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Abstract: The condensed matter Haldane and Kane-Mele 
models revolutionized the understanding of what is an 
“insulator,” as they unveiled novel classes of media that 
behave as metals near the surface, but are insulating in the 
bulk. Here, we propose exact electromagnetic analogues of 
these two influential models relying on a photonic crystal 
implementation of “artificial graphene” subject to an effec-
tive magnetic field. For the Haldane model, the required 
effective magnetic field for photons can be emulated with a 
spatially variable pseudo-Tellegen response. For the Kane-
Mele model, the spin-orbit coupling can be mimicked using 
matched anisotropic dielectrics with identical permittiv-
ity and permeability, without requiring any form of biani-
sotropic couplings. Using full-wave numerical simulations 
and duality theory we verify that the nontrivial topology of 
the two proposed platforms results in the emergence of top-
ologically protected gapless edge states at the interface with 
a trivial photonic insulator. Our theory paves the way for the 
emulation of the two condensed matter models in a pho-
tonic platform and determines another paradigm to observe 
topologically protected edge states in a fully reciprocal all-
dielectric and non-uniform anisotropic metamaterial.

Keywords: topological photonics; photonic graphene; 
symmetry protected waveguiding; pseudo magnetic field.

1  �Introduction
In recent years, the advent of topological methods in 
electromagnetism brought new perspectives for robust 

waveguiding largely immune to fabrication imperfections 
[1–9]. Nontrivial photonic topological materials with a 
broken (non-broken) time-reversal symmetry (TRS) were 
shown to enable unidirectional (bidirectional) and reflec-
tionless edge state propagation at the interface with a trivial 
electromagnetic insulator. In addition to offering inher-
ent optical isolation, these new paradigms to guide light 
without any backscattering may also have far-reaching 
repercussions in quantum optics [10], in the realization of 
high-efficiency lasers [11, 12] or in light harvesting [13].

Historically, the theory of topological photonics was 
largely inspired by its electronic counterpart [14, 15], i.e., 
by the properties of the electronic phases of matter whose 
study started in the 1980s shortly after the discovery of the 
integer quantum Hall effect [16, 17]. In particular, two con-
densed-matter models played a major role in the develop-
ment of this field: the Haldane model demonstrates that a 
broken TRS is the key ingredient to obtain a quantized Hall 
conductivity [18], and the Kane-Mele model shows that 
the spin-orbit coupling may imitate the effect of a mag-
netic field in time-reversal invariant electronic systems 
[19, 20]. Surprisingly, despite the many analogies drawn 
in the past few years between electronic and photonic 
systems, there are no strict electromagnetic equivalents of 
the two models, and only a few first-order approximations 
of the Kane-Mele model were identified in [21, 22] relying 
on bianisotropic materials with Ω-coupling.

Here, building on a recent proposal for an electronic 
implementation of the Haldane model in “artificial gra-
phene” made of a patterned 2D electron gas (2DEG) [23], 
we aim to fill this gap and propose exact analogues of 
the Haldane and Kane-Mele models in electromagnet-
ics. To this end, in the first part of the article, we use an 
analogy between the Schrödinger and Maxwell equations 
to introduce a novel implementation of “photonic gra-
phene” based on a honeycomb lattice of dielectric cylin-
ders embedded in a metallic background. It is shown that 
the magnetic field of the Haldane model can be effectively 
implemented with a spatially varying pseudo-Tellegen 
coupling. In this manner, we construct an exact photonic 
analogue of the Haldane model. In the second part of the 
article, we demonstrate that by matching the electric and 
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magnetic responses one obtains a precise analogue of the 
Kane-Mele model in the same nonreciprocal photonic plat-
form. Next, it is shown that this nonreciprocal system can 
be linked through a duality transformation with another 
all-dielectric platform. Thereby, it follows that the Kane-
Mele model can be implemented with a fully reciprocal 
metamaterial made of spatially dependent anisotropic 
dielectrics with no magnetoelectric coupling. Notably, the 
proposed system turns out to be parity-time-duality (P T  D) 
symmetric [24], a symmetry that guarantees bi-directional 
scattering-immune propagation under some conditions. 
Furthermore, our photonic implementation of the Kane-
Mele model is also found to be related to the pseudo-
magnetic field introduced by Liu and Li in [25]. Thus, our 
analysis unveils a rather fundamental link between time-
reversal invariant topological matter [21], pseudo-mag-
netic fields [25] and P T  D symmetric systems [24, 26].

