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We report a study of the potential energy surface for the lowest quartet state of At the ab initio level,H3 .
restricted HartreeÈFock and full conÐguration interaction (FCI) calculations were performed with two
extended Gaussian basis sets providing a detailed coverage of the molecule conÐguration space. A total of 102
geometries, both linear and nonlinear, have been examined. These calculated energies have then been
partitioned into two-body and three-body HartreeÈFock energy components, and combined with two-body
and three-body semiempirical models of the dynamical correlation energy to obtain a realistic double
many-body expansion (DMBE) representation of the title potential energy surface. In conjunction with a
previously reported DMBE potential energy surface for the two lowest-doublet states of this completes theH3 ,
set of potentials on which accurate dynamics calculations may be carried out for any collision process
involving three ground-state hydrogen atoms. A number of FCI calculations have also been carried out to test
the reliability of the modelled DMBE potential energy surface.

1 Introduction

is the simplest neutral polyatomic molecule, and hence itH3has long been a fertile testing ground for theoretical and
experimental work. Although the potential energy surface for
ground-doublet is known with chemical accuracy (\1 kcalH3mol~1) from correlated ab initio electronic structure calcu-
lations,1,2 (for further ab initio calculations, see refs. 3È5 and
references therein), which have subsequently been used to cali-
brate a DMBE potential energy surface for this system,2 no
similar study has been reported for its lowest quartet state.
However, knowledge of the potential energy surface for the
title system may be of interest on several important practical
grounds : (a) as a prototype for the formally similar repulsive
interactions involving closed shell atoms or identical spin
alkali metal trimers ; (b) to deÐne the three-body energy terms
which arise on the many-body expansion5 and DMBE7,8
developments of the total potential, since may, by theH3(4A@)
WignerÈWitmer rules, occur as a fragment on the dissociation
of hydrogen-containing species, e.g., (c) to studyNH3(1A@) ;9
atomic recombination and thermophysical properties of
atomic hydrogen ; (d) to complete, in conjunction with the
DMBE potential energy surface reported2 for the two lowest
doublet states of the set of potentials on which the colli-H3 ,
sion of three ground state hydrogen atoms may evolve and
hence open the possibility for accurate dynamics calculations.

In this work we report a detailed ab initio study of the title
system at the single-conÐguration self-consistent-Ðeld (SCF)
and FCI levels. Thus, it may be viewed as an extension of
unpublished results10 in our group. To represent the one-
particle basis functions we have chosen the extended-Gaussian
basis set developed by Siegbahn and Liu,1 which has been
also adopted on the calculations for ground-doublet byH3Varandas et al.2 We also choose the augmented correlation
consistent basis of Dunning11 (aug-cc-pVQZ) to provide a
comparison. Energies are reported for 102 geometries cover-

ing various perimeters and shapes of the triangle formed by
the three H atoms, being compared with previous ab initio
molecular orbital calculations by Murrell, Varandas and
Guest,12 and Ðrst-order exchange perturbation calculations by
Kolos and With this information, a model representa-Le� s.13
tion has been built in which the SCF energies are functionally
represented after being partitioned into two-body and three-
body components. To these, the standard second order plus
the non-additive third-order (AxilrodÈTellerÈMuto) dispersion
energy components have been added semiempirically, such
energy contributions being damped for charge-overlap e†ects
at short and intermediate distances. Thus, our procedure
follows the spirit of the DMBE7,8,14h16 method.

The paper is organized as follows. In Section 2, we discuss
the choice of coordinates. We present the results of the ab
initio calculations in Section 3. Section 4 provides a descrip-
tion of the DMBE model including a description of the two-
body terms. In Section 5 we present the potential energy
surface and its features. A short summary of the work is in
Section 6.

2 Coordinate system

For a system with high permutational symmetry such as
the potential energy surface must be symmetricalH3(4A@),

under exchange of the interatomic coordinates. This is most
conveniently performed using symmetry coordinates adequate
for the permutation group (for a survey, see ref. 6). Indeed,S3we may deÐne the integrity basis polynomials

C1 \ Q1
C2 \ Q22 ] Q32

C3 \ Q3(Q32 [ 3Q22) (1)
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Fig. 1 (a) Representation of the geometries considered on the present
calculation, for a Ðxed perimeter P or (b) RelationQ1, Q1\ J1/3P.
between the symmetry coordinates and the shape space accessibleQ

ito the molecule.

where (i\ 1È3) are symmetry coordinates deÐned byQ
i

Q1 \
1

J3
(R1 ] R2 ] R3)

Q2 \
1

J2
(R2 [ R3)

Q3 \
1

J6
(2R1 [ R2 [ R3) (2)

