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Abstract: The increasing development of resistance of Candida species to traditional drugs represents
a great challenge to the medical field for the treatment of skin infections. Essential oils were recently
proposed to increase drug effectiveness. Herein, we developed and optimized (23 full factorial design)
Mediterranean essential oil (Rosmarinus officinalis, Lavandula x intermedia “Sumian”, Origanum vulgare
subsp. hirtum) lipid nanoparticles for clotrimazole delivery, exploring the potential synergistic
effects against Candida spp. Small sized nanoparticles (<100 nm) with a very broad size distribution
(PDI < 0.15) and long-term stability were successfully prepared. Results of the in vitro biosafety on
HaCaT (normal cell line) and A431 (tumoral cell line), allowed us to select Lavandula and Rosmarinus as
anti-proliferative agents with the potential to be used as co-adjuvants in the treatment of non-tumoral
proliferative dermal diseases. Results of calorimetric studies on biomembrane models, confirmed
the potential antimicrobial activity of the selected oils due to their interaction with membrane
permeabilization. Nanoparticles provided a prolonged in vitro release of clotrimazole. In vitro
studies against Candida albicans, Candida krusei and Candida parapsilosis, showed an increase of the
antifungal activity of clotrimazole-loaded nanoparticles prepared with Lavandula or Rosmarinus, thus
confirming nanostructured lipid carriers (NLC) containing Mediterranean essential oils represent a
promising strategy to improve drug effectiveness against topical candidiasis.

Keywords: Rosmarinus officinalis L.; Lavandula x intermedia “Sumian”; Origanum vulgare subsp. hirtum;
factorial design; stability; Turbiscan; Lumisizer; DSC; cytotoxicity; MIC

1. Introduction

Recently, the worldwide incidence of serious systemic infections has extremely increased,
most of these due to fungi of Candida species, thus causing severe opportunistic infections in
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immuno-compromised patients, especially those affected by cancer, diabetes and AIDS [1]. Nowadays,
the conventional treatment of Candida infections requires the use of azoles (clotrimazole, fluconazole,
itraconazole, ketoconazole), polyenes (amphotericin B, nystatin) and echinocandins [2,3]. However,
different strains of various Candida species are developing resistant mechanisms to the treatment
with these drugs [1,4]. In addition, conventional antifungal drugs often show toxic side effects to
human cells [5,6]. Based on these considerations, researchers’ efforts in developing novel approaches
to improve the effective treatment of fungal infection is growing, with a renewed interest in plants
and traditional medicine. In this field, increasing attention has been paid to essential oils (EOs) as
promising natural compounds for their different activities, such as antibacterial, antifungal, antiviral,
antioxidant, anticancer, immune-modulatory, analgesic and anti-inflammatory [7,8]. It has been
reported that their broad-spectrum activity against a variety of microorganisms is probably due to
the alteration of the membrane and cell wall of microorganisms, with consequent loss of cytoplasmic
material [9]. EOs pharmacological activities, mainly related to their complex chemical composition and
high concentrations of phenols, make these compounds particularly interesting for both the treatment
and the prevention of candidiasis [8,10–12]. Nevertheless, EOs low water solubility, high volatility
and high instability (oxidation and hydrolysis), strongly limit their practical use in foods, cosmetic
and pharmaceutical industries [13,14]. In order to overcome these drawbacks, nanotechnologies
have been proposed as a potential valid strategy for EOs encapsulation [15–19]. Recently it has been
reported that the encapsulation of Caryophyllata EO in SLN improved the rate of microbial killing,
reducing the concentration for inhibiting and killing micro-organisms, demonstrating the advantages
and efficiency of SLN in combating microbial pathogenesis [16]. SLN containing Zataria multiflora EO
were successfully prepared, having a mean size of 650 nm, with 93.2% of the essential oil released
after 24 h [17]. Eucalyptus EO-loaded nanostructured lipid carriers NLC were developed exploiting a
synergistic effect between the EO and oleic acid, whose synergism enhanced cell proliferation to confer
an advantage in the treatment of wound healing [18]. Artemisia arborescens was successfully incorporated
into SLN without affecting the in vitro EO antiherpetic activity [19]. Lai et al., also demonstrated the
capability of SLN of greatly improving the Artemisia arborescens oil accumulation into the skin, and that
oil permeation occurred only when the oil was delivered from the control solution [19]. We recently
found that Rosmarinus officinalis, Lavandula x intermedia “Sumian” and Origanum vulgare subsp. hirtum
can be successfully used as matrix components and active ingredients of nanostructured lipid carriers
(NLC), thus exploiting their relevant anti-inflammatory (or antioxidant) activity, enhancing their
biocompatibility and reducing the cytotoxicity of the pure oils [15]. Other authors also reported the
possibility to exploit different drug delivery systems for the encapsulation of EOs, such as polymeric
poly(varepsilon-caprolactone) (PCL) nanocapsules [20], chitosan nanoparticles [13,21].

Based on these considerations, the aim of the present work was to develop and optimize
Mediterranean EOs-loaded NLC for the combined delivery of clotrimazole (CLZ) thus exploiting their
potential synergistic effects to the benefit of resistant topical candidiasis treatment. Based on our recent
findings, we selected Rosmarinus officinalis, Lavandula x intermedia “Sumian” and Origanum vulgare
subsp. hirtum as intrinsic and active oily liquid component for the optimization of NLC by design of
experiment (DOE). The quality by design (QbD) was developed focusing on the quali-quantitative
surfactants mixture, for all the selected EOs. NLC were characterized in terms of mean nanoparticles
size, polydispersity, structure and long-term physical stability exploiting LUMiSizer® technology.
In order to deepen the cytotoxicity effects of EOs on microorganism we also performed calorimetric
study on biomembrane models. Furthermore, we aimed to evaluate the biosafety of the selected EOs,
pure and loaded into NLC, and to compare the biological effects on two cell lines, namely HaCaT
(normal cell line) and A431 (tumoral cell line) selected on the basis of the potential topical application.
In vitro antifungal activity against three reference strains of Candida spp., namely C. albicans, C. krusei
and C. parapsilosis was evaluated.
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2. Materials and Methods