2  �Electromagnetic Haldane model
The Haldane model is a condensed-matter model of a 
spinless electron that consists in the generalization of the 
tight-binding Hamiltonian of graphene to systems with 
a broken inversion symmetry (IS) and/or a broken TRS 
[18, 27]. In this model the topology of the bands – charac-
terized by the electronic Chern number ν – is determined 
by the dominant broken symmetry: a dominant broken 
IS has a trivial topology with ν = 0, whereas a dominant 
broken TRS leads to a nontrivial topology with ν = ± 1, and 
is characterized by the presence of unidirectional edge 
states protected against backscattering (a quantized Hall 
phase) at the interface with a trivial insulator. For more 
details about this model the reader is referred to [18, 23].

Here, we propose an electromagnetic equivalent 
of this condensed-matter system relying on an analogy 
between the 2D Schrödinger and Maxwell equations. 
The starting point of this analogy is the microscopic 
Schrödinger equation that emulates the Haldane model in 
artificial graphene [23], and whose main features are sum-
marized in the next subsection.

2.1  �Electronic Haldane model in a 2D 
electron gas

It was recently shown in [23] that the Haldane model can 
be implemented in artificial graphene, i.e., an electronic 
platform that mimics the properties of graphene [28], for 
example, a 2DEG under the influence of a periodic electro-
static potential V(r) with the honeycomb symmetry [29–31]. 

As depicted in Figure 1A, a broken IS in artificial graphene 
can be realized with different potentials V1 and V2 in each 
sublattice, while a broken TRS can be obtained by apply-
ing a space-varying static magnetic field B(r) = ∇ × A with 
zero spatial average. As proven in [23], a magnetic vector 
potential A of the form
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has the required symmetries to reproduce the Haldane 
model such that only the phase with dominant broken 
TRS leads to a nontrivial topology with ν ≠ 0. In the above 
formula, a is the distance between nearest sites (scat-
tering centers) in the honeycomb lattice, B0 is the peak 
magnetic field in Tesla, R = r − rc, where rc determines the 
coordinates of the honeycomb cell’s center, and the bi’s 
with i = 1, 2 are the reciprocal lattice primitive vectors. The 
electronic system of Figure 1A is characterized by a micro-
scopic Hamiltonian:
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where mb is the electron effective mass, ˆ i= − ∇p �  is the 
momentum operator and e > 0 is the elementary charge. It 
follows that the stationary states ψ with energy E, i.e., the 
solutions of the time-independent Schrödinger’s equation 
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Crucially, this microscopic equation with a mag-
netic vector potential A given by Eq. (1) reproduces the 

Figure 1: Geometry of the system.
Schematic of (A) the electronic and (B) the equivalent photonic 
structure used to implement the Haldane model. The Vi’s and ωp,i’s 
with i = 1, 2 are respectively the electrostatic potentials and plasma 
frequencies of the materials associated with the two different 
sublattices, Vout and ωp,b are the electrostatic potential and the 
plasma frequency of the background material, and A and ξ are the 
spatially dependent magnetic vector potential and pseudo-Tellegen 
vector given by Eqs. (1) and (14), respectively.
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symmetries of the Haldane model [23], and, as shown 
next, can also be used to develop an analogy with the 
Maxwell equations.

2.2  �Photonic analogue

The strategy adopted by us to obtain a photonic equiva-
lent of the Haldane model (3) is to exploit a formal analogy 
between the 2D Schrödinger and Maxwell equations. For 
the sake of clarity, the analysis is divided into two steps: 
first, it is shown how to create an electromagnetic equiva-
lent of artificial graphene in a 2D photonic crystal. Then 
it is explained how to break the fundamental symmetries 
of the system in order to implement the electromagnetic 
Haldane model.