The reader may easily verify that the basis polynomials of
eqn. (1) are totally symmetric under permutation of the coor-

dinates, while being referred to ref. 17 and references therein
for further details. For a constant perimeter, the symmetry of
the problem therefore implies that a path encircling the origin

spans all possible distortions of the triangle(Q2\ Q3\ 0)
formed by the three atoms. The symmetries covered in such
distortions are illustrated by the inner ABC triangles dis-
played in Fig. 1(a). Also indicated in the outer K@L@M@ triangle
are the loci of the most relevant symmetrical arrangements of
the three atoms. Thus, for a Ðxed molecular perimeter, the
symmetry of the problem implies that one is just required to
perform calculations covering one sixth of the physical space
to generate the full potential energy surface ; see Fig. 1(b). The
remaining geometries for the same perimeter are symmetry
related to the calculated ones, and hence need not speciÐc
consideration if the model potential function to be calibrated
from such data has built-in the proper symmetry of the full
potential. Note that, because the potential energy surface for
the lowest quartet state of is analytic everywhere, theH3potential function need not consider any of the non-analytic
terms discussed elsewhere,17,18 namely terms involving oC2 o1@2
and oC3 o3@2.

3 Ab initio calculations
Previous MO calculations on the title system have, to our
knowledge, been reported only by Murrell, Varandas and
Guest12 (MVG) who carried out SCF and SCF Cl calcu-
lations using a double zeta Slater-type orbital basis set. Ener-
gies were reported by those authors for 27 geometries
covering only or higher symmetries. Most recently,C2v ,
Korona et al.19 reported a FCI study of the title system
employing an extended basis set. In the present work we
provide a detailed coverage of the potential energyH3(4A@)
surface, which encompasses a wide range of geometries. The
extended Gaussian basis set due to Siegbahn and Liu,1 which
has been optimized for the ground-doublet surface of hasH3 ,
been utilized. In addition, the augmented correlation con-
sistent basis of Dunning11 (aug-cc-pVQZ) was used in order
to provide a comparison. All ab initio calculations were
performed using the GAMESS20 code. Unless mentioned
otherwise, atomic units were used in this work : 1 a0(bohr) \ 0.529 177] 10~10 m; 1 (hartree) \ 2625.47 kJEhmol~1.

3.1 SCF calculations

Support for the use of the SiegbahnÈLiu basis set comes from
a comparison of the present results for with thoseH2(b 3&u`)
obtained using the more extended Gaussian basis sets
published by Lewchenko et al.,21 and Dunning.11 Table 1
reports this comparison. Also given for comparison are the
MVG results at the SCF level. Two remarks can be made
from Table 1. The Ðrst one concerns the good agreement of all
four sets of calculations among each other. Thus, we believe
that the present calculations can be as reliable as those of

Table 1 Restricted HartreeÈFock interaction energies, in forlEh , H2(b 3&u`)

R MVG12 This worka This workb This workc Eqn. (8)

2.0 107430.13 107184.94 107105.63 107120.82 110287.23
4.0 7545.14 7529.93 7522.77 7534.33 8311.08
6.0 359.38 358.69 357.91 358.83 393.81
7.0 70.24 70.16 69.88 70.13 77.55
8.0 13.03 12.99 12.84 12.99 14.80

10.0 0.38 0.38 0.31 0.40 0.48

a Using the Gaussian basis set of Siegbahn and Liu.1 b Using the Gaussian basis set of Dunning.11 c Using the Gaussian basis set of Lewchenko
et al.21
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Table 2 A summary of the geometries used for the ab initio calcu-
lations, and relevant included angles in degrees (for geometriesC2vonly)

Shape index Included angle Symmetry

1 60 D3h2 73.74 C2v3 91.17 C2v4 115.50 C2v5 180 D=h6 38.94 C2v7 nra Cs8 nra Cs9 180 C=h10 23.07 C2v11 nra Cs12 180 C=h13 10.43 C2v14 180 C=h
a nr \ not relevant.

MVG (based on a STO basis set) even at reasonably large
interatomic separations. The other observation refers to the
quality of the four Gaussian basis sets, which give very similar
results. We conclude that the SiegbahnÈLiu basis set is quite
adequate for the purpose of the present work albeit being sig-
niÐcantly smaller than that of Lewchenko et al.21 Thus, it will
be employed for the remaining calculations reported in this
work.

3.2 FCI calculations

For the purpose of comparison we have also carried out some
FCI calculations on selected geometries (included angles of
60¡ and 180¡) using the aug-cc-pVQZ basis set.

3.3 Results

All SCF calculations for the lowest quartet state of areH3summarized in a table deposited as electronic supplementary
information.¤ In this table, every geometry carries a sequen-
cial number deÐned as follows. For each of the fourteen
shape-types indicated in Fig. 1(b), the numbering is made
according to increasing perimeter, P. Thus, the point number,

¤ Available as electronic supplementary information. See http : //
www.rsc.org/suppdata/cp/b0/b000464m

obeys the formula whereNp , Np \ 7Ns ] (P/3[ 8), Nsdenotes the shape-index assigned in Fig. 1. For example, the
geometry corresponding to the lowest perimeter (P\ 6D3his given the number 1 while that for the next shape-indexa0)with the same perimeter is given the number 8, and so Table 2

summarizes the correspondence between these shape-indexes
and the symmetry attributes of the corresponding molecular
structures. Because the counterpoise corrections for BSSE
were very small for and also because there is no uniqueH2 ,
way of correcting for them in a polyatomic calculation,22 they
have also not been considered for Finally, Table 3H3(4A@).
compares, for geometries of or higher symmetry, theC2v ,
results of the present work with those from previous Ðrst prin-
ciples calculations available in the literature.12,13 As seen from
columns two and three of Table 3, the agreement with the
MVG results is quite satisfactory.

