms are polyphasic bursts.

•	 Subtype A3: Rapid low voltage rhythms prevail in this subtype, and there is an 
increase in frequency compared to the background. K-alpha, EEG arousals, and poly-
phasic bursts are the EEG waveforms associated with this subtype.
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To mention also that the A-phases subtypes present different signatures in the con-
ventional EEG frequency bands: delta ( δ = [1, 4] Hz), theta (θ = [4, 8] Hz), alpha (α = [8, 
13] Hz), sigma (σ = [13, 16] Hz) and beta (β = [16, 35] Hz) [8].

Different algorithms have been proposed in the last years for automatic scoring of 
A-phases and B-phases. Barcaro et al. proposed a detection method for A-phases [9–11], 
more precisely in [10, 11] these authors considered only three classes: B, A1 and A2/A3 
phases. The association of subtypes A2 and A3 was due to their similarity, as reported in 
the literature. The rationale of the methodology was the same in both papers [10, 11]: an 
amplitude feature was computed for each of the conventional frequency bands and then 
compared with a threshold. When one of the five features crossed the threshold a tenta-
tive A-phase detection was performed. The type assigned to the A-phases detected (A1 
or A2/A3) depended on which features crossed the threshold. The best reported results 
were the ones proposed with the methodology presented in [11], which had a correct-
ness of 83.5% for the binary discrimination between A-phases and B-phases, and 73.7% 
for the multi-class distinction between A1, A2/A3 subtypes.

A model based on feedback loops that simulates the EEG activity was proposed by 
[12]. This methodology was used to detect K-complexes and vertex waves and detected 
CAP sequences by considering four rhythm generators, which corresponded to different 
frequency bands (δ, α, θ and σ). The results obtained with this algorithm pointed for a 
mean sensitivity of 90% [12].

A method based on wavelets and genetic algorithm was proposed in [13] to identify 
the A-phases independently of the subtype. Basically, the signal was decomposed into 
five signals corresponding to the different frequency bands, using the discrete wave-
let transform. A feature based on amplitude was computed for each decomposed sig-
nal. The A-phases were detected comparing the features to a threshold. The accuracy 
reported was 79%.

Stam and van Dijk [14] published a study that defined the synchronization likelihood 
(SL) between two EEG channels and proposed a method to calculate this value. This 
measurement was applied for A1 detection [15], where the signal was filtered between 
0.25 and 2.5  Hz. They concluded that during sleep the levels of SL in this frequency 
range had significant fluctuations with CAP occurrence. This feature presented a good 
performance in distinguishing the A1 subtype from the background [16]. Although this 
was only true for NREM stage 2. For the others sleep stages this feature cannot distin-
guish A1 or the other subtypes [15, 16].

In 2012, a method using different classifiers was proposed for the binary discrimina-
tion between A-phases and B-phases, using seven EEG features. The classifiers consid-
ered were support vector machine (SVM), linear discriminant analysis (LDA), Adaboost, 
and artificial neural networks (ANN) [17]. Five out of seven features were related with 
the signal amplitude filtered in the conventional frequency bands. The other two fea-
tures were the Hjorth activity and EEG variance. The reported accuracy for LDA, SVM, 
Adaboost, and ANN were 84.9 ± 4.9%, 81.9 ± 7.8%, 79.4 ± 5.5% and 81.5 ± 6.4%, respec-
tively. Concerning the sensitivity, the results for LDA, SVM, Adaboost, and ANN were 
72.5 ± 10.9%, 70.1 ± 8.6%, 68.5 ± 6.7% and 72.9 ± 7.5%, respectively. Finally, the specific-
ity for LDA, SVM, Adaboost, and ANN were 86.6 ± 6.3%, 84.0 ± 11.1%, 79.3 ± 9.4% and 
82.3 ± 7.1%, respectively.
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However, the approaches previously reported did not present a good performance to 
score correctly the microstructure without a posteriori technician revision. Moreover, 
good results were only obtained for the distinction between A-phases and B-phases, and 
not for the multi-class discrimination between all the different subtypes. Another draw-
back was the consideration of simple accuracy that lead to an overestimation of the per-
formance in imbalanced datasets, which is the case of A-phase scoring.

Here, we describe a knowledge discovery methodology in data (KDD) that is for the 
first time applied to CAP scoring. The KDD encompasses: the extraction of multiple 
EEG features, different pre-processing options, and different pattern recognition tech-
niques. The KDD aims to inspect about proper processing alternatives for the binary 
distinction between A-phases and B-phases, and also for multi-class classification of the 
different CAP components, i.e. the three A-phase subtypes as well as the B-phases. The 
fully discrimination of the three different A-phases subtypes is a new perspective, since 
past works tried multi-class approaches but based on grouping of different sub-types, 
as for example A2 and A3. We also considered the weighted accuracy, in addition to 
simple accuracy, resulting in a more trustworthy performance assessment. The next sec-
tion describes the methods used, the database and data characteristics. “Results” section 
describes the classification performance achieved for the different options considered. 
Insights about results and future directions are given in “Discussion” and “Conclusion” 
sections.