Using a six-vector formalism for the representation 
of the electromagnetic fields [32], the Maxwell equa-
tions with current sources can be written in a compact 
manner as
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where F = (E H)T and J = (je jm)T stand for six-vectors 
whose components are the electric and magnetic fields 
and current densities, respectively, and M is the material 
matrix given by
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where ε, µ, ξ and ζ are the relative permittivity, permeabil-
ity and magnetoelectric tensors, respectively. In addition, 
it is also assumed that the system is invariant to transla-
tions along the z direction ( / 0).z∂ ∂ =

2.2.1  �Photonic artificial graphene

During the last decade many photonic equivalents of 
graphene were put forward, notably relying on photonic 
crystals with either honeycomb or hexagonal symmetry 
with dielectric [14, 33–39] or metallic scatterers [40–42], 
or alternatively with semiconductor cavities [43]. In the 
following, we suggest another approach to engineer 
“photonic graphene” based on a direct analogy between 
the 2D Schrödinger and Maxwell equations. To begin 
with, we consider a 2D non-magnetic photonic crystal 

described by the relative permittivity and permeability 
tensors:

	
ˆ ˆ ˆ ˆ ˆ ˆ( ) zzε ε ε= + +xx yy zz� � (6)

	 3 3.µ ×= 1 � (7)

In the absence of current sources (J = 0), the wave 
equation for transverse electric (TE)-polarized waves 
( ˆ

zE=E z) is given by Eq. (A.8) of Appendix A with ξ = 0. Sup-
posing that the zz-component of the permittivity tensor is 

described by a Drude dispersion model, 
2
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wave equation (A.8) reduces to
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By comparing this formula with the Schrödinger 
equation of electronic artificial graphene, that is, Eq. (3) 
in the absence of the magnetic field (A = 0), it is seen 
that the solutions of both equations can be matched by 
taking
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In order that the analogy is perfect, the plasma 
frequency ωp of the material is required to be spatially 
dependent (a photonic crystal) with the same periodic-
ity as the electronic potential. Incidentally, it can be 
noted that because the right-hand side of (10) is always 
positive, this equivalence is only possible for a positive 
electric potential V. However, because only the differ-
ence V − E is relevant in the Schrödinger equation (3), 
it is always feasible to transform a negative electric 
potential into a positive one by adding an overall con-
stant potential U to both V and E, such that the poten-
tial is transformed as V→V + U > 0 and the origin of 
energy is shifted as E→E + U. Thus, relations (9) and 
(10) can always be satisfied when the electric potential 
has a lower bound. Then, following [29–31], we con-
clude that a strict photonic equivalent of artificial gra-
phene can be implemented in a photonic crystal made 
of dielectric cylinders (“potential wells” with ωp,i = 0, 
i = 1, 2) arranged in a honeycomb lattice in a metallic 
background (with ωp,b > 0). To the best of our knowl-
edge, this is the first proposal of a photonic equivalent 
of graphene based on a photonic crystal with a metallic 
background.
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2.2.2  �Magnetic field for photons with a spatially variable 
pseudo-Tellegen response

Now that we identified a photonic system with the same 
properties as graphene, the second step to emulate the 
Haldane model is to break the fundamental IS and TRS 
in this platform. In the electronic model (3), a broken IS 
is obtained by using different values of V1 and V2 in each 
sublattice of the honeycomb structure (Figure 1A). From 
the equivalence relation (10), the same effect may be 
attained in photonics by using scatterers with different 
plasma frequencies ωp,1, ωp,2 in each sublattice, as depicted 
in Figure 1B.