2.1. Materials

Kolliphor RH40 was kindly provided by BASF Italia S.p.a. (Cesano Modena, Italy) while Oleoyl
Macrogol-6 Glycerides (Labrafil) was a gift from Gattefossé Italia s.r.l. (Milano, Italy). Hydrogenated
Coco-Glycerides (Softisan 100) was purchased from IOI Oleo GmbH (Oleochemicals, IOI group,
Hamburg, Germany). Polysorbate 80 (Tween 80), trehalose and chloroform were purchased from
Sigma Aldrich Co. (St. Louis, MO, USA). Rosmarinus officinalis L., Lavandula x intermedia “Sumian” and
Origanum vulgare subsp. hirtum essential oils were kindly provided by Exentiae s.r.l. (Catania, Italy).
All solvents were for chromatography (LC grade) and were bought from VWR International (Milan,
Italy). 1,2-Dimyristoyl-sn-glicero-3-phoshocholine (DMPC) was a gift from AVG s.r.l. (Bollate, Milan;
Italy). Culture media (Dulbecco’s Modified Eagle Medium, DMEM) and RPMI 1640, fetal bovine
serum (FBS), l-glutamine, sodium pyruvate, Versene, trypsin (0.05% trypsin-EDTA), and antibiotics
(streptomycin and penicillin) were purchased from Gibco (Life-Technologies, Porto, Portugal). Alamar
Blue®reagent was purchased from Invitrogen Life-Technologies (Porto, Portugal). Potato dextrose
agar (PDA) medium (Sigma) was purchased from Laborspirit Lda. (Loures, Portugal).

2.2. Nanoparticles Production

NLC with Lavandula (LNLC), Origanum (ONLC) and Rosmarinus (RNLC) EOs were produced by
high-pressure homogenization (HPH) using the Ultra-Turrax®(IKA, model T25, impeller 10 G, Staufen,
Germany), as previously reported [14]. For all formulations, the hot aqueous phase was slowly added
to the hot lipid phase. The formulation was mixed for 1 min at 11,000 rpm. An external water bath
heated at approximately 70 ◦C was used to maintain the sample temperature. The hot oil-in-water
(o/w) nanoemulsion was further processed using a high pressure homogenizer (GEA Niro Soavi, model
NS1001L2K, PANDA 2 K, Parma, Italy) at 70 ◦C for three cycles. The final formulation was then cooled
to room temperature leading to the lipid phase recrystallization and finally the lipid nanoparticles
were formed [15,22]. Drug-loaded NLC with Lavandula (CLZ-LNLC) and Rosmarinus (CLZ-RNLC),
were prepared adding CLZ (0.5% w/v) to the lipid phase during the preparation procedure.

2.3. Design of Experiment (DOE)

In order to optimize NLC composition, an experimental design was performed by using StatSoft7.
A full factorial design was employed for the study, based on two factors and three levels (23 full
factorial planning). The design was highly suitable for the investigation of quadratic response surface
and for generating a second order polynomial model, applied to describe the principal effects and
interaction among the identified variables. The independent variables studied in this design such
as the concentration of surfactant (A) and the amount of co-surfactant (B) were investigated at three
different levels (low, middle and high) and were represented by (−1), (0) and (+1): (i) Surfactant:
3% w/v (−1), 4.35% w/v (0), 6% w/v (+1); (ii) Co-surfactant: 1.5% w/v (−1), 2.2% w/v (0), 3% w/v (+1).
ANOVA test was applied to verify the fitted model. Statistical analysis was considered significant
when the p values were less than 0.05.

2.4. Dynamic Light Scattering

Mean particle size (Zave), polydispersity index (PDI) and zeta potential values (ZP) of all unloaded
and CLZ-loaded NLC were determined by Dynamic Light Scattering (DLS) using a Zetasizer Nano
S90 (Malvern Instruments, Malvern, UK). For measurements, samples were properly diluted (50 µL) in
1 mL of ultra-purified water. Each value was measured at least in triplicate and results are shown as
mean ± standard deviation (SD).
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2.5. EOs Encapsulation Efficiency (EE%)

The amount of EO in the NLC was determined as encapsulation efficiency (EE%) by UV
spectroscopy [20], using a UV-Vis 1601 Spectrophotometer (Shimadzu) over wavelengths from 250
to 450 nm (λ max = 260 nm). EE% were calculated after dilutions (1:100) of NLC in methanol,
centrifugation and filtration, using the following Equation (1):

EE% = [(amount of EO entrapped)/(total amount of EO used)] × 100 (1)

2.6. In Vitro Cell Viability Studies

Cell culture, maintenance and manipulation: HaCaT (Human keratinocytes, Cell Lines Services
(CLS), Eppelheim, Germany) [23] and A431 (Human epidermoid carcinoma, Cell Lines Services (CLS),
Eppelheim, Germany) cell lines were maintained in Dulbecco’s Modified Eagle Medium (DMEM),
supplemented with fetal bovine serum (FBS; 10% (v/v)), penicillin (100 U/mL), streptomycin (100 µg/mL)
and L-glutamine (1 mM), in an atmosphere of 5% CO2/95% air, with controlled humidity, at 37 ◦C. Cells
were grown, in T25 culture flasks, to near confluence and then were subjected to the action of trypsin,
counted (TC10TM, automated cell counter, BIORAD, Amadora, Portugal) and the required volume of
cells was re-suspended in FBS-free culture media to give a final density of 5 × 104 cells/mL. Cells were
then seeded into 96-well microplates (5 × 104 cells/mL, 100 µL/well), maintained in incubator for 24 h
(for adherence), for other details see [15,24].

Cytotoxicity assay: The cytotoxicity of all samples (pure EOs and NLC systems) was evaluated
through the Alamar Blue® method. A stock solution of each EO was prepared by diluting each one
with DMSO (1:1 v/v). Before the cell treatment, test solutions were obtained by diluting the stock
solution in FBS-free culture media, to give concentrations ranging from 0.001% (v/v) to 0.5% EO (v/v).
In order to analyze the cell viability of NLC, each formulation was diluted in FBS-free culture media
oils. Cells were treated with different concentrations of the pure EOs and NLC for 24 h. After this
period, samples were removed and Alamar Blue solution (10% (v/v) in FBS-free medium) was added
(100 µL/well). After 5 h of incubation, the absorbance was read at 570 and 620 nm using a Multiskan
EX microplate reader (MTX Labsystems, Bradenton, FL, USA), and the cell viability was calculated
using the equations recommended by Alamar Blue manufacturers, as described in [24]. Cell viability
is expressed as % of control (non-exposed cells), as mean ± SD, from a set of three independent
experiments (each one with quadruplicates).