Methods
Database

The study was carried out on 30 subjects with nocturnal frontal lobe epilepsy, 14 females 
and 16 males, with ages between 14 and 67 years old (mean = 31.03 ± 11.64). The data-
set is available from the CAP Sleep Database [18], that comprises several one-night 
polysomnographic recordings from different patients with different pathologies, and has 
been used in several studies in the past [10, 11, 13, 17, 19]. The recordings were acquired 
at the Sleep Disorders Center of the Ospedale Maggiore of Parma, Italy. The polysom-
nographic data includes at least three EEG channels (F3 or F4, C3 or C4 and O1 or O2, 
referred to electrodes placed in the earlobes, labeled as A1 or A2), two EOG channels, 
three electromyography signals (EMG), respiration signals and the ECG. The sampling 
rates for the recordings vary from 128 to 512 Hz, depending on the patient.

The macrostructure and microstructure scoring were annotated by neurophysiolo-
gists and supplied together with the raw EEG data. The macrostructure was annotated 
according to the R&K rules [20], while CAP was detected in agreement with Terzano 
reference atlas [7].

Knowledge detection methodology in data

The main KDD steps are represented in Fig. 1, and they are based in the processing of 
the monopolar channel C4–A1. In the next sections a closer look into the each one of 
the steps will be presented.
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Filtering

The original signal was filtered to obtain its components in six frequency bands, i.e. in 
the band 0.3–35  Hz [originating a signal called in this work as the broadband signal 
(BB)], and in the five conventional frequency sub-bands. The filter of the signal between 
0.3 and 35  Hz was chosen to be in agreement with the usual practice in clinics [21]. 
The five conventional frequency bands considered were: delta (δ: 0.3–4  Hz), theta (θ: 
4–8 Hz), alpha (α: 8–13 Hz), sigma (σ: 13–16 Hz) and beta (β: 16–35 Hz), that will be 
designated by conventional frequency bands [8] along this article.

The EEG signal was filtered using a third-order band-pass Butterworth filter [22] and 
was chosen due to its flat and without ripples frequency response in both pass- and 
stop-bands.

Feature extraction

Features were extracted from EEG recordings that have a duration of a whole night of 
sleep (around 8 h). Each feature had a value for each second by segmenting using a slid-
ing window approach. Overall, different window sizes and different degrees of super-
position between consecutive windows were considered. The options for the different 
features are presented in Fig. 2. Also, for two features, segmentation was performed after 
features computation. The need to define different segmentation procedures was due to 
the particularities of the different features. Details on the computation of each feature 
will be described in the following sections.

Fig. 1  KDD steps for automatic A-phase detection
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Macro–micro structure descriptor

Macro–micro structure descriptor (MMSD) is an a-dimensional and normalized meas-
urement of how the mean amplitude, C, of the EEG signal in a given frequency band 
ϕ(ϕ ⊂ {δ, θ ,α, σ ,β}) ) differs, at a given time instant, from its background. The MMSD is 
given by [1],

This means that MMSDϕ results from the combination of two primary features Cϕ,τ 
and Cϕ,τ0 that were also considered in this work. In a general way, Cϕ,τ represents the 
mean amplitude at a given time instant, computed taking in account the past samples 
over an interval of size τ . If τ is long enough, it represents the background of the sig-
nal, while if it is too short it is related with instantaneous signal activity. It was reported 
that if τ = 60 s and τ0 = 2 s , Cϕ,τ and Cϕ,τ0 are generally related to the sleep macro- 
and microstructure, respectively [9]. Therefore, these were the values used to compute 

(1)MMSDϕ =
Cϕ,τ0 − Cϕ,τ

Cϕ,τ
.

Fig. 2  Schematization of the feature computation process based on the filtered EEG signal. In the boxes 
representing the segmentation process, aiming to represent the percentage of overlap, full lines describe a 
given window at discrete time k, and dashed lines represent the same window but at time k + 1. “FE” boxes 
represent feature extraction, and the “FC” box represent the computation of the MMSDϕ feature that result 
from the combination of Cϕ,τ and Cϕ,τ0
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MMSDϕ , Cϕ,τ0 and Cϕ,τ . Given the MMSDϕ dependence on the sleep microstructure, it 
has been used to classify A-phases [9–11].

One the one hand, given the selected τ value, MMSDϕ and Cϕ,τ were computed by 
considering a window of 60 s and a superposition between consecutive windows of 59 s 
(98% overlap). On the other hand, τ0 defines that Cϕ,τ0 was computed based on a window 
of 2 s and a superposition between consecutive windows of 1 s (50% of overlap).

Teager energy operator

The Teager energy operator (TEO) gives a non-linear measure of the instantaneous 
signal energy [23, 24]. In its discrete form TEO is given by [2],

where x[n] is the discrete signal sequence. This operator has been successfully used in 
several signal processing applications. For example, it was used in speech processing [25, 
26], and feature extraction from EMG signals [27]. TEO has been referred as adequate 
for the identification of some EEG elements which are crucial for the CAP scoring, like 
sleep-spindles [28], and K-complexes [29]. TEO was computed for all the EEG signal and 
for all frequency bands and was applied in first place to the entire EEG time series due 
to its non-causal formulation. Afterwards, the TEO sequence was divided into epochs of 
1 s and each one is represented by the maximum TEO value.