On the other hand, a broken TRS is generally trickier 
to implement for photons. Here we create an effective 
magnetic field for photons by taking advantage of a biani-
sotropic response of the medium. In particular, in addi-
tion to the effective permittivity (6) and permeability (7), 
it is assumed that the material response is nonreciprocal 
with a symmetric pseudo-Tellegen response (following 
the classification of [32]) with the magnetoelectric cou-
pling tensors given by

	 ˆ ˆ ,ξ ζ= = ⊗ + ⊗z zξ ξ � (11)

where ˆ ˆ
x yξ ξ= +x yξ  is a generic vector lying in the xoy 

plane. Notably, as demonstrated in Appendix A, such a 
magnetoelectric coupling does not mix the TE and trans-
verse magnetic (TM) polarizations. In particular, from 
(A.8) it follows that the wave equation for TE-polarized 
waves is
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By comparing this equation with the microscopic 
electronic Haldane model (3) it is seen that, in addition 
to the equivalence relations (9) and (10), the solutions of 
both equations can be matched by considering a spatially 
dependent pseudo-Tellegen response such that
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Strikingly, this relation proves that in two-dimen-
sional scenarios, a spatially varying pseudo-Tellegen 
response ξ(r) is the equivalent for photons of a magnetic 
field acting on electrons. Thus, it follows that Eq. (12) 
with a Tellegen-type coupling determined by (13) is the 
exact photonic counterpart of Eq. (3) and thereby yields 
a photonic Haldane model. Here, we note that Jacobs 
et  al. [44] studied a topological system with a similar 

Tellegen coupling, but which is not an analogue of the 
Haldane model. Furthermore, He et al. [45] investigated 
a topological photonic crystal with an anti-symmetric 
moving-type nonreciprocal coupling [32, 46], which is 
different from the symmetric-Tellegen response consid-
ered by us.

By substituting the magnetic vector potential (1) into 
(13), the spatially dependent pseudo-Tellegen response is 
found to be given by
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where ξ0 is the dimensionless peak amplitude of the 
pseudo-Tellegen vector, which is linked to the parameters 
of the original electronic system as
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For given values of B0 and a (corresponding to a spe-
cific implementation of the electronic Haldane model) 
the peak amplitude ξ0 is ω-dependent. Importantly, the 
reality condition for the material matrix M(ω) imposes 
that ξ(ω) = ξ*( − ω) [47], a condition that is obviously 
violated by (15). For simplicity, we shall assume in this 
study that ξ0 is frequency independent. A constant ξ0 
is equivalent to a nontrivial magnetic field B0 whose 
strength is frequency dependent. Evidently, for posi-
tive frequencies the sign of ξ0 is the same as the sign 
of B0, and hence, the topological phases of the relevant 
photonic and electronic systems are strictly linked. 
Furthermore, provided Eq. (15) is satisfied for some fre-
quency in the band gap, the physics of the two systems 
is essentially the same in the spectral region of the gap. 
Finally, we note that the proposed photonic platform 
emulates precisely the Haldane model even if the fre-
quency dependence of ξ0 does not follow (15). Indeed, 
independent of the dispersion of ξ0, in a tight-binding 
approximation the system is rigorously described by 
Haldane’s theory.

In summary, it was demonstrated that a bianisotropic 
metamaterial characterized by effective parameters of the 
form (6), (7), (11) and such that εzz is given by a Drude model 
and ξ by Eq. (14) yields an analogue of the Haldane model 
for photons. The phase diagram relating the photonic gap 
Chern number Cgap to the strength of the pseudo-Tellegen 
response and to the asymmetry of the sub-lattices (meas-
ured by ωp,2 − ωp,1) can be found from the corresponding 
electronic phase diagram (Figure 1D of [23]) using rela-
tions (9), (10), (13) and (15).
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2.3  �Numerical examples

To illustrate the ideas developed so far, next we present 
the band diagrams and the typical field profiles asso-
ciated with each topological phase of the photonic 
Haldane model. All the simulations presented here were 
numerically obtained with a dedicated finite-difference 
frequency-domain method (FDFD) whose details can be 
found in [30].

The electromagnetic system is constructed from a 
dual electronic system through the equivalence rela-
tions (9), (10) and (13). We choose the original electronic 
platform as the patterned 2DEG of Figure 1A with para-

meters V1 = V2 = 0, 
2

out 2 15.83,bm a
V ≈

�
 A = 0, R0/a = 0.35 and 

mb = 0.067 m, with m the electron rest mass. With such 
parameters the electronic system behaves as graphene 

near the normalized energy 
2

2 9.4bm a
E ≈
�

 where its band 
diagram consists of two Dirac cones centered at the high-
symmetry K and K′ points. For a = 150  nm the system 
reduces to the artificial graphene studied in [23, 30] after 
adding a constant potential U = 0.8  meV to the whole 
structure to guarantee that V ≥ 0.