2.7. Fourier Transform-Infrared (FT-IR) Analysis

Freeze-dried NLC obtained with the addition of trehalose (NLC:cryoprotectant ratio 1:10), freezing
suspensions at−80 ◦C and lyophilizing in a freeze-dryer (Lyph-lock 6 apparatus, Labconco, Kansas City,
MO, USA) for 48 h were analysed by Fourier transform-infrared (FT-IR). FT-IR characterizations of pure
CLZ and freeze-dried CLZ-loaded NLC were prepared by using different essential oils were performed
using a FT-IR spectrophotometer (Perkin Elmer Spectrum RX I, Waltham, MA, USA) equipped with an
ATR accessory of diamond Zn/Se. For each sample, 16 scans at a resolution of 2 cm−1 were obtained
from a wave number 650–4000 cm−1, using a speed of 0.50 cm/s and a force gauge of 100 [25].

2.8. Accelerated Characterization of Formulation Stability

An accurate highly accelerated qualitative description of the colloidal suspensions stability was
performed by means of the multisample analytical centrifuge LUMiSizer® (LUM GmbH, Berlin,
Germany). The instrument employs the patented STEP®-Technology, which permits the obtainment
of Space- and Time-resolves Extinction Profiles, thus measuring the intensity of the transmitted light
during centrifugation, as a function of time and position, over the entire sample length.

Parallel near infrared light illuminated the entire sample cell and the transmitted light was detected
by sensors arranged linearly across the sample from top to bottom. Transmission was converted
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into extinction by log I/I0 and particle concentration could be calculated. The progression of the
transmission profiles contained the complete information on the kinetics of any concentration changes
due to creaming, sedimentation, flocculation, coalescence or phase separation [26]. In addition to
measuring stability directly and making shelf life prediction, a discrimination between flocculated and
nonflocculated dispersions could be performed and particle size distributions could be measured using
the highest industry norms and regulations (ISO 13318-2). The analysis was performed as follows: the
fresh samples, without prior dilution, were placed in rectangular test-tubes (optical path of 10 mm) and
exposed, at 25 ◦C, to different relative centrifugal forces (RCF): 500 rpm (300 × 30 profiles/s); 2000 rpm
(400 × 30 profiles/s); 3000 (350 × 30 profiles/s); 4000 rpm (300 × 30 profiles/s). Such experiment allowed
differentiating between various instability mechanisms, at an accelerated rate, in drastically shortened
time, and extrapolated results were used to estimate dispersion shelf-life in minutes instead of months.
Since instability phenomena, such as creaming or sedimentation, depend on the specificity gravities
of the continuous and dispersed phases, which affect preferential particles migration upward or
downward, they can be described by Stoke’s law, which allows determining the predictable theoretical
value of the instability phenomenon velocity [27]. For this reason, we compared the obtained results
with the theoretical model based on Stoke’s law (Equation (2)):

Vs = g (ρp − ρ) dp2/18 η, (2)

where g is the gravitational acceleration constant, ρp and ρ are respectively the densities of the particle
and fluid, dp is the particle size and η is the fluid viscosity. As previously reported [27], the closeness
of the measured values of sedimentation/creaming velocities at different RCF to the predictable values
based on Stoke’s law, can be exploited to describe the instability phenomena by Stoke’s law. Thus, the
obtained data can be used to extrapolate the sedimentation velocity at regular gravity (1 RCF).

2.9. Drug Encapsulation Efficiency (EE), Loading Capacity (LC) and In Vitro Release

The amount of the encapsulated CLZ was determined after ultracentrifugation, pellet disruption
in Tetrahydrofuran anhydrous (THF), vortex and UV spectrophotometry (Spectrophotometer UV-Vis
1601 Shimadzu, Unilab, Catania, Italy). The encapsulation efficiency (EE%) was calculated by the ratio
between the amount of drug entrapped in the nanoparticles and the total amount of drug used for
their preparation (Equation (1)). The loading capacity (LC%) was calculated by the ratio between
the amount of drug unencapsulated in the nanoparticles and the total amount of lipid used for their
preparation (Equation (3)):

LC% = [(amount of encapsulated drug)/(amount of lipid used in the formulation)] × 100 (3)

CLZ release from NLC was evaluated by Franz-type diffusion cells (LGA, Berkeley, CA, USA).
Before the experiment, the cellulose membranes were moistened by immersion in water for 1 h at
room temperature before being mounted in Franz-type diffusion cells. The receptor was filled with
water/ethanol (50/50, v/v) for ensuring pseudo-sink conditions. The receiving solution was constantly
stirred and thermostated at 35 ◦C to maintain the membrane surface at 32 ◦C. 500 µL of each formulation
was applied in the donor compartment on the membrane surface under non occlusion conditions
and the experiments were run for 7 days. At fixed time intervals, 200 µL of the receptor phase
were withdrawn and replaced with the same volume of receiving solution. Samples were analysed
spectrophotometrically to determine CLZ content.

2.10. Biomembrane Model Preparation

Biomembrane models were prepared using the TLE method. Briefly, DMPC (25 mg) was dissolved
in chloroform in a Pyrex glass test-tube. The organic solvent was removed at 30 ◦C on nitrogen stream
rotavapor (Rotavapor-M Büchi HB-140, VWR International, Milan, Italy). The formed phospholipid
films were dried using a Büchi spray dryer (Büchi TO-51) for 24 h, then hydrated by adding different
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volumes (999, 995, 990, 980 µL) of isotonic PBS pH 7.4. The tube was alternatively vortexed (Heidolph
REAX 2000, VWR International, Milan, Italy) and warmed in a water bath at 40 ◦C for 3 min twice.
The temperature was kept higher than that of DMPC gel-liquid crystal phase transition (24 ◦C) thus
allowing the complete hydration of the phospholipids. In order to evaluate the influence of the two
selected EOs (Lavandula and Rosmarinus) on multilamellar vesicles (MLV), different volumes (20, 10, 5,
1 µL) of each EO and PBS (980, 990, 995, 999 µL) were added to the prepared MLV to obtain 1 mL as
final volume. Afterwards, each sample was diluted 1:10 with PBS. The final concentration of the EO in
the obtained MLV was in the range of 0.2–0.01% (v/v). DSC analyses were performed on these final
diluted samples.