Zero‑crossing rate

Zero-crossing rate (ZCR) is a measure of the dominant frequency of a signal, and is 
obtained in the time domain by counting the number of baseline crossings in a fixed 
time interval [30]. The ZCR is a fast, intuitive and low complexity way to obtain infor-
mation about the signal frequency in a short period of time [31, 32]. This feature has 
been widely used in different applications [33], in particular in the sleep staging field 
[30, 34]. To compute this feature a non-overlapping moving window of 1 s duration 
was considered.

Lempel–Ziv complexity

Lempel–Ziv complexity (LZC) is a metric used to evaluate the randomness of finite 
sequences proposed by Lempel and Ziv, in 1976 [35], and has been used to character-
ize sleep [36, 37]. To compute the LZC complexity a numerical sequence has to be 
transformed into a symbolic sequence. A frequent approach is to convert the signal, 
x[n], into a binary sequence, P = s[n], and comparing the signal with a threshold, Td. 
The points whose value is greater than Td are converted to 1, otherwise to 0. After-
wards, a dictionary is build based on the sequences present in the signal s[n]. The size 
of the dictionary is proportional to the LZC. The methodology used to compute this 
feature is described in [38]. LZC as well as ZCR were computed for the six signals: 
broadband signal and five frequency bands, and using a non-overlapping moving win-
dow of 1 s.

(2)TEO[x[n]] = x[n]2 − x[n− 1] × x[n+ 1],
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Discrete time short time Fourier transform

Discrete Fourier transform (DFT) is the simplest form of time–frequency analysis for 
discrete stationary signals, and is given by [3],

where N is the total the number of samples in a given signal segment, x[n] is the value of 
the signal at instant n and k is the discrete frequency bin (0 to N − 1).

The EEG is a non-stationary signal, with different intervals of time having different 
frequency contents. If the DFT is applied to the signal the evolution of frequencies 
with time will be lost. To overcome this, the solution is to divide the signal into pieces 
through the application of a window, w, and apply the DFT [39] to each one, leading to 
the discrete time short time Fourier transform (DTSTFT), given by [4],

The window w[n] is assumed to be non-zero only in an interval of length Nw and is referred 
to as the analysis window. The sequence x[m]w[n − m] is called short section of x[m] at time 
n [40]. In this work, for each window, it was obtained a spectrum and from it was extracted 
the frequency of maximum energy ( Max_freq ), the frequency of mean energy ( Mean_freq ) 
and the area under the magnitude spectrum curve ( Spec_area ). The spectrum was com-
puted considering a window length of 3 s, with an overlap between windows of 2 s.

Empirical mode decomposition

In empirical mode decomposition (EMD) a given signal is decomposed in intrinsic mode 
functions (IMF), where each one represents an embedded characteristic oscillation on a 
separated time-scale. The EMD application requires a continuous signal, with the num-
ber of maxima equal to the number of minima, and also a signal with zero mean. The 
EMD has been used in EEG applications, for example, for classification of mental tasks 
[23] and in automatic sleep staging using ECG [41].

In this work EMD was computed for 12 decomposition levels, and the procedure used 
is available in [42]. To overcome problems with EEG segmentation EMD was applied to 
the entire signal and segmented afterwards by using consecutive windows of 1 s without 
overlap. The features derived from EMD were the average values of the different IMFs 
obtained for each window.

Shannon entropy

Shannon entropy (ShEnt) evaluates the randomness (complexity) of a signal by comput-
ing its amplitude distribution and the probability for a given value to occur. The higher 
the probability for the values to happen, the less information exists on the signal, result-
ing in a smaller entropy. ShEnt has been widely used in EEG processing, for example to 
distinguish between normal and epileptic EEG [43]. It was proved that this feature is 
proportional to the sleep macro and microstructure [44] and it has been applied in the 

(3)X[k] =

N−1
∑

n=0

x[n]e−j 2πknN ,

(4)X[n, k] =

∞
∑

m=−∞

x[m]w[n−m]e−j 2πkmN
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automatic sleep staging [45–48]. A non-overlapping moving window of 1 s duration was 
applied to the broadband signal, then the ShEnt was computed.

Fractal dimension

Fractal dimension (FD) quantifies the number of times the same sequence appears in 
a signal. A signal can be composed by basic building-blocks forming a pattern, the FD 
quantifies the number of these basic building-blocks. The algorithm proposed by Higu-
chi [49] is generally used for finding FD in EEG signals.

Fractal dimension is related with sleep macro and microstructure [44] and has been 
used in the automatic staging of sleep patterns [45, 47]. The broadband signal was 
divided into epochs of 1 s length, afterwards the FD was computed for each one of them.

Variance

Variance has been used for automatic sleep staging [47] and A-phases detection [17]. 
The formula for variance computation, s2, is on Equation [5], where N is the number of 
signal samples, x[n] is the value of the n-th signal sample and x̄ the mean value of the 
signal over the time interval [1,N ].

Variance was computed by segmenting the broadband EEG signal with a non-overlap-
ping moving window of 1 s duration.