The direct application of the equivalence relations 
(9) and (10) to the artificial graphene leads to a simple 
photonic crystal made of air cylinders (ωp,1 = ωp,2 = 0) 
embedded in a metal with a Drude dispersion. The 
band diagram of the photonic crystal close to the Dirac 
point K is depicted in Figure 2A as a function of the 
wavevector q = | k − K |  taken relatively to the K point. As 
expected, the frequency dispersion is approximately a 
linear function of q forming a Dirac cone at K and K′ (not 
shown), thus validating that the proposed structure is a 
photonic equivalent of graphene. As seen in Figure 2B 
and C, by breaking either the IS (ωp,1 ≠ ωp,2) or the TRS 

(ξ ≠ 0) it is possible to open a gap in the band diagram. 
Moreover, similar to the electronic Haldane model, the 
phases induced by each of the broken symmetries are 
topologically distinct, as expressed by the different 
values of the photonic Chern number C. Specifically, 
C = 0 for the phase with broken IS, whereas C = ± 1 for 
the phase with broken TRS. It should be noted that with 
a frequency independent ξ0 and with ωpa/c = const. the 
properties of the photonic system are fully scalable with 
frequency, and the exact gap spectral range is deter-
mined only by a.

According to the bulk-edge correspondence [1, 14, 
48], the difference in the Chern numbers should manifest 
itself directly on the propagation of the edge states at the 
interface with a trivial photonic insulator. In particular, 
it is expected that the phase with broken TRS supports 
unidirectional edge states protected against backscatter-
ing with a dispersion that spans the entire band gap. To 
confirm this property the solutions Ez of the wave equation 
in the closed cavity of Figure 3A,
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were computed with the FDFD method [30] with the wave 
excited by a point-like electric current distribution je. The 
cavity walls were chosen to be perfect electric conduc-
tors (PEC), that is, the Haldane photonic crystal is sur-
rounded by a trivial insulator. The oscillation frequency 
of the current source is centered in the band gap. To ease 
the field visualization in the closed cavity, an absorber 
was placed at the right-bottom part of the structure. The 
absorption is stronger near the center (darker colors in 
Figure 3A imply a stronger absorption).

The excited field profiles for the distinct topological 
phases of photonic Haldane graphene are represented in 
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Figure 2: Normalized dispersion diagrams of (Haldane) photonic graphene.
 The geometry of the photonic crystal is as in Figure 1B with , / 5.63.p b a cω ≈  (A) “Photonic graphene” with ωp,1 = ωp,2 = 0 and ξ = 0. 
(B) “Photonic graphene” with a broken IS such that ξ = 0, ωp,1 = 0 and ,2 / 1.09.p a cω ≈  (C) “Photonic graphene” with a broken TRS such that 
ξ0 ≈ 0.677 and ωp,1 = ωp,2 = 0. The photonic Chern numbers C associated with the two bands are given in insets.
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Figure 3B–E. As seen in Figure 3B, the phase character-
ized by a broken IS does not support any bulk or unidirec-
tional edge mode at this frequency, confirming that this 
phase is topologically trivial. The absence of bulk modes 
for the phase with a broken TRS is also verified in Figure 
3C, which reveals that for an excitation far from the edges, 
the fields decay rapidly with the distance to the source.