4 DMBE representation of the potential energy
surface
The dissociation scheme for the lowest quartet state of H3(4A@)
is

H3(4A@) ]
GH(2S) ] H2(b 3&u`)

3H(2S)
(3)

which suggests that the potential energy surface can be rep-
resented by a single-valued function over the complete molec-
ular conÐguration space.

Within the framework of the DMBE method, the potential
energy function is written in the form

V \ VEHF(R) ] Vdc(R) (4)

where is the geometry-dependent extended HartreeÈFockVEHFenergy contribution, represents the dynamical correlation,Vdc ,
and is a collective variable. The EHF energyR \ (R1, R2 , R3)is then modelled from available ab initio calculations (in our
case restricted HartreeÈFock energies, simply abbreviated as
HF) using a Ñexible enough functional form. Note that in the
speciÐc case of the present work the HF energy includes
exactly all nondynamical correlation e†ects, and hence we
indistinguishably refer to this energy as HF or EHF in the
foregoing discussion. In turn, the dc energy is modelled semi-
empirically from the long-range dispersion energy coefficients
which, for the title system, are accurately known from theo-
retical calculations. Because these coefficients are calculated
from the isolated fragments alone, they need to be modulated

Table 3 Analysis of the restricted HartreeÈFock interaction energy, in for some (Ðrst Ðve entries) and (last seven entries)lEh , D3h D=hgeometries, and comparison of the calculated ratios of the present work with the results from previous studies

VHF gHF] 102
V HF(2) V HF(3)

R This work Ref. 12 This work This work This work Ref. 12 Ref. 13

D3h2 255875.31 256524.37 321549.41 [66129.08 [20.56 [20.41 [24.63
3 71579.59 È 89890.66 [18996.32 [21.13 È [20.53
4 19137.57 19192.54 22589.38 [3544.77 [15.69 [15.21 [14.53
5 4637.69 È 5142.15 [516.86 [10.05 È [8.99
6 1015.80 1017.67 1076.07 [62.61 [5.81 [5.62 [5.03

D=h1.5 373762.94 È 422648.46 [46029.77 [9.90 È È
2.25 171504.48 È 161094.79 9463.47 5.87 È È
3 63858.62 È 60285.79 4014.86 6.66 È 4.47
3.75 22204.66 È 21508.38 617.33 2.87 È È
4.5 7378.82 È 7270.88 81.87 1.13 È È
5.25 2349.90 È 2335.55 10.26 0.44 È È
6 719.06 720.22 717.32 1.23 0.17 0.20 0.14
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at short distance through the use of universal charge-overlap
damping functions, which vary smoothly from 0 (or a value
close to zero) at R\ 0 to 1 at R\ O.

Following the usual procedure, the terms in eqn. (4) are
written in the form of the many-body expansion6

VEHF\ ;
i/1

3
V EHF, i(2) (R

i
)] V EHF(3) (R) (5)

Vdc \ ;
i/1

3
V dc, i(2) (R

i
)] V dc(3)(R) (6)

where the superscripts denote the various two-body and three-
body energy terms. Because we have a single-valued surface,
the zero of energy in eqns. (5) and (6) is taken as the energy of
the three isolated H atoms. The following sections give the
details of the functional forms used to represent the various
terms in eqns. (5) and (6).

4.1 Two-body energy terms

As usual, the potential curve for each two-body fragment is
based on the EHFACE2U23,24 (extended HartreeÈFock
approximate correlation energy) model, which shows the
correct behaviour at R] 0 and R] O. First, we consider the
curve for the ground singlet of This assumes the formH2 .

V (2)\ V EHF(2) (R)] V dc(2)(R) (7)

where

V EHV(2) \ [DR~1
A
1 ] ;

i/1

3
a
i
si
B

] exp[[c(s)s]] sexc(R)V excasym(R) (8)

and

c\ c0[1 ] c1 tanh(c2 s)] (9)

Thus, is the leading contribution25h27 of theV excasym(R)
exchange energy at asymptotic distances, the damping func-
tion of which is represented by In addition, issexc . s \ R [ Rethe displacement coordinate from the equilibrium geometry,

and D, (i\ 0È2) and (i\ 1È3) are parameters whichRe , c
i

a
ican be determined23 from a Ðt to ab initio or experimental

data. For the asymptotic exchange energy of the theoreti-H2cal data reported in the literature was used.24,27 This assumes
the form

V excasym\ A3 R†
A
1 ] ;

i/1
a8
i
R

i

B
exp([c8 R) (10)

where and are theoretical parameters related to theA3 , a8 , a8
i

c8
asymptotic behaviour of the wave function through some
molecular integrals.27 The damping function in thissexc(R)
case has been approximated by The value of the param-s6(R).
eters in eqns. (8)È(10) are collected in Table I of ref. 28.