Summary

Given the different decomposition levels, and the considered frequency bands, a total of 55 
features were obtained. Table 1 summarizes which features were considered and for which 

(5)s2 =
1

N − 1

N
∑

n=1

(x[n]− x̄)2

Table 1  Computed EEG features

BB stands for broadband EEG signal, and δ , θ , α , σ and β are the conventional frequency bands. The ϕ specifies the frequency 
band considered, and the (✓) symbol indicate if a given measure was extracted for a given frequency band. Concerning 
EMDl , l  represents the decomposition level that in this paper can assume valued from 1 to 12

Measure Acronym Frequency band (φ)

BB δ θ α σ β

Macro–micro structure descriptor MMSDφ ✓ ✓ ✓ ✓ ✓
Cϕ,τ ✓ ✓ ✓ ✓ ✓
Cϕ,τ0 ✓ ✓ ✓ ✓ ✓

Teager energy operator TEOϕ ✓ ✓ ✓ ✓ ✓
Zero-crossing ratio ZCRϕ ✓ ✓ ✓ ✓ ✓ ✓
Lempel–Ziv complexity LZCϕ ✓ ✓ ✓ ✓ ✓ ✓
Discrete time Max_freq ✓
Short-time Mean_freq ✓
Fourier transform Spec_area ✓
Empirical mode decomposition EMDl ✓
Shannon entropy ShEnt ✓
Fractal dimension FD ✓
Variance s2ϕ ✓ ✓ ✓ ✓ ✓ ✓



Page 10 of 23Machado et al. BioMed Eng OnLine          (2018) 17:185 

frequency band were extracted. At the end, a feature name is composed by its name con-
catenated with the frequency band considered. For example, the Teager energy extracted 
for the EEG signal in the θ band is described by TEOθ . EMD was computed for 12 decom-
position levels and is represented by EMDl , where l = 1, 2, . . . , 12 , represents each level. 
Details about the window size used and percentage of superposition between windows are 
given in Fig. 2. For TEOϕ and for EMDl segmentation was performed after feature com-
putation in order to comply with the TEOϕ non-causal characteristic, and to discard the 
windowing effect that has drastic consequences for EMDl . To mention that the window 
lengths and overlaps defined guaranties the sampling rate of 1 s for all the features.

Features post‑extraction processing

Firstly, all features except MMSD, TEO and EMD were smoothed using a causal mov-
ing average FIR filter of order 30  [50]. These features were excluded because they detect 
changes in amplitude and frequency, and if the smoothing technique had been applied, 
important information could had been lost.

Secondly, the samples four standard deviations away from the mean were considered 
outliers. Their values were replaced by the median of the feature. If the frequently used 
value of three standard deviations would be used, the A-phases would likely be consid-
ered as outliers. Therefore, the maximum distance allowed was extended. Finally, the 
values of each feature were normalized to be in the [0–1] range.

Feature ranking and transformation

The selection or reduction of the features used for the classification task is essential for a 
good performance of the classifier, on the one hand it is desired that the features should 
be correlated with the class labels, on the other hand they should not be redundant 
among themselves. Feature selection and transformation also contributes to reduce the 
computational cost associated with high dimensionality problems (the “curse of dimen-
sionality”). So, the features must be analyzed aiming to select the best set to use in the 
classification step. In this work two approaches were used, one for feature selection by 
ranking and other for feature transformation by projection:

•	 Minimum redundancy maximum relevance (mRMR): This algorithm ranks the fea-
tures based on two objectives: obtain the highest correlation between the selected 
features and class labels (maximum relevance) and reduce the redundancy between 
features (minimum redundancy). This technique is described in detail in references 
[51].

•	 Principal component analysis (PCA): PCA finds the directions in a d-dimensional fea-
tures space where data presents the higher variance, guarantying that these directions 
are orthogonal among them. The final step, the reduction phase, encompass the selec-
tion of some of the directions and the projection of data according to them. The direc-
tions are found by computing the eigenvectors of the data covariance matrix [52].
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Classification

Different linear and non-linear classification methods were used in this work aiming to 
see for which methods and conditions a better performance was achieved. From the pre-
vious steps 55 features were obtained, and each feature had a value and a class label for 
each second, thus we trained the models to classify the EEG signal at every second. The 
class labels were computed based on the original annotations provided for the raw EEG 
data, as described in “Database” subsection. The different classification methods consid-
ered are described next.

Discriminant analysis

Discriminant analysis (DA) [53] has been used in different areas like in statistics, 
pattern recognition and machine learning. Considering a feature vector x of size 
(d × 1) , and c classes ωk ( k = 1, 2, . . . , c ). To find the best discrimination function, 
g, the first step is to define the function type. It can be linear, g(x) = wx + w0 and in 
this case the classifier performs a linear discriminant analysis (LDA), or quadratic, 
g(x) = w0 +

∑d
i=1 wixi +

∑d
i=1

∑d
j=1 xixjwij , and in this case a quadratic discriminant 

analysis (QDA) is implemented, where w is the weight vector and w0 is the bias.
The weights (w, w0 ) are computed by minimizing a cost function of the classification 

errors by using N examples as training data: 

where tn is the n-th sample of the target vector, i.e. the label of sample xn.
In a multi-class problem with c classes, where c > 2 , the discrimination procedure is 

to compute the c discriminant functions. The linear discriminant functions are given 
by gk(x) = wT

k x + wk ,0 . To each point assign a class ck if gk(x) assume the highest value 
among all the discriminant functions.

k‑Nearest neighbors (k‑NN)

k-Nearest neighbors is a non-parametric method, which means that there is no assump-
tion about the underlying pattern distributions. Unlikely the DA the k-NN does not find 
the best function to divide the space into regions. Instead, the training data is stored in 
a matrix containing the features and the labels assigned to each pattern. To label a new 
point, x, it is compared with the k-closest training points. The class assigned to x is the 
most prevalent class in these k-points [54].