2.11. Differential Scanning Calorimetry

DSC studies were performed on diluted MLV as above described. The prepared samples were
sealed in an aluminium pan and submitted to DSC analysis to determine the influence of the selected
EOs on the thermotropic parameters of phospholipid bilayers used as biomembrane models. A Mettler
Toledo DSC 1 STARe system equipped with a PolyScience temperature controller (PolyScience, Niles,
IL, USA) was used to perform calorimetric analysis. The detection system was an HSS8 high sensitivity
sensor (120 gold–gold/palladium-palladium thermocouples) and a ceramic sensor (Mettler Full Range;
FRS5) with 56 thermocouples. The signal time constant was 18 s and the digital resolution of the
measurement signal was less than 0.04 µW. Calorimetric resolution and sensitivity determined by
TAWN test were respectively 0.12 and 11.9. The sampling rate was 50 values/s. The sensitivity was
automatically chosen as the maximum possible by the calorimetric system, and the reference was an
empty pan. The calorimetric system was calibrated, in temperature and enthalpy changes, by using
indium by following the procedure of the DSC 1 Mettler TA STARe instrument. The reference was
an aluminium pan containing 100 µL isotonic PBS (pH 7.4). Each sample was submitted to heating
and cooling cycles (two times), in the temperature range 5–55 ◦C, at a scanning rate of 2 ◦C/min for
heating and 5 ◦C/min for cooling. We evaluated the results of the second heating. Thermotropic
parameters were calculated with Mettler STARe Evaluation software system (version 15.01) installed on
an Optiplex 3020 DELL. Pure EOs and NLC were studied with DSC in the same range of temperature
used for MLV investigations, results are reported in Supplementary Figure S1.

2.12. In Vitro Antifungal Susceptibility Test

The in vitro antifungal susceptibility test for the selected CLZ-NLC formulations was performed
based on the Clinical and Laboratory Standards Institute (CLSI) reference protocols M27-A3 broth
microdilution (BMD) method [28] for yeasts, with minor adaptations, using sterile, disposable,
multiwell microdilution plates (96 U-shaped wells). The test was performed using three reference
strains of Candida spp., namely C. albicans ATCC 10231, C. krusei ATCC 6258 and C. parapsilosis ATCC
90098. For comparative purposes, in addition to the CLZ-LNLC and CLZ-RNLC formulations, LNLC
and RNLC systems were also tested, as well as free EOs (L and R) and free CLZ. Briefly, inoculum
suspensions were prepared at appropriate densities in RPMI 1640 broth (with L-glutamine, without
bicarbonate, and with the pH indicator phenol red) from 24h PDA cultures. Stock solutions of free
EOs, CLZ and NLC formulations were prepared in MilliQ water using Tween 80 as a co-solvent,
sterilized by filtration and then diluted in RPMI 1640 broth. Free EOs and all NLC formulations
were tested at different concentrations in the range 0.03125–2% v/v while free CLZ was tested in the
range 2–128 µg mL−1, determined based on the combined information available in KnowledgeBase
(http://antibiotics.toku-e.com) for the three strains. NLC-free growth controls, sterility and Tween 80
wells, were also included. The microplates were incubated for 48 h at 35 ◦C.

After incubation, the yeast growth was screened by OD measurement at 525 nm and the content
of first five dilutions tested of each formulation was transferred into to PDA plates and incubated for a
new 24 h period at 35 ◦C. Minimum inhibitory concentration (MIC) values, considered as the lowest
concentration of each solution causing full growth inhibition, and minimum lethal concentration (MLC)

http://antibiotics.toku-e.com
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values, considered as the lowest concentration of each solution causing fungal death, were determined
after visual counting of yeast colonies.

2.13. Statistical Analysis

All plotted data were presented as a mean of three different experiments± SD. Differences between
the calculated means of each individual group were determined by one-way ANOVA test using the
statistical tools available in GraphPad Prism 6 software. A value of p < 0.05 was considered statistically
significant. Significant differences (p < 0.05) between EO and respective NLCs in cell viability results
for the two cell lines were obtained by using two-way ANOVA with a Tukey post-hoc test.

3. Results and Discussion

3.1. NLC optimization for EOs Encapsulations (DoE)

In this work, we exploited the Design of Experiments (DoE) as a tool of the Quality by Design
approach (QbD), with the aim to develop optimized formulations in terms of particles with small size
and high homogeneity. In particular, a full factorial design was developed with two independent
variables (x1, x2) and two levels (−1, +1) (Tables 1 and 2, Figure 1).

As previously reported in literature, the QbD led to a huge amount of information, saving both
time and costs of the experiment [29,30].

Table 1. Parameters of the response surface for mean particles size (Zave) and polydispersity (PDI)
obtained from a 22 full factorial design. β1 and β2 are the coefficients of the independent variables,
β0 is the arithmetic mean response, β12 is the interaction term.

Investigated Parameters β0 β1 β2 β12

Zave
Effect 100 −91.67 −5.64 14.56

Standard error 5.26 13.91 13.91 13.91
Significance level 25.21 −6.59 −0.41 1.05

t value 0.0001 0.007 0.71 0.37
PDI

Effect 0.16 −0.12 0.11 0.11
Standard error 0.009 0.025 0.025 0.025

Significance level 17.35 −4.91 −4.32 4.20
t value 0.0004 0.01 0.025 0.025

Table 2. ANOVA parameters for the characterization of the 22 full factorial design.