In turn, the dynamical correlation energy in eqn. (8) is
written as

V dc(2)\ [ ;
n

C
n
s
n
(R)R~n (11)

where the damping functions are given by29

s
n
\ [1[ exp([A

n
R/o [ B

n
R2/o2)]n (12)

and and are auxiliary func-A
n
\ a0n~a1 B

n
\ b0 exp([b1n)

tions ;29 a0\ 16.36606, a1 \ 0.70172, b0\ 17.193 38, b1\
0.09574. Moreover, o is a scaling parameter deÐned by o \

is the LeRoy30(5.5] 1.25R0), R0 \ 2(SrX2T1@2 ]SrY2T1@2)
parameter, and is the expectation value of the squaredSrX2T
radii for the outermost electrons in atom X (similarly for the

other interacting atom Y). All relevant parameters are numeri-
cally deÐned in Table II of ref. 28. Using the above description
of the ground singet curve the potential is thenH2(a 3&u`)
obtained as28

3&u`\ 1&g`] *V (R) ] *V excasym(R) (13)

where represents the energy di†erence between the*V excasym(R)
ground state singlet and lowest triplet curves at asymptotic
distances, and *V (R) is an additional term which accounts
e†ectively for the remaining part of the short range energy.
This has been written as28

*V (R) \ exp
A
[ ;

i/0

m
b
i
Ri
B

(14)

with the least squares parameters (i \ 0Èm) being deter-b
imined from a Ðt to the exact KolosÈWolniewicz31 ab initio

energies for nonzero R values, and the atomic helium energy
splitting E(He, 3P)[ E(He, 1S) \ 169086.87 cm~1 for R\ 0.
Furthermore, m has been chosen subject to the requirement
mP 2 which warrants the proper behaviour of the exchange
energy at asymptotic separations. The optimum values of the
least-square parameters in eqn. (14) are given in Table III of
ref. 28. The agreement with the exact KolosÈWolniewicz31
energies is good.28 Since the agreement with the ab initio ener-
gies from this work is also good, we deemed unnecessary any
reÐnement of the extended HartreeÈFock two-body energy
curve reported in ref. 28.

4.2 Three-body EHF energy term

The three-body extended HartreeÈFock energies were deter-
mined by subtracting the two-body EHF energies [given by
eqn. (8)] for the speciÐc distances involved in the triatomic
from the computed HF triatomic interaction energies (see the
electronic supplementary information¤). These three-body
EHF energies were then Ðtted to the form

V EHF(3) \P(C1, C2 , C3) ] T (C1) (15)

where P is a complete fourth-order polynomial deÐned by

P\ ;
i, j, k/0

i`2j`3kx4

c
ijk

C1i C2j C3k (16)

and T is a range determining factor given by

T \ 1 [ tanh(c0] c1C1) (17)

The determination of the involved Ðtting parameters was then
carried out by the least-squares method using the LMDER
subroutine of the MINPACK32,33 package. The following
procedure has been adopted. Of the 102 points (gathered in
the electronic supplementary information¤), 32 carried a
weight given by eqn. (18) during the least-squares Ðtting pro-
cedure while the remaining points were given a weight of zero.
Thus, these latter points served only to test the reliability of
the resulting least-squares functional form at the correspond-
ing geometries. The emphasis has therefore been on reliability
while keeping simplicity of the functional form at the highest
possible level compatible with the accuracy requirements.
Thus, better Ðts could probably be achieved by using higher-
order polynomial forms, although this approach was not
pursued here. Note that, in the Gaussian-type distributions
used for the least-squares weighting,

u
i
\ 10~3

exp[[2(E
i
[ Eref)2]

E
i
[ Ea

(18)

stands for the total electronic energy of the i-th point,E
i

Ea \
[1.49999729 is the energy for three isolated hydrogenEhatoms, and is an arbitrarily deÐned referenceEref \ 1.4 Eh
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Fig. 2 Plot of the weighting function in eqn. (14) as a function of the
interaction energy. The open circles refer to and the full circles toD=hgeometries.D3h

energy. Fig. 2 shows this weighting function as a function of
the interaction energy. It is seen that we tried to avoid weigh-
ting excessively both highly repulsive geometries and geome-
tries falling in the very weak interaction region after the van
der Waals minimum. Note that for these geometries the calcu-
lated three-body energies are expected to be relatively less
accurate. In fact, for large separations between the subsystems,
the HartreeÈFock densities may loose reliability1 due to being
based on Gaussian orbitals, which die-o† too rapidly. Yet, we
emphasize that our results on the diatomic fragments (Table
1) agree, at the largest distance considered of R\ 10 a0 ,
within D5% with the SCF calculations of MVG, which used a
basis set of Slater-type orbitals. On the other hand, at the high
repulsive regions (for which any the EHF term ofR