Support vector machines

In its native formulation support vector machine (SVM) finds a decision hyperplane that 
maximizes the margin that separates the two different classes [55].

Considering the training data 
{

xi, yi
}

 , i = 1, . . . ,N  , ti ∈ {−1, 1} , xi ∈ Rd , where ti are 
the class labels and xi the features values. Considering that the data is non-linearly sepa-
rable, the function which define the hyperplane is [7], 

(6)J (w) =
1

N

N
∑

n=1

(

tn − g(xn,w)
)2
,
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where w is the vector normal to the hyperplane, b
‖w‖

 is the hyperplane offset to the origin 
and ξ is a quantification of the degree of misclassification. w and b are obtained by mini-
mizing [8], 

due C defines the influence of ξ on the minimization criterion Ψ .
In the previous case, the boundary that separates the classes is linear. To improve clas-

sification in non-linearly separable data the features space is projected into a higher 
dimensional space based on a Kernel projection where the linear separability principle 
can be applied. The most popular Kernel, which is used in this work, is the Gaussian 
Kernel [9],

where xj is the position of the Gaussian centre and σ the Gaussian aperture (standard 
deviation).

The SVM is defined as a two-class classifier, but A-phase classification is a multi-class 
problem. The usual approach for multi-class SVM classification is to use a combination 
of several binary SVM classifiers. Different methods exist but in this work we used the 
one-against-all multi-class approach [56]. This method transforms the multi-class prob-
lem, with c classes, into a series of c binary sub problems that can be solved by the binary 
SVM. The i th classifier output function ρi is trained taking the examples from ci as 1 and 
the examples from all other classes as − 1. For a new example x, this method assigns x to 
the class associated with the largest value of ρi [56].

Post‑processing

The unique post-processing implemented was focused on the validation the A-phase 
duration that must be within the interval 2 s to 60 s. Thus, the number of consecutive 
1  s epochs classified as A-phases were quantified. If a single epoch was classified as 
A-phase, or if more than 60 consecutive epochs were classified as A-phases, they were 
considered as background signal, i.e. as B-phases.

Performance evaluation

The Leave-one-out approach [57] was used, which is the most classical exhaustive cross 
validation (CV) procedure. Supposing that the data is composed by M patients, the algo-
rithm will be trained M times. In each iteration, a different patient is “left out” to be the 
test data and the remaining ones are training data. The algorithm output for each patient 
is compared to the real staging by filling confusion matrices. We evaluated the algo-
rithms from two perspectives: the performance on detecting A-phases from B-phases 
(binary problem) and the algorithms capabilities to differentiate among the different 

(7)ti

(

w
T
xi + b

)

≥ 1− ξi t ∈ −1; 1

(8)
Ψ (w) = 1

2 � w �2 +C
N
∑

i=1

ξi, subject to

yi
(

w
T
xi + b

)

≥ 1− ξi, i = 1, ..,N ,

(9)k
(

xi, xj
)

= eγ �xi−xj�
2
, γ =

1

2σ 2
,
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CAP subcomponents, i.e. the capability to differentiate A1, A2, A3 and B phases (multi-
class problem). Thus, two confusion matrices were filled, which can be represented by 
the generic confusion matrix in Table 2.

For the binary problem c = {A-phase, B-phase}, while for the multi-class problem 
c = {B-phase, A1, A2, A3}. In Table 2 the diagonal terms nij , where i = j , correspond to 
the instances where the algorithm’s output was consistent with to the real class label, i.e. 
the true positive patterns. The values nij , where i �= j , are the number of instances mis-
classified by the algorithm, which can be considered as false positives or false negatives 
depending on the class under analysis.

Considering a given class k, four measurements were taken:

•	 True positive ( TPk ): number of instances correctly classified as class k;
•	 False positive ( FPk ): number of instances classified as k when in fact they belong 

to other class;
•	 True negative ( TNk ): number of instances correctly not classified as k;
•	 False negatives ( FNk ): number of instances assigned to other classes when in fact 

they belong to class k;

For a classification problem with K classes, these measurements can be computed 
from the confusion matrix as follows in [10]. 

To evaluate the algorithm’s three performance measures were used: sensitivity (SE), 
specificity (SP) and accuracy (AC), which are given by [11]: 

(10)

n+,k =

K
∑

i=1

ni,k

nk ,+ =

K
∑

j=1

nk ,j

TPk = nk ,k ;

FPk = nk ,+ − nk ,k ;

FNk = n+,k − nk ,k ;

TNk = N − TPk − FPk − FNk

(11)
SEk =

TPk

TPk + FNk
; SPk =

TNk

TNk + FPk
;

AC =
TNk + TPk

TNk + FPk + FNk + TPk
.