The situation is dramatically different for sources 
positioned near the boundaries. Figures 3D and E show 
that in such a case a unidirectional edge state with propa-
gation direction locked to the sign of ξ0 is excited near the 
PEC walls. Crucially, the topologically protected modes 
do not experience any backscattering at the corners of 
the cavity. The edge mode dispersion in the band gap 
region was found by numerically fitting the spatial varia-
tion of the edge waves to that of a Bloch wave. As depicted 
in Figure  4, the edge mode dispersion is approximately 
linear, and for the edge wave propagating attached to the 
top interface it is centered about the K point and spans 
the entire band gap. The gap Chern number – given by the 
sum of the Chern numbers of the bands below the gap, 
including the negative frequency bands – is Cgap = sgn(ξ0) 

for the phase with a dominant broken TRS. In agree-
ment with the results of [48, 49], the gap Chern number 
is positive (negative) for an energy flow in the clockwise 
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Figure 4: Dispersion diagram of the bulk and edge modes (top 
interface) as a function of the normalized wavevector.
The structure parameters are as in Figure 2C. The slight asymmetry 
of the bulk bands with respect to q = 0 and the frequency shift with 
respect to Figure 2C are numerical artifacts caused by a relatively 
coarse mesh in the simulations of the electrically large topological 
cavity of Figure 3.
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Figure 3: Edge states of a photonic graphene cavity.
(A) Schematic of the cavity: the photonic crystal of Figure 1B with an absorber located at the right-bottom region and surrounded by PEC 
walls. The pseudo-Tellegen response ξ is not represented in the figure. (B) Time snapshot (t = 0) of Ez for the material with a broken IS of 
Figure 2B. (C)–(E) Time snapshot (t = 0) of Ez for the material with a broken TRS of Figure 2C. The pseudo-Tellegen parameter is ξ0 ≈ 0.677 in 
(C) and (D) and ξ0 ≈ −0.677 in (E).
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(anticlockwise) direction. The electric field time anima-
tions of the examples of Figure 3D and E are available in 
the Supplementary Material.

It is relevant to mention that because of computa-
tional restrictions the maximum number of mesh cells 
allowed by our numerical code is limited. For this reason 
the results of Figures 3 and 4 – for a computational domain 
formed by many cells – were obtained with a relatively low 
mesh density. For consistency, the band structure shown 
in Figure 4 was calculated using the same mesh as the one 
used to obtain the edge state dispersion. The coarser mesh 
leads to a slight numerical shift with respect to the more 
exact band structure results of Figure 2.

Also because of computational limitations, the calcu-
lation of the edge modes dispersion is challenging when 
they are weakly confined to the cavity walls. To obtain 
the most accurate results, we focused on a phase with a 
broken TRS, but with a preserved IS (ωp,1 = ωp,2 = 0) to maxi-
mize the band gap width. Indeed, the edge state confine-
ment is stronger for larger gap energy. We numerically 
verified that as long as TRS remains the dominant broken 
symmetry, the introduction of a broken IS (ωp,1 ≠ ωp,2) does 
not affect the topological properties of the system, and the 
presence of gapless edge states.

In conclusion, we numerically demonstrated that 
the structure of Figure 1B described by Eq. (12) is a pho-
tonic equivalent of the Haldane model, with topological 
properties determined by the dominant broken symmetry 
exactly as its electronic counterpart. The proposed plat-
form is especially interesting from a theoretical perspec-
tive, as materials with a strong Tellegen response are not 
readily available in nature [50]. In the next section, we 
introduce a practical path for the realization of two copies 
of the photonic Haldane model simply relying on aniso-
tropic dielectrics.

3  �Photonic Kane-Mele model
The electronic Kane-Mele model was introduced around 
2005 in a series of two papers [19, 20]. It describes a time-
reversal invariant mechanism that effectively imitates the 
effect of a magnetic field for each electron spin. The Kane-
Mele model is also based on the tight-binding Hamiltonian 
of graphene but with the two different spins coupled by the 
spin-orbit interaction. The most remarkable prediction of 
this model is that the spin-orbit coupling can induce topo-
logically nontrivial band gaps characterized by the pres-
ence of scattering-immune spin-polarized edge currents, 
a phenomenon known as the quantum spin Hall effect. 
This effect was first experimentally observed in HgCdTe 

quantum wells [51]. Recently, photonic analogues of such 
nontrivial electronic edge states were studied in several 
electromagnetic systems with the spin degree of freedom 
mimicked by the light polarization and the spin-orbit cou-
pling by, for example, a bianisotropic coupling [21, 22] or 
by particular symmetries of the waveguide [24, 26, 52].