i
\ 0.5 a0),our diatomic potential function becomes less reliable, as it

does not show the proper coulombic behaviour at the col-
lapsed diatomic limit close to the united-atom.23 As a result,
any errors caused in these high-energy regions due to a poor
description of the two-body EHF potential curves tend to be
compensated through distortion of the EHF three-body
energy form, which is modelled to the three-body energies
resulting from subtraction of the two-body EHF energies from
the computed triatomic SCF energies. The least-squares coeffi-
cients so-obtained are numerically deÐned in Table 4 while the
relative errors are given in column 8 of the table provided as
electronic supplementary information.¤ It is seen from this
table that the current functional form accurately represents
the 32 ab initio interaction energies (which correspond to the
actually Ðtted three-body data points), giving a root-mean-
square error of rms \ 6.30] 10~4 kcal mol~1. ItEh \ 0.40
provides also a good extrapolation for the non-Ðtted geome-
tries. Indeed, if only very repulsive geometries with an energy
higher than 0.5 are discarded, one gets rms \ 1.33] 10~3Ehkcal mol~1. Thus, our function has chemical accu-Eh\ 0.84
racy over the complete conÐguration space of the triatomic
system although containing only eleven linear and two nonlin-
ear adjustable parameters.

An interesting source of information comes from the so-
called non-additivity ratios,12,13 which are generally deÐned
as

g \
V (3)
V (2)

(19)

Fig. 3 shows the HF ratios so-obtained for various sym-
metrical arrangements (in all cases there are at least two equal
bond distances, i.e., the symmetry is or higher, namelyC2vor of the three atoms. It is seen that the functionalD=h D3h)form of the present work provides a good representation of
these ratios by smoothly connecting all the calculated points.
Moreover, as shown in Table 3 and Fig. 4, there is good
agreement between the non-additivity ratios of the present
work and those of previous theoretical studies, which utilized
both variational calculations12 similar to those of the present
work, and Ðrst-order exchange perturbation theory.13

4.3 Three-body dynamical correlation energy term

We represent this energy contribution by the non-expanded
form of the triple-dipole dispersion energy, also referred to as
the AxilrodÈTellerÈMuto term.34h36 This is the leading energy
term in the dispersion expansion arising in third-order of
long-range perturbation theory

V dis3 \ ;
l1l2l3w1

C
l1l2l3

W
l1l2l3

(a1a2 a3)

] R1~l1~l2~1R2~l2~l3~1R3~l3~l1~1 (20)

where are the well known dispersion coefficients, whichC
l1l2l3are independent of the geometrical arrangement of the three

atoms, and are shape factors which depend on theW
l1l2l3included angles of the triangle formed by the three atoms. For

example, the factors for the three leading terms arisingW
l1l2l3

Fig. 3 HF non-additivity ratios for geometries, or higher sym-C2vmetries as a function of R (characteristic distance), keeping Ðxed the
included angle. Lines refer to the Ðtted potential. Key : ÈÈ 60¡ ;…,

È È È 10¡ ; - - - - 23¡ ; É É É É 39¡ ; È É È É 74¡ ; È É È É 91¡ ;È, >, @, L, ), |,
- - - - - - 116¡ ; - - - - - - 180¡.K,

Table 4 Numerical deÐnition of the coefficients in eqns. (16) and (17)a

c000/Eh \ [1.6994874([1) c100/a0~1\ 6.2332434([2) c200/a0~2 \[1.3869118([3)
c010/a0~2\ 2.3304068([3) c300/a0~3\ 1.8998458([3) c110/a0~3 \ 1.0563875([4)
c001/a0~3\ [7.4016941([3) c400/a0~4\ 5.5008135([4) c101/a0~4 \ 1.4392969([4)
c210/a0~4\ 1.0975665([4) c020/a0~4\ 5.5536880([6)

c0\ [3.5994854(0) c1\ 7.4851103([1)

a Given in parentheses are the powers of 10 by which the numbers should be multiplied, e.g., c(d)\ c] 10d.
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Fig. 4 Comparison of the HF non-additivity ratios for geometries
with higher than symmetry as a function of R. The lines are theC2vDMBE results. Also shown for comparison are the theoretical results
of MVG (closed circles) and Kolos et al. (open circles). Key : ÈÈ 60¡ ;
É É É É 120¡ ; È È È 180¡.

in this expansion assume the form36

W111\ 3(1 ] 3 cos a1 cos a2 cos a3) (21)

W112 \ 316 [3(cos a1 [ 25 cos 3a3)

] 6 cos(a1[ a2)(3] 5 cos 2a3)] (22)

W122\ 1564 [3(cos a1 ] 5 cos 3a1)

] 20 cos(a2[ a3)(1[ 3 cos 2a1)

] 70 cos 2(a2[ a3)cos a1] (23)

with formulae for the cases (121), (212) and(l1l2 l3)\ (211),
(221) being, of course, given by cyclic permutation of the suf-
Ðxes (see ref. 36 for the general formula from which all these
formulas can be derived). Unfortunately, except for the leading
(111) term, no calculation of the non-expanded non-additive
dispersion energy has been carried out, and hence only for the
former have the e†ects of charge-overlap (not included in eqn.
(20)) been calculated37 and analytically modelled38 through a
suitable damping function. Note, however, that the contribu-
tions from the higher-order terms in the summation of eqn.
(20) are expected to be signiÐcantly smaller than that of the
leading term, which, as shown below, contributes itself only
negligibly (say \1%) to the total interaction energy except at
the long range regions of the potential after the van der Waals