Table 2  Generic confusion matrix, where  “^” indicates predictions provided 
by the algorithms

Predicted True

c1 c2 · · · cK

̂c1 n1,1 n1,2 · · · n1,K

̂c2 n2,1 n2,2 · · · n2,K
.
.
.

· · · · · · · · · · · ·

̂cK nK ,1 nK ,2 · · · nK ,K
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The B-phases, i.e. background epochs, were more present than the A-phases, some-
times seven times more. Therefore, when an algorithm correctly detected most of the 
B-phases, even though performance was not as good as A-phases, it usually had a 
higher accuracy. Since the main objective was to correctly detect the A-phases, the 
AC might not yield a correct view of the overall performance of the algorithm. A 
more adequate performance measure was considered, the weighted accuracy (WAC), 
that takes into account the number of instances of each class. Thus, a miscomputation 
of B-phase instance will have lower impact on accuracy than an A-phase misclassifi-
cation. The weighted accuracy is given by [12]. 

AC is also presented, although it provides poorer performance, to better compare the 
results with those reported in literature.

Results
In total, 55 features were computed. An evaluation of the performance using different num-
ber of features and principal components to build a classifier was performed and the results 
are shown in the following sub-sections. A straightforward approach was implemented and 
worked as follow: (i) at start only the two more important features or principal components 
were considered; (ii) then we introduced the next feature/principal component in the next 
step; (iii) until all the features/components were considered as classifier’s input.

Multi‑class A‑phase classification

mRMR

Features ranking with mRMR did not returned exactly the same result for all the 
patients, being an evidence of the inter-individual variability. Analyzing all the rankings 
sequences for each patient, the most prevalent ranking sequence was (from higher to 
lower importance): LZCBB , Cβ ,τ , Cσ ,τ , Cβ ,τ0 , Cσ ,τ0 , Cδ,τ , ZCRBB , Cδ,τ0 , Max_freq , Cα,τ0 , Cθ ,τ , 
MMSD , Cθ ,τ0 , Cα,τ , TEOδ , MMSD , EMD1 , s2δ , MMSDσ , EMD2 , EMD6 , MMSDα , EMD5 , 
EMD7 , MMSDβ , s2θ , MMSDσ , Spec_area , s2BB , EMD10 , EMD4 , s2β , EMD11 , EMD12 , ShEnt, 
EMD3 , Mean_freq , s2σ , TEOθ , EMD9 , EMD8 , s2α , TEOβ , TEOσ , TEOα , ZCRδ , ZCRθ , ZCRα , 
ZCRσ , ZCRβ , LZCδ , LZCθ , LZCα , LZCσ , LZCβ and FD.

Using LDA and QDA the performance monotonically increases with dimensionality 
and can be considered stable for more than 30 features, as presented in Fig. 3. The LDA 
classifier achieved in general better results than QDA, and when 30 features were con-
sidered, the LDA classifier achieved 47% and 61% of WAC and AC, respectively.

For the k-NN classifier different values of k [3, 5, 7, 9, 15, 25] were used to evaluate the 
performance. The behaviour of accuracy with the number of features is similar to the DA 
classifier. For the same number of features, the accuracy was similar independently of the 
k value. However, WAC clearly depended on the number of neighbours, and the best k 
that achieved higher weighted accuracy was 25, as depicted in Fig. 4. Considering a k-NN 
model with 30 features the mean values for WAC and AC were 46% and 70%, respectively. 

(12)WAC =
1

K

K
∑

j=1

njj

n+,j
.



Page 15 of 23Machado et al. BioMed Eng OnLine          (2018) 17:185 

Fig. 3  Evolution of WAC with the number of features used to build a model with LDA (L) and QDA (Q)

Fig. 4  Weighted accuracy evolution with the number of features using a k-NN classifier for different k-values 
[3, 5, 7, 9, 15, 25]

In both classifiers (DA or k-NN) the AC and WAC values stabilized after 30 features, 
independently of the classifier parameters. Since the computational cost increases with 
the number of dimensions used, the SVM models were build using only 40 features, 
which is a number that guaranties a good accuracy when DA and k-NN were applied. A 
grid search was performed for C = 2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 25 as pre-
sented in Fig. 5. With this classifier, the best performance was obtained for C = 2−1 and 
γ = 2−1 , being 51% and 71% the mean WAC and AC, respectively.

The confusion matrix represented in Table 3, shows that for SVM with C = 2−1 and 
γ = 2−1 , it can be seen that the B-phases were confused with the A1 and A2 subtypes in 
average 11% of the times, and confused with A3 subtype only 7% of the times. 22% of the 
A1 phases were confused with A2, but only 5% with A3. A2 was more confused with A1, 
although the algorithm considered 21% of these phases as B-phases. A3 was the one with 
lower sensitivity and its misclassification is quite high: 32% were confused with A2, 27% 
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with B-phase and 17% with A1. The A3 and A1 were the most distinct types, thus it was 
expectable that they were less confused.

PCA

Using a DA classifier QDA achieved greater accuracy values than LDA, for all dimen-
sions. More precisely, accuracy stabilized around 70% for more than 12 dimensions. 
Although the WAC significantly dropped for a classifier with more than 12 dimensions 
as can be observed in Fig. 6. A WAC of 49% was achieved using 12 components, that 
corresponded to an AC of 68%.