Investigated Parameters Sum of Squares (SS) Mean of Squares (MS) F Significance p Value

Zave
A 84.04 102 84.04 102 43.40 0.007 *
B 31.81 31.81 0.16 0.712

AB 211.99 211.99 1.09 0.372
Error 580.81 193.60

Total SS 92.28 102

PDI
A 1.54 10−2 1.54 10−2 24.17 0.016 *
B 1.19 10−2 1.19 10−2 18.67 0.022 *

AB 1.12 10−2 1.12 10−2 17.66 0.024 *
Error 0.19 10−2 0.000636

Total SS 4.04 10−2

* Significance for p < 0.05.
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The results of DOE experiments on NLC prepared with Lavandula x intermedia “Sumian” showed
that nanoparticle features are affected by the amount of surfactant and cosurfactant. In particular, a
wide variation in response was obtained, with Zave values ranging from 70 nm to 200 nm, while PDI
ranged from a minimum of 0.11 to a maximum of 0.35. Coefficient regression values were found to be
higher for Zave when compared to PDI. The highest coefficient value found for the surfactant (β1)
demonstrates a very high significant effect (Table 1).

Furthermore, the negative values of the calculated regression coefficients for both independent
variables confirms the occurrence of a negative relation between both compounds and the dependent
variable Zave. This result is in accordance with previous findings, confirming that a perfectly balanced
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amount of surfactants would decrease the surface tension at the interface between the aqueous and
lipid phase, thus determining the formation of well-stabilized smaller particles [31,32].

It is worthy to note that, surprisingly, by decreasing the amount of co-surfactant, an insignificant
effect was observed on mean particle diameter. Thus, the exerted energy during nanoparticle production
would be enough for coating nanoparticles’ surface, even using less co-surfactant, thus resulting,
contrary to previous literature findings, in reduced sized nanoparticles [31–35]. Interestingly, our
results show that both the independent variables and their interaction significantly affect (p < 0.05)
nanoparticles homogeneity, as shown in Figure 1.

Similar findings were observed in the response surface plot obtained for the second order
polynomial equation of NLC prepared with Rosmarinus and Origanum (data not reported).

The above considerations highlight that the amount of the surfactant mixture was able to
significantly affect the physicochemical properties of EOs NLC but not the EE% of the EO, that was
very high (~96%) for all EOs, in accordance with previous findings [18,20]. Furthermore, our findings
allowed us to select the ratio 4:1 of the mixture Kolliphor/Labrafil, as the ideal surfactants combination
leading to the formation of NLC with small particles (<100 nm) and a very broad size distribution (PDI
< 0.15), related to a very stable and promising system, as reported by Patravale et al. [36].

3.2. Biocompatibility of EOs and NLC-EO Using Human Cell Lines

The beneficial effects of EOs on dermatological applications have been established for a long time,
although most available information comes from ethnopharmacological surveys. As example, the use
of Lavandula EO, has been reported to have positive effects in the treatment of eczema, dermatitis, in
the improvement of skin wound healing with less scars and has been recommended for the treatment
of skin diseases such as psoriasis [37].

In this study we aimed to evaluate the biosafety of the three EOs of the Lamiaceae Family
(Lavandula, Origanum and Rosmarinus) as well as of the respective prepared NLC (LNLC, ONLC,
RNLC), and to compare their biological effects on two cell lines, namely HaCaT (a normal cell line) and
A431 (a tumoral cell line). For that, HaCaT and A431 cells were exposed to a set of concentrations of
EOs (see methods for details) during 24 h, and cell viability was accessed using the metabolic indicator
Alamar Blue. HaCaT and A431 cell viability results (expressed as percentage of control (non-exposed
cells)) of the treatment with the pure EOs are reported in Figure 2.

Results showed that pure Lavandula and Rosmarinus were safer on both cell lines compared to
Origanum. In particular, IC50 values obtained for Lavandula were 0.228 ± 0.004 (% v/v) and 0.274 ± 0.006
(% v/v) which are ~10-fold (HaCaT) and ~23-fold higher than those obtained for Origanum (Table 3).

As reported in previous literature, different Origanum species, including Origanum vulgare subsp.
hirtum, showed high levels of cytotoxicity against cell lines. In particular, the treatment on four different
cell lines (Vero, African green monkey, kidney; Hep-2, human epidermoid larynx carcinoma; RSC,
rabbit skin; and HeLa, human cervix epitheloid carcinoma) showed IC50 values of about 0.0027% (v/v)
for all cells [38], which are lower than those obtained in this work (Table 3). However, Origanum
pure EO cytotoxic effect was higher (almost two-fold) in the treatment against the tumoral cell line
compared to HaCaT, a normal keratinocytes cell line (Figure 2, Table 3). Results of the treatment with
pure Lavandula and Rosmarinus were similar in both cell lines (Figure 2), with any reduction of cell
viability observed at the concentration of 0.05% v/v. IC50 values obtained for Rosmarinus EO were
similar to those obtained for Lavandula (Table 3). In addition, these results are in agreement with our
previous findings on the cytotoxicity of similar NLC tested on RAW 264.7 cells [15].

The three EOs were successfully used as an oily matrix component of NLC and the biocompatibility
of the resulting nanosystems was also tested. A431 and HaCaT cells were exposed to test solutions
containing the amount of NLC that gives equivalent EO concentrations as those tested as free EOs,
and results are shown in Figure 3. Results show a similar behaviour of the treatment with LNLC and
RNLC in both HaCaT and A431 cells, with IC50 values of about 0.075% (v/v) for HaCaT and about
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0.114–0.117% (v/v) for A431 cells (Table 3). Those NLC systems showed a greater safety compared to
ONLC, which negatively affected the cytotoxicity of HaCaT cells (Figure 3E vs. Figure 3B, and Table 3).

We previously found that Mediterranean EOs loaded-NLC were able to reduce the cytotoxicity of
the pure EO on RAW 264.7 cells (murine macrophage cell line) [15]. Herein we found, interestingly, an
increase in the ability of the EO in reducing the skin cell viability when it was encapsulated in the NLC
structure (Table 3). This could be due to the presence of the surfactants–solid lipid membrane acting,
at the nanoparticle surface, as a protective shell able to avoid the loss of the volatile compounds, thus
increasing the bioavailability of EO to the biological systems [39].