Fig. 5 Contour plot of the total interaction energy for the inser-C2vtion of H(2S) into The contours are evenly spaced by 10~5H2(b 3&u`).
starting at [5 ] 10~5Eh , Eh .

minimum. Thus, they were deemed irrelevant for the purposes
of the present work, particularly because they would increase
the complexity of the Ðnal potential without contributing sig-
niÐcantly to improve its reliability. It should also be noted
that there are additional non-additive contributions which
arise in second and higher-orders of long range perturbation
theory but which vanish exponentially at the asymptotic limit.
OÏShea and Meath37 found that such terms can compete with
the non-expanded triple-dipole result for all but values of R
somewhat larger than the van der Waals minimum in H2i.e., Particularly important in this(b 3&u`), R

m
^ 7.82 a0 .

competition with the terms that vary asymptotically as an
inverse power of the interatomic separations are terms which
are exponentially decreasing functions of only one interatomic
distance. However, their contribution should be most impor-
tant for small values of R where one also expects that the HF
energy contribution probably dominates.

Meath and Azis39 have given a detailed discussion on the
possible non-additive contributions to the binding energy in
van der Waals molecules such as the inert gas trimers. An
interesting observation from their work is the fact that by
taking as the only representatives of the non-additive inter-
actions the undamped dispersion (111), (112), (122), (113) and
(222) terms they obtained perfect agreement between the cal-
culated and experimental values on the crystal binding ener-
gies of neon, argon, krypton and xenon. However, proper
inclusion of the Ðrst-order three-body exchange e†ects con-
siderably impaired agreement with experiment.39 (Of course,
the Ðrst-order energy arising in exchange perturbation theory
di†ers from the HF energy only in that the latter contains a
small non-additive induction-type energy.40) Meath and
Azis39 have been unable to identify the energy contribution
which seems to cancel the e†ect of the exchange non-additive
energies.

In summary adding together the three-body HartreeÈFock
energy and the three-body dynamical correlation as approx-
imated by the triple-dipole dispersion energy (suitably damped
to account for charge overlap e†ect) gives probably the sim-
plest reliable representation of the full three-body energy for
the lowest quartet state of This has been the approachH3 .
followed in the present work, having chosen the non-
expanded triple-dipole form of Varandas38 to represent the
three-body dynamical correlation energy. This is written as38

V dc(3)\ C9[1] 84.72 exp([10.84X) ] 3 cos a1 cos a2 cos a3]

]
[1[expM[3.20(1[0.16C123)X[1]1.51(1]0.69C123)X]N]9

R13R23R33

(24)

where

C123\ ;
i/3

3
sin a

i
(25)

X3 \ <
i/1

3
x
i

(26)

x
i
\

2R
i

R
m, i] 2.5R0, i

(i \ 1, 2, 3) (27)

and the long range dispersion coefficient C9 \ 21.6425 Eh a09
assumes the appropriate value for three interacting H
atoms.37,41

5 Features of the potential energy surface

The features of the complete DMBE potential energyH3(4A@)
surface have been examined graphically by performing various
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Fig. 6 Triangular plots of the DMBE potential energy surface for the lowest quartet state of at Ðxed molecular perimeters : (a) 18, (b) 21, (c)H323.34 (this corresponds to the absolute minimum of the potential) and (d) 27 Contours start at [43.34 with the spacing betweena0 . lEh ,
consecutive contours being (a) 600, (b) 60, (c) 1, (d) 1.25 Note that the lowest contour in (a) and (b) is contour 2. Except for plot (d) where thelEh .
minimum occurs at all others have a structure as the minimum.C2v , D3h

Fig. 7 Perspective view of the total interaction energy for a ground
state hydrogen atom moving around a molecule, Ðxed atH2(b 3&u`)
the geometry of lowest energy with the origin at the centre of the
bond.

kinds of plots. These also allowed us to establish whether the
potential had the desired features of smoothness, absence of
unphysical holes, and so on.

Fig. 5 shows a contour plot of the total interaction energy
for the insertion of H(2S) into It is seen thatC2v H2(b 3&u`).
there is only one single minimum corresponding to a very
weakly bound van der Waals structure with an included angle
of a \ 60¡. Indeed, a numerical search of the absolute
minimum of the current potential energy surface has further
indicated that it corresponds to a structure with a charac-D3hteristic bond length of R\ 7.781 and binding energya0(relative to the three-atom asymptote) E\ [6.2475] 10~5

J mol~1). Moreover, the calculated fundamental fre-Eh(164
quencies have been found to be D43 cm~1 for the totally
symmetric normal-mode vibration (breathing mode of a1@symmetry), and D31 cm~1 for the doubly degenerate (e@)
vibrations. Of course, due to the large anharmonicity of the

potential energy surface in the vicinity of theH3(4A@)
minimum, this does not imply that the potential supports a
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Fig. 8 Three-body extended HartreeÈFock energy for geometries of
symmetry or higher, as a function of characteristic bond distance.C2vThe points are the ab initio energies of this work while the DMBE

results are represented as lines. Key : ÈÈ 60¡ ; È È È 10¡ ;…, È, >,
- - - - 23¡ ; É É É É 39¡ ; È É È É È 74¡ ; - - - - - - 91¡ ; - - - - - - 116¡ ;@, L, ), |,