The results obtained with a k-NN classifier using PCA components was quite similar 
with the ones obtained with feature selection by mRMR, as presented in Fig. 7. Besides 
this similarity the performance using PCA started to stabilize for more than 30 compo-
nents as when using mRMR. The WAC registered for 40 principal components and for 
k = 25 was 47%, corresponding to an AC of 61%.

Using features selected by mRMR both DA and k-NN started to stabilize for 
more than 30 dimensions. Although, when PCA was used for a DA classifier WAC 
achieved a maximum for 12 features and afterwards started to decrease. In k-NN the 

Table 3  Mean of  confusion matrix for  an  SVM classifier using the  40 features ranked 
by mRMR, for the parameters of C = 2−1 and γ = 2−1

Italic font indicates the matrix main diagonal that represent the correctly predicted instances

Predicted True

B-Phase A1 A2 A3

B-Phase 76 ± 5 15 ± 8 21 ± 12 27 ± 11

A1 11 ± 4 59 ± 14 27 ± 13 17 ± 10

A2 11 ± 6 22 ± 12 44 ± 15 32 ± 11

A3 7 ± 2 5 ± 4 8 ± 8 24 ± 10

Fig. 5  Weighted accuracy for different SVM parameters and considering 40 features (chosen by mRMR). The 
grid search was performed with C = 2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 25
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performance increased until 30 principal components, and for more principal com-
ponents the performance remained almost constant. Given the previous results of 
DA and k-NN it was chosen to use a SVM classifier with the first 30 more important 
principal components. The WAC results obtained after a grid search are presented 
in Fig.  8. The best SVM parameters were C = 2−5 and γ = 2−9 , resulting in WAC 
and AC of 47% and 56%, respectively.

The confusion matrix is shown in Table  4. With mRMR feature selection the 
results are more dispersive than when using PCA, i.e. when a class was misclassified 
using PCA it was mostly confused with one class rather than with two. An interest-
ing observation for the combination of SVM and PCA was that the majority of A1, 
32%, were mistaken with A2 and only 5% and 2% were misclassified as B-phase and 
A3-phase, respectively. Contrarily, in mRMR 22% of the real A1 were wrongly classi-
fied as A2 and 15% confused with B-phases.

Fig. 6  Evolution of WAC with the number of PCA principal components used to build a model with LDA (L) 
and QDA (Q)

Fig. 7  Weighted accuracy evolution with the number of PCA principal components using a k-NN classifier 
for different k-values [3, 5, 7, 9, 15, 25]
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Binary classification of A‑phase vs B‑phase

For the two-class problem, where it was only necessary to detect the A-phases from 
the B-phases without concerning the A-phase subtype, all the classifiers applied to 
the previous problem are analyzed in the following.

mRMR

With DA, the higher value of WAC was 72% with a LDA classifier, and using the 43 
best features. The registered SP, SE and AC were: 65%, 78% and 67%, respectively. 
Using k-NN with k = 25 the better performance values were obtained for 55 features, 
being AC equal to 75% and WAC equal to 80%. In these conditions, sensitivity and 
specificity were 82% and 68%, respectively. Considering the SVM with 40 features, the 
highest WAC achieved was 78% for C = 2−1 and γ = 2−1 , assuming AC, SP and SE 
the values 76%, 79% and 77%, respectively.

Table 4  Mean of  confusion matrix for  a  SVM classifier using 30 principal components, 
for the parameters of C = 2−5 and γ = 2−9

Italic font indicates the matrix main diagonal that represent the correctly predicted instances

Predicted True

B-Phase A1 A2 A3

B-Phase 61 ± 3 5 ± 2 9 ± 4 26 ± 9

A1 17 ± 4 60 ± 17 35 ± 12 25 ± 8

A2 16 ± 4 32 ± 15 53 ± 10 38 ± 9

A3 6 ± 2 2 ± 3 3 ± 3 13 ± 5

Fig. 8  Weighted accuracy for different SVM parameters and considering 30 PCA principal components. The 
grid search was performed with C = 2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 25
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PCA

Combining the principal components with DA classifier the higher WAC obtained 
was 76% for a QDA with 15 dimensions. In this case SE, SP and AC were 79%, 74% 
and 73%, respectively. Regarding k-NN, the highest WAC, 75%, was achieved for 54 
components and for k = 25 . SE, SP and AC were 86%, 65% and 68%, respectively. For 
SVM the best result was for 40 principal components and for c = 2−5 and γ = 2−11 . 
The achieved WAC was 75%, being AC, SE and SP: 73%, 76% and 73%, respectively.

Summary

Table 5 presents an overview of the results obtained with the different classifiers, with fea-
ture selection or reduction, and for the binary or multi-class classification problem. One 
can observe that feature selection by mRMR led to the attainment of the best results in both 
classification scenarios. For the multi-class problem, the best classifier was SVM, and for 
the binary case k-NN was the one that attained the better performance.