Based on the presented data, NLC prepared with Lavandula and Rosmarinus (50 ng/mL) may be
regarded as anti-proliferative agents and have potential to be used as co-adjuvants in the treatment of
non-tumoral proliferative dermal diseases, such as infections, psoriasis, eczema, ichthyosis.
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Table 3. Results of cell viability, expressed as IC50 (concentration that inhibits 50% of cell growth),
for HaCaT and A431 cells, exposed for 24 h to different concentrations (% v/v) of essential oils (EO)
(Lavandula, Origanum and Rosmarinus) and of respective nanostructured lipid carriers (NLC). The NLC
were composed of 4% (v/v) respective EO and concentration of NLC was set as EO equivalent (see
methods for details).

Cell Line Sample Lavandula Origanum Rosmarinus

HaCaT
EO 0.228 ± 0.004 0.022 ± 0.001 0.258 ± 0.003

NLC 0.076 ± 0.001 0.012 ± 0.001 0.075 ± 0.001

A431
EO 0.274 ± 0.006 0.012 ± 0.001 0.263 ± 0.002

NLC 0.114 ± 0.003 0.016 ± 0.001 0.117 ± 0.003

Effect of
significance for
skin cell lines

EO vs. NLC for
HaCaT Significant

EO vs. NLC for
A431 Significant

HaCaT vs. A431
for EO Significant

HaCaT vs. A431
for NLC Significant

p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001
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3.3. CLZ-Loaded NLC Prepared with the Selected EOs: Lavandula and Rosmarinus

Based on the obtained results on EOs-NLC, the optimized formulations prepared with Lavandula
and Rosmarinus were selected for CLZ delivery. As reported in Table 4 and in Supplementary Figure S2,
drug loading induced a 2-fold increase of mean particles size without affecting their homogeneity. A
greater CLZ incorporation capability in NLC prepared with Lavandula EO was shown in respect to
RNLC. However, the low values found for the EE% could be due to steric hindrance imparted to CLZ
because of the spatial orientation of the phenyl rings, thus limiting not only the in vitro performance
as reported by Sabzevari et al., but also the interactions with other components during the formation
of NLC [40]. As previously reported, the disappearance of the characteristic absorption bands for a
drug after incorporation into lipids, revealed by the FT-IR analysis, indicates the drug has transferred
to the amorphous state [41]. Spectra of raw materials (surfactants and lipidic components) used to
prepare NLC confirmed literature data (data not reported) [15]. Herein, CLZ as pure drug showed
dominant absorption peaks at 1573.3, 1483.9 and 1315.2 cm−1, corresponding to the benzene ring
stretches; peaks at 906.2, 821.6 and 756.3 cm−1 correspond to C–H stretches; bands at 1082.0 and
1206.2 cm−1 corresponding to chlorobenzene and C–N stretching, respectively (Figure 4). This data
was in accordance with literature findings [42].

Table 4. Mean particle size (Zave, nm), polidispersity index (PDI) and percentage of encapsulation
efficiency (EE%) ± standard deviation (S.D.) of unloaded and clotrimazole (CLZ) loaded NLC prepared
using Lavandula (L) and Rosmarinus (R) essential oil. Each value is the average of six different experiments.

Samples Zave (nm) ± S.D. PDI ± S.D. EE% ± S.D. LC ± S.D.

LNLC 85.89 ± 0.51 0.113 ± 0.018 - -
RNLC 76.97 ± 0.51 0.116 ± 0.012 - -

CLZ-LNLC 163.0 ± 3.32 0.164 ± 0.025 25.2 ± 1.02 96.74 ± 0.5
CLZ-RNLC 126.8 ± 2.83 0.173 ± 0.008 16.7 ± 2.06 97.89 ± 0.6

The peaks observed in CLZ powder spectrum, cannot be observed in the spectra of CLZ-loaded
NLC, as some peaks of CLZ may overlap with the peaks from functional groups of the lipid and the
EOs [42]. Indeed, Softisan 100 showed main characteristic absorption bands at 2800–2955 cm−1 (C–H
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stretching of benzene), 1728, 1739 cm−1 (carbonyl compound CHO), 1000–1300 cm−1 (C–O stretching),
as we previously reported [15]. In our previous work we found that Lavandula and Rosmarinus EOs
characteristic bands were in the range 3200–3600 cm−1 (O–H stretch), range 3000–3100 cm−1 (C–H
stretching), 1670–1820 cm−1 (C=O), range 1400–1450 cm−1 (bending vibrations of CH2 and CH3 groups),
range 1000–1330 cm−1 (C–O–C) and range 675–1000 cm−1 (C–H bending) [15]. Thus, FT-IR spectra
obtained for the pure CLZ and CLZ-loaded NLC systems confirmed the drug was well incorporated
into the nanoparticles prepared with Lavandula and Rosmarinus (Figure 4).Pharmaceutics 2019, 11, x 13 of 22 
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Figure 4. Fourier Transform-Infrared (FT-IR) spectra of pure clotrimazole (CLZ), cryoprotectant
(Trehalose), CLZ-loaded NLC prepared with Lavandula and Rosmarinus EO (CLZ-LNLC, CLZ-RNLC).

In order to confirm the stability of the optimized NLC, we exploited the dispersion analyzer
LUMiSizer®. The innovative technology offers the possibility to achieve more time-saving information
on sample stability (in terms of particles separation) compared to the traditional visual observation tests
that take extensive period to determine the long-term stability of a colloidal suspension. LUMiSizer®

is able to detect fast stability ranking and shelf-life estimation of undiluted dispersions at their original
concentration, in minutes/hours instead of months/years, exploiting centrifugal force to accelerate the
occurrence of instability phenomena (sedimentation, flocculation or creaming) [43]. Considering the
evolution of the obtained transmission profiles, the stability of the samples can be evaluated. Indeed,
under centrifugal force, a stable colloidal dispersion allows the formation of a regular line, while
aggregated particles show a typical step-profile, since the centrifugal acceleration induces different
sedimentation speeds of particles with different diameter. In this work, the long-term stability of
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unloaded and CLZ-loaded NLC prepared with Lavandula and Rosmarinus EO was evaluated measuring
the nanoparticles migration phenomena at high RCF, thus obtaining the creaming velocity by tracking
the front movements at a specific transmittance with time (Figure 5). As reported in Figure 5, the
stability of the NLC formulations decreases in the order: CLZ-RNLC > RNLC > CLZ-LNLC > LNLC.
In particular, both unloaded and CLZ-loaded NLC prepared with Rosmarinus EO showed a greater
stability compared to the NLC prepared with Lavandula EO that showed an increase in creaming
velocity directly dependent on the RCF. As we previously reported, different oils are able to differently
interact with other components in the formation of drug delivery systems [44,45]. Thus, it is possible
that different EOs are able to induce the formation of NLC with different features, which may influence
the stability of the colloidal dispersion. This hypothesis should be further investigated in the future, in
order to deeper understand NLC features from a morphological point of view.
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NLC prepared with Lavandula and Rosmarinus EO.