- - - - - - - - 180¡.K,

Fig. 9 HartreeÈFock non-additivity ratios for geometries of orC2vhigher symmetry having the same perimeter as a function of the
included angle. The points correspond to the calculations and the
lines to the DMBE potential. Key : ÈÈ 6 È È È 9L, a0 ; …, a0 ;

- - - - 12 É É É É 15 È É È É È 18 È É È É È 21|, a0 ; >, a0 ; È, a0 ; @, a0 ;
- - - - - - 24K, a0 .

Fig. 10 Angular dependence of the HF non-additive ratios, as a
function of the included angle for geometries of symmetry orC2vlower symmetry, considering the value of R (characteristic distance) as
constant. The lines are the DMBE results of this work : ÈÈ 4 a0 ;
È È È 7 Key for points : MVG;12 Kolos anda0 . …, L, Le� s.13

Table 5 Analysis of the FCI interaction energy and non-additivity
ratios, in for some (Ðrst four entries) and (last ÐvelEh , D3h D=hentries) geometries, and comparison of the calculated FCI ratios of
the present work for the SiegbahnÈLiu and Dunning basis sets

SiegbahnÈLiu1 aug-cc-pVQZ11

R V (3) g V (3) g

D3h3.0 [18432.59 [21.76 [18384.61 [21.88
4.0 [3454.21 [16.87 [3399.28 [17.07
5.0 [507.60 [11.76 [475.85 [12.01
6.0 [63.48 [8.23 [52.74 [9.16

D=h3.0 3618.82 6.38 3677.54 6.54
3.8 702.88 3.56 718.81 3.73
4.5 È È 111.13 1.83
5.3 È È 13.91 0.82
6.0 1.22 0.24 1.13 0.30

bound state. Indeed, the analysis of the relative importance of
the various contributions to the potential energy suggests that
this minimum is essentially determined by the two-body
potentials alone, which are themselves unbound.

The full symmetry of the potential energy surface isH3(4A@)
displayed in Fig. 6, which shows a triangular plot for Ðxed
molecular perimeters of 18, 21, 23.34 [this is the perimeter of
the structure corresponding approximately to the absolute
minimum of the potential energy surface of theH3(4A@)
present work], and 27 The notable feature from thesea0 .
plots (see Fig. 7(c)] is clearly the existence of a single van der
Waals minimum with threefold symmetry. Note also that the
most stable structure for perimeters smaller than about 27 a0has geometry while for this and larger perimeters it hasD3hgeometry with the point being a maximum. This is aC2v D3hclear manifestation that the three-body triple-dipole disper-
sion energy only dominates for such large perimeters (see also
ref. 12).

A perspective view of the total interaction energy for a
ground state hydrogen atom moving around a mol-H2(b 3&u`)
ecule, which is Ðxed at its geometry of lowest energy (R

m
\

7.82 with the centre of the bond at the origin, is displayeda0)in Fig. 7. The very weak van der Waals minimum of the tri-
atomic is apparent at the bottom of the highly repulsive hills
while the energetically favourable path for attacking the
diatomic is seen to be along the insertion path.C2vFig. 8 shows, for geometries, a plot of the three-bodyC2vextended HartreeÈFock energy as a function of characteristic
bond distance R. For a \ 60¡, we observe a change of sign
from negative to positive values at about R\ 2 then foll-a0owed by a maximum at R^ 2.3 and a sudden decrease toa0values close to zero for geometries with RP 3.5 For othera0 .
values of the included angle, the notable feature is the fact that

remains negative over the most important regions of R-V EHF(3)
space.

As already noted, other interesting attributes are the non-
additivity ratios in eqn. (19). This property has a clear theo-
retical bearing (see refs. 12 and 13) being especially relevant
for nonbonded triatomic systems such as which haveH3(4A@),
also unbound asymptotic channels. Figs. 9 and 10 show the
calculated HF ratios, and hence complement Figs. 3 and 4
which have been introduced earlier in this work. Recall that
both Figs. 3 and 4 show the HF non-additivity ratios for C2vgeometries keeping Ðxed the included angle. In particular,
note from Fig. 3, that there is a sign change of (from nega-gHFtive to positive values) which occurs only for large opening
angles, and hence is most clear for geometries. NoteD=hfurther that the most negative ratios occur for geometriesD3hwith R^ 2.5 These results may be rationalized from thea0 .
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behaviour of and the fact that the two-body HF ener-V EHF(3) ,
gies are positive for most R values of interest (columns four
and Ðve of Table 3). Indeed, as shown in Fig. 4, this type of
behavior has also been observed in previous calculations, with
which ours are in good agreement. SpeciÐcally, Fig. 9 shows
the HF non-additivity ratios for geometries of or higherC2vsymmetry having the same perimeter as a function of the
included angle. Except for the smallest perimeter considered,
P\ 6 there is a change of sign from negative to positivea0 ,
values at about a D 120¡. As might be anticipated, the ampli-
tude of this sign change decreases for increasing values of R
with the a-dependence becoming nearly a Ñat line for PP 21

In turn, Fig. 10 shows a similar plot of Fig. 9 althougha0 .
highlighting the comparison with previous calculations. The
agreement is good. In summary, our conÐdence in the DMBE
potential energy surface for stems from the fact thatH3(4A@)
the functional form connects accurately and smoothly all HF
energies while being formally correct at all asymptotic limits.