Mathematically, the Kane-Mele model can also be 
regarded as two copies of the Haldane model with each 
electron spin experiencing an opposite magnetic field [17, 
20]. By adopting this point of view and building on the 
results of the previous section, we show in Section 3.1 
how to mimic the Kane-Mele model with a nonrecipro-
cal photonic platform with a pseudo-Tellegen response. 
We establish a link between this platform and the class 
of P T  D-invariant systems, that is, systems invariant 
under the composition of the parity P, time-reversal T 
and duality D transformations [24]. Finally, in Section 3.2, 
using duality theory we propose an alternative implemen-
tation of the Kane-Mele model in a fully reciprocal plat-
form made of anisotropic dielectrics.

3.1  �Kane-Mele model in a nonreciprocal 
system

Consider the photonic crystal of Figure 1B with the same 
relative permittivity (6) and magnetoelectric tensors (11) 
as in Section 2, but with matched permittivity and perme-
ability tensors:

	
ˆ ˆ ˆ ˆ ˆ ˆ( ) zzµ ε ε ε= = + +xx yy zz� � (17)

	 ˆ ˆ .ξ ζ= = ⊗ + ⊗z zξ ξ � (18)

As in Section 2, it is assumed that ε|| = μ|| are space 
independent and that the zz components of the permittiv-
ity and permeability tensors are given by a Drude model 

2 2( ) ( ) 1 ( )/zz zz pε µ ω ω= = −r r r  in the frequency range of inter-
est. From Eqs. (A.8) and (A.9) of Appendix A, the wave 
equations for TE ( ˆ

zE=E z) and TM ( ˆ
zH=H z) polarized 

waves are

	

2 22

2 2

( )
ˆ ( ) 0,p

zi E
c c c

ωω ω
ε

    ∇ − × + − =        

r
z r �ξ � (19a)

	

2 22

2 2

( )
ˆ ( ) 0.p

zi H
c c c

ωω ω
ε

    ∇ + × + − =        

r
z r �ξ � (19b)

Remarkably, even though the two polarizations are 
uncoupled, the wave propagation of TE and TM waves 
is ruled essentially by the same equation, except for the 
pseudo-Tellegen vector which has an opposite orientation 
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for TE and TM waves. Here, ε|| only plays the role of a nor-
malization factor and can without loss of generality be 
taken equal to unity. In this case and for ξ given by Eq. 
(14), the wave equations (19) reduce to two copies of the 
photonic Haldane model (12) with an opposite orientation 
of the pseudo-Tellegen vector. By virtue of Eq. (13), this sit-
uation corresponds in the electronic case to two copies of 
the Haldane model with opposite magnetic fields, which 
is precisely the Kane-Mele model [19, 20]. Hence, Eq. (19) 
yields a strict photonic analogue of the Kane-Mele model 
with the spin-orbit coupling mimicked by the nonrecipro-
cal pseudo-Tellegen response. From Section 2, it is clear 
that the pseudo-Tellegen coupling opens a topologically 
nontrivial band gap wherein TE- and TM-polarized edge 
states can propagate in opposite directions without back-
reflections at the interface with a trivial photonic insulator.

Interestingly, it can be readily checked that a photonic 
platform with effective parameters that satisfy (17) and 
(18) is P T  D invariant [24]. The scattering phenomena in 
P T  D-invariant systems are characterized by an anti-sym-
metric scattering matrix, and this property guarantees that 
a generic P T  D-invariant microwave network is matched 
at all ports [24, 52]. In particular, any P T  D-invariant 
waveguide that supports a single propagating mode (for 
fixed direction of propagation) is completely immune to 
back-reflections [24]. Note that P T  D-invariant systems 
are always bidirectional. Thus, the absence of backscat-
tering in the proposed photonic Kane-Mele model can also 
be explained as a consequence of P T  D invariance.

3.2  �Kane-Mele model in a reciprocal system

While the ideas developed in the last section are interest-
ing from a theoretical standpoint, their impact on more 
practical grounds is admittedly limited, mainly because of 
the difficulty to obtain a pseudo-Tellegen response [50]. 
Next, we show that the nonreciprocal P T  D-invariant 
platform studied in Section 3.1 can be transformed into an 
equivalent fully reciprocal non-bianisotropic system by 
means of a duality transformation [24].