In order to achieve more information on CLZ-RNLC long-term stability, we compared results of
the creaming velocity obtained with LUMiSizer® at high RCF with the theoretical model (Stoke’s law),
as previously reported by Chang et al. [27]. In Figure 6a the transmission profile across CLZ-RNLC
sample in the analytical centrifuge recorded at a given time step during the centrifugation is depicted.
The creaming velocities were calculated by Stoke’s law, using the experimental mean nanoparticles
size obtained by PCS measurements (Figure 6b). The front of the creaming phenomenon was tracked
with the time, and the slope was calculated as the creaming velocity (Figure 6c). Plotting the creaming
velocity at different RCF, we obtained a linear increase with the value of RCF, thus confirming that
particles migration instability phenomenon follows Stoke’s law. In addition, the closeness between the
actual values measured for CLZ-RNLC to the predicted creaming velocities calculated by Stoke’s law
using the mean nanoparticles diameter obtained by PCS, confirms that the instability phenomenon
could be described by this theoretical model and can be used to extrapolate the creaming velocity at
regular gravity of 1 RCF.
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The results obtained by the accelerated stability studies, allowed us to establish the potential shelf
life of the prepared NLC colloidal suspension, according to the highest industry norms and regulations
ISO 13318-1 and ISO 13318-2 (concerning nanoparticle accelerated stability studies). In particular,
since the nanoparticle separation, due to the occurrence of creaming phenomena, was not relevant for
sample RNLC and CLZ-RNLC, we could reasonably estimate a shelf life of 12 months at 25 ◦C, at least.
It is worth noting that the obtained stability results were in perfect agreement with PCS measurements
of samples analyzed after 2 and 6 months of storage, showing the absence of significant variations in
mean size and polydispersity values (Supplementary Table S1).

As reported in literature, increasing resistant phenomena have been developed against Candida
species [1,4,46]. In order to overcome resistance against CLZ, we exploited drug nanoencapsulation in
Mediterranean EOs-NLC, using Lavandula or Rosmarinus EO as potential synergistic oily components.
In vitro release profiles of CLZ from the prepared NLC are shown in Figure 7. NLC systems were
able to promote a prolonged CLZ release, without any initial burst effect, thus confirming drug
incorporation into the inner core of nanoparticles, without residual amount of drug absorbed on their
surface. These results are in accordance with literature findings concerning drug release profile from
NLC. Indeed, as we previously demonstrated, the presence of the liquid oily component in the solid
lipid matrix allows the formation of irregular spaces in which the drug can be better accommodated,
thus providing a controlled drug delivery [44].

It is worth noting that even if Lavandula EO allowed the encapsulation of a greater amount
of CLZ (45.81 mg) into the NLC compared to Rosmarinus (25.12 mg), it promoted a slower drug
release compared to CLZ-RNLC. Indeed, after 24 h a similar amount of CLZ was released from both
formulations (almost 4 mg), but after 120 h from the beginning of the experiment, less than 10% of
CLZ was released from LNLC while RNLC released almost 40% of the encapsulated drug. These data
demonstrate the possibility to prepare lipid nanoparticles with different release profiles, depending on
the selected EO used as oily matrix component. In particular, the interesting behavior of CLZ-RNLC is
not only related to its ability to provide a sustained prolonged CLZ release, but also to the possibility
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to economize the amount of the loaded drug, determining the formation of a nanosized colloidal
suspension characterized by a long-term physical stability, as previously demonstrated.
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3.4. Pre-Vitro Evaluation of Essential Oils on Biomembrane

In order to characterize the potential mechanisms related to cytotoxicity effects, Lavandula and
Rosmarinus as pure EO were investigated for their potential capability to interact with model membranes
through calorimetric technique. Each oil is characterized by a mixture of different components that
influence biomembrane structure [15]. It is known that compound–membrane interaction is a dynamic
phenomenon, influenced by different factors such as compound’s chemical structure and membrane
organization. Furthermore, it can also be affected by compound internalization and absorption at the
membrane–water interface.

In Figure 8A we reported the calorimetric curves related to MLV obtained with different dilutions,
corresponding to the same used for interaction studies with EOs. Except for the lowest dilution, all
tested amount of MLVs did not influence the TM rather than the enthalpy values of the main transition
peak of DMPC bilayers (Supplementary Table S2). The EOs concentrations chose for DSC study were
selected based on the results obtained in the in vitro cytotoxicity test.

As previously demonstrated by Cristani et al., antimicrobial activity of some compounds may
be the result of the perturbation of the lipidic fraction of the microorganism plasmic membrane [47].
As reported in Figure 8B,C, both tested EOs induced the disappearance of the main transition peak
demonstrating their capability to dissolve in the aqueous medium and interact with lipidic bilayers.