In relation to the FCI calculations, we show in Table 5 a
comparison between the results for the two basis sets used in
the present work. They are seen to be quite similar. In Figs. 11
and 12, we compare the non-additive ratios for the FCI calcu-
lations using the two basis sets. Clearly, the FCI calculations
agree well with the DMBE potential energy surface. In Table
6 we report a comparison between the results of the damped
triple-dipole form in eqn. (24) and the FCI ones using the

Fig. 11 Comparison of non-additive ratios for the full CI calcu-
lations in the Siegbahn and Liu basis (points) set and the DMBE
potential (lines) : È È È 60¡ ; ÈÈ 180¡.L, …,

Fig. 12 Comparison of non-additive ratios for the FCI calculations
in the aug-cc-pVQZ basis set of Dunning (points) and the DMBE
ratios (lines) : È È È 60¡ ; ÈÈ 180¡.L, …,

Table 6 Comparison of the triple-dipole function of eqn. (24) with
the results from the FCI ab initio calculations using the Dunning
aug-cc-pVQZ basis sets

R Eqn. (24) Ab initioa

D3h3.00 0.84127775] 10~4 [0.925217] 10~4
4.00 0.27858134] 10~4 0.527659] 10~4
5.00 0.78316354] 10~5 0.294806] 10~4
6.00 0.21846667] 10~5 0.76519] 10~5
7.00 0.65128806] 10~6 0.13209] 10~5
8.00 0.21224411] 10~6 0.1201] 10~6

D=h3.00 0.13421621] 10~4 0.839113] 10~4
3.75 [0.23271909] 10~5 0.184944] 10~4
4.50 [0.21102076] 10~5 0.22315] 10~5
5.25 [0.97613716] 10~6 [0.3805] 10~6
6.00 [0.39862347] 10~6 [0.5265] 10~6

a This work.

Dunning basis set. Eqn. (24) is seen to agree moderately well
with the results of the FCI calculations only at large distances
where the triple-dipole dispersion energy is expected to domi-
nate. A comparison of the damped triple-dipole energy from
eqn. (24) with the calculated three-body dispersion energy and
the triple-dipole non-additive results of Korona et al.19 is pre-
sented in Fig. 13 for geometries with symmetry. TheD3hagreement is generally good between eqn. (24) and the results
of Korona et al.19 It becomes moderate between the two sets
of theoretical values, especially at large separations which may
be due to our basis set being much smaller than that
employed in ref. 19 ([5s5p3d1f], with optimization of the
exponents of the polarization functions to minimize the energy
of the triplet diatomic fragment at the van der Waals
minimum).

6 Conclusions
In this work we have reported a DMBE representation of the
lowest-quartet potential energy surface for which hasH3 ,
partly been based on ab initio restricted HartreeÈFock calcu-
lations also reported in this work. Although no direct experi-
mental information is available to judge its reliability, the
present potential energy surface should provide, together with
a previously reported surface for the two sheets of ground-

Fig. 13 Comparison of the damped triple-dipole energy eqn. (24)
(full line) with the FCI calculations using the aug-cc-pVQZ basis set
of Dunning (open circles). Also shown for comparison are the results
of Korona et al.19 (full squares).

Phys. Chem. Chem. Phys., 2000, 2, 2471È2480 2479



doublet a set of reliable and consistent potentials on whichH3accurate dynamics calculations involving three colliding H
atoms may be carried out, including theoretical studies of the
thermophysical and transport properties of atomic hydrogen.
Our conÐdence stems mainly from the semiempirical method
used, which utilizes information both from standard quantum
chemical calculations and from long range perturbation
theory, while comprising a development of the total potential
energy into two-body and three-body energy contributions
and hence ensuring the correct asymptotic limit at all disso-
ciation channels. It should be mentioned that all long-range
contributions have been adequately damped to account for
charge-overlap e†ects at regions where the breakdown of the
multipolar expansion takes place. It should be noted that the
comparison of the potential obtained with FCI calculations
using the same basis set and a larger one show good agree-
ment. A Ðnal comment on the smoothness of the Ðtted func-
tion, and quality of Ðnal DMBE potential, which have both
been conveniently assessed through a number of graphical dis-
plays. In particular, plots of the ratios between three-body and
two-body HartreeÈFock energy contributions as a function of
various coordinates have shown that those ratios are accu-
rately described by the functional form of the present work.
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