Discussion
To the best of our knowledge, only two methods that discriminate between A-phases 
subtypes were found in literature, proposed by Barcaro et al. [11] and by Navona et al. 
[10]. In these methods, the subtypes A2 and A3 were joined and classified as one, A2/
A3. Aiming to improve comparison, the algorithms described in [10, 11] were imple-
mented in this work and their results, as well as the results for the other methods, are 
compiled in Table 6. It can be seen that the sensitivities of A2/A3 were quite low, in the 
two versions proposed by Barcaro et al. (below 10%). Although, the AC of this method 

Table 5  Summary of  the  best results obtained for  all the  main methodological options 
considered

The best WAC results for each classification scenario (binary or multi-class) are in italic. #F. and #P. C. stand for number of 
features and number of principal components, respectively

Multi-class problem Binary problem

mRMR PCA mRMR PCA

#F. AC (%) WAC (%) #P. C. AC (%) WAC (%) #F. AC (%) WAC (%) #P. C. AC (%) WAC (%)

DA 30 61 47 12 68 49 43 67 72 15 73 76

k-NN 30 70 46 40 61 47 55 75 80 54 68 75

SVM 40 71 51 30 56 47 40 76 78 40 73 75

Table 6  Comparison of  the  best classifier model proposed in  this work with  the  ones 
presented in literature, that distinguish among A-phases subtypes

Method Publication Specificity Sensitivity AC (%) WAC (%)

(B-phase) A1 A2 A3

DA This work 73 66 37 18 68 49

k-NN This work 71 59 31 16 70 46

SVM This work 76 58 44 24 71 51

MMSD [10] 89 51 6.5 79 49

[11] 79 57 10 72 49
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was high. This value was due to class imbalance, i.e. due to a high predominance of the 
B-phases, which occupied 70% of the all data. Then, due to a high sensitivity of B-phases, 
AC will be high as well, even if the sensitivity of A-phases was low. WAC in turn was 
lower than AC, quantifying the low classification of the A2/A3 class. The KDD imple-
mented for A-phases discrimination enabled the development of classification solutions 
to detect all the three A-phases subtypes, which is an innovation. All the A-phases sensi-
tivities achieved were higher than the published methods.

Most of the A3 were arousals that are events with characteristics of awake sleep stage. 
Therefore, the classifiers were trained with B-phases similar to A3 phases, which led to 
a lot of A3 phases being wrongly classified as B-phase. This can be seen observing the 
confusion matrices represented in Tables 3, 4. The typical waveform associated with A1 
are only the K-complex that counts with appropriate features for its detection, which 
explained the higher results for this subtype, compared to the A2 and A3.

Subtypes sensitivities can be improved by taking into account context information. 
Information from the macro-structure could be important to improve A3 discrimina-
tion, given that it is confused with the awake state. Other aspect that is important to take 
into account is the subject condition. For example, NFLE patients, to which belongs the 
population considered in this work, are characterized by a significant enhancement of 
all A-phases subtypes when compared with controls [58]. In addition, A-phases offers 
favorable conditions for the occurrence of nocturnal motor seizures [6], and for the gen-
eration of paroxysmal EEG features that can be used as bio-markers.

The majority of the algorithms presented in literature were developed for A-phase vs 
B-phase detection, as it can be seen in the literature review. The performance of the pro-
posed algorithms with those in the literature are compared in Table 7.

In general, the accuracy reported in literature is higher than the ones reported in 
this work for the various methods. This is due to the fact that they reported the stand-
ard accuracy without accounting for class imbalance. Therefore, again, they gave more 
importance to the B-phases that were more numerous than the A-phases. The consid-
eration of WAC enabled a more appropriate estimation of the algorithms performance. 
In fact, if WAC was considered instead of AC, the algorithms presented in [9–11], pre-
sented much lower performance values, as can be observed in Table 7.

Table 7  Comparison of  the  best classifier model proposed in  this work with  the  ones 
present in literature to detect A-phases

Method Publication SE (%) SP (%) AC (%) WAC (%)

DA This work 79 74 73 76

[17] 72 87 85 –

k-NN This work 82 69 75 80

SVM This work 79 76 76 78

[17] 70 84 82 –

MMSD [9] 58 81 78 71

[10] 52 89 83 69

[11] 58 80 78 73
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Conclusion
We propose a multi-step KDD to determine appropriate processing options for auto-
matic CAP scoring. We extracted several features, approached two different feature 
selection/reduction methods, and different classification methods. It was concluded that 
using the features ranked by mRMR without any transformations leads to better results. 
It was shown that the SVM was the best classification method for the full discrimination 
of all CAP components, while k-NN performed better when one just wants to discrimi-
nate A-phases from B-phases.

The proposed KDD is for the first time applied to CAP scoring. In particular, the 
fully discrimination of the three different A-phases subtypes is a new perspective, since 
past works tried multi-class approaches but based on grouping of different sub-types. 
We also considered the weighted accuracy, in addition to simple accuracy, resulting in 
a more trustworthy performance assessment. Globally, better subtype sensitivities than 
other published approaches were achieved.

Future steps to improve classification will encompass the consideration of context 
information related with CAP classification, as for example sleep stage and subject med-
ical condition. Other future step is the analysis of the benefits of micro-structure staging 
as a disease biomarker, as for example as a precursor of epileptic seizures.
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