These results suggest that the ability of Lavandula and Rosmarinus to interact with the membrane
permeabilization, with the consequent perturbation of the lipid fraction membrane, can be exploited to
the advantage of a potential antifungal activity. Indeed, the potential antifungal activity may be due to
the migration of components across the aqueous extracellular medium, interacting with the lipidic
membranes with a consequent damage [48].
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3.5. In Vitro Antifungal Susceptibility Test: MIC and MLC Results

Based on the encouraging results obtained testing EOs with model membranes, preliminary studies
on the antifungal activity of CLZ-loaded EO-NLCs were performed, evaluating the susceptibility
of three Candida spp. strains to these formulations. In order to achieve a proper understanding of
the effect of each component, loaded and unloaded EO-NLCs were tested, as well as the free drug
and the pure EOs. The tested formulations, as colloidal suspensions, presented natural turbidity
even after several dilutions, thus we the OD screening measurements after the microplate incubation
were very inconclusive. Therefore, the content of the first five dilutions of each formulation was
transferred to PDA plates. Colonies formed after 24 h of incubation at 35 ◦C were counted in order to
monitor yeast growth and compared to the starting count of the inoculum. Our observations showed
that the concentration values that killed the yeast inoculum (no colonies growth and counted) and
the immediate lower concentration value allowed the growth of the inoculum (no increase on cell
counting). Thus, we considered that the MIC and MLC values were the same for each formulation
within the tested concentration ranges. The MICs and MLCs determined for C. albicans ATCC 10231,
C. krusei ATCC 6258 and C. parapsilosis ATCC 90098 are summarized in Table 5.

Table 5. Antifungal activity Minimum inhibitory concentration (MIC) and minimum lethal
concentration (MLC) of free CLZ, pure EOs, unloaded and CLZ-loaded EO NLC for Candida strains
(mean values; n = 3).

Sample Strains C. albicans ATCC
10231

C. krusei ATCC
6258

C. parapsilosis ATCC
90098

CLZ
MIC+ >128 >128 64

MLC+ >128 >128 64

Pure Lavandula
MIC† 0.5 0.5 0.5

MLC† 0.5 0.5 0.5

Pure Rosmarinus
MIC† 2 2 0.5

MLC† 2 2 0.5

LNLC
MIC† 1 >2 >2

MLC† 1 >2 >2

RNLC
MIC† >2 >2 >2

MLC† >2 >2 >2

CLZ-LNLC
MIC‡ 0.125 + 78 0.25 + 156 0.0625 + 39

MLC‡ 0.125 + 78 0.25 + 156 0.0625 + 39

CLZ-RNLC
MIC‡ 0.25 + 62.5 0.5 + 125 0.125 + 31.25

MLC‡ 0.25 + 62.5 0.5 + 125 0.125 + 31.25
+ Results expressed in CLZ µg mL−1 (m/v); † Results expressed in EO% (v/v); ‡ Results expressed in EO% (v/v) +
CLZ µg mL−1 (m/v).

A primary overview at these results shows that C. parapsilosis is the most sensitive strain to the
majority of the tested solutions, while C. krusei seems to be the most resistant one among the three
reference strains. Regarding the tested pure EOs (Lavandula and Rosmarinus), although little information
is provided in the literature, the MICs and MLCs determined for each strain are in accordance to
previous findings by Bona et al. [8] within the range of 2–4% (v/v) for both EOs in reference and clinical
isolated strains of C. albicans. Interestingly, Lavandula as pure EO was found to be more active than
Rosmarinus EO (Table 5). This could be probably due to the highest amounts of terpenes in Lavandula
EO (linalool 30% and linalyl acetate 38%) compared to Rosmarinus (1,8 cineol 50%), whose antifungal
activity against several strains of Candida, including C. albicans, C. glabrata, and C. parapsilosis, have
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been previously reported [49]. However, conflicting results are described in literature concerning
Rosmarinus antifungal activity, such as the lack of anti-candidal activity of R. officinalis L. samples
collected from National Parquet El Hamma (Algiers) reported by Djeddi et al. [50]. Thus, it is possible
that geographic factors, in addition to seasonal ones, strongly affect the variability of the antifungal
activity of this plant, as properly suggested by Ksouri et al. [51]. Our findings also demonstrated
that the antifungal activity of both EOs is retained when they are loaded into the NLC formulations
(Table 5), probably on account of the elevated stability of the lipid matrix that prevents EO dispersion
within the exterior medium or within the yeast cells, if cellular internalization is considered. Interesting
results were obtained for CLZ-loaded NLC, as the co-existence of drug and EO lead to an improvement
of the antifungal activity. As reported by Langevel et al., different studies presented the occurrence
of a moderate synergism between EOs and drugs such as antibiotics (most likely due to membrane
interactions of the EO compounds), in which case EOs provide an interesting option to reduce the
use of antibiotics [52]. In particular, CLZ-LNLC provides an increase of the antifungal activity of
Lavandula EO of four-fold for C. albicans, two-fold for C. krusei and eight-fold for C. parapsilosis, while
CLZ-RNLC provides an increase of the antifungal activity of the Rosmarinus EO of eight-fold for
C. albicans, four-fold for C. krusei and four-fold for C. parapsilosis. Moreover, the antifungal activity of
free CLZ is also increased when loaded into both EO-NLCs for C. albicans and C. parapsilosis.

4. Conclusions

Taken all together, our results allow us to infer that the nanoencapsulation of the selected antifungal
drug into NLC systems prepared using Mediterranean EOs as intrinsic oily components represents a
promising strategy to improve CLZ effectiveness against candidiasis. In particular, our results open the
debate concerning the possibility to exploit the intrinsic properties of Lavandula and Rosmarinus, whose
synergistic effects are to be further investigated, and could offer a strategy in using CLZ-EO-NLC for
overcoming drug resistance mechanisms involved in the treatment of topical infections.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/11/5/231/s1:
Figure S1. Thermograms and temperature of crystallization peak of pure EOs during a heat scan in the range of
temperature 5–55 ◦C: Rosmarinus (R.O.), Lavandula (L.O.), Origanum (O.O.). Figure S2. Mean size distribution
measured as percentage of scattered light of unloaded LNLC (a) and RNLC (b) and clotrimazole-loaded CLZ-LNLC
(c) and CLZ-RNLC (d). Table S1. Mean particle size (Zave, nm) and polidispersity index (PDI) ± standard
deviation (S.D.) of unloaded and clotrimazole (CLZ) loaded NLC prepared using Lavandula (L) and Rosmarinus (R)
EO and analyzed after 2 and 6 months of storage at 25 ◦C. Each value is the average of six different experiments.
Table S2. Thermotropic parameters of mesophase transition from gel (Lβ) to liquid crystalline phase (Lα) of
multilamellar vesicle dispersions made up of DMPC at different dilutions.
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