The key observation is that a duality transformation 
acts exclusively on the fields, leaving the space and time 
unaffected [24, 53, 54]. Thereby, the wave phenomena and 
topological properties of two systems linked by a duality 
transformation are fundamentally the same. In particular, 
a duality transformation preserves the band diagram dis-
persion and the immunity to backscattering [24, 53, 55]. 
The origin of this unexpected link between the scattering 
properties of reciprocal and nonreciprocal systems is thor-
oughly covered in [24].

As in [24], we consider a duality transformation D of 
the form

	

3 3 0 3 3
1

0 3 3 3 3

1 ,
2

η

η
× ×

−
× ×

 
=  − 

1 1
1 1

D � (20)

where 0 0 0/η µ ε=  is the free space impedance. The 
duality transformation changes the material parameters 
as 1 1( ) ( ) det( ) ( ) ( )T− −→ ≡ ⋅ ⋅ ⋅′M r M r M rD D D D  [24]. For a 
bianisotropic material with matched permittivity and per-
meability µ ε=  and matched magnetoelectric couplings 
ξ ζ,=  it leads to a new material described by

	

0

0

( ) 0
.

0 ( )
ε ε ξ

µ ε ξ

 +
=′   − 

M � (21)

Notably, the new material has no magnetoelectric 
coupling. If the parameters of the original material are 
given by (17) and (18), then the permittivity ε′ and perme-
ability µ′ tensors of the new material are explicitly
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Interestingly, it can be readily verified that a system 
described by the tensors ε′ and µ′ satisfies Eq. (12) of 
[24], implying that it is P T  D invariant. This further con-
firms that the proposed platform can support scattering-
immune edge modes. Furthermore, the tensors ε′ and µ′ 
are symmetric, indicating that the transformed system is 
also reciprocal.

The tensors ε′ and µ′ have the same diagonal part, 
whereas their out-of-diagonal elements have opposite 
signs. Clearly, the duality transformation preserves the 
diagonal elements of the permittivity and permeability, 
whereas the pseudo-Tellegen response of the original 
material becomes the out-of-diagonal part of ε′ and µ .′  
Evidently, the out-of-diagonal parameters play the role 
of an effective magnetic field for photons and are respon-
sible for the bidirectional and reflectionless edge wave 
propagation in this structure. Interestingly, Liu and Li 
have previously shown using totally different physical 
arguments that spatially dependent anisotropic media 
with a structure analogous to (22) can be used to create 
a pseudomagnetic field for photons [25, 56, 57]. Thus, our 
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theory merges the concepts of pseudomagnetic fields and 
time-reversal invariant topological matter as particular 
cases of the broader class of P T  D-invariant systems [24].

It is highlighted that the wave propagation in a struc-
ture described by the parameters (22) is fully determined 
by the propagation in the two associated copies of the 
photonic Haldane model. Thereby, similar to Section 2.3, 
the material characterized by (22) supports topologi-
cally protected (but bidirectional) edge states. The cavity 
walls should enforce the (P T  D-invariant) mixed bound-
ary conditions Ez = 0 and Hz = 0. These “soft” boundary 
conditions were originally studied by Kildal and can be 
implemented with corrugated surfaces [58]. The field 
profiles of the cavity edge modes can be found from the 
numerical simulations of Section 2.3 using the duality 
transformation (20).

In conclusion, we proposed a fully reciprocal 
P T  D-invariant photonic platform based on non-uniform 
anisotropic dielectrics that supports bidirectional edge 
mode propagation protected against back-reflections. 
Importantly, the concept of P T  D invariance is a single-
frequency condition, and thereby it is sufficient that the 
material parameters satisfy Eq. (22) in some frequency in 
the band gap to observe the scattering-immune bidirec-
tional edge state propagation. This property let us hope 
that even though challenging a practical implementation 
of the proposed metamaterials with spatially dependent 
parameters may be feasible in the future.

4  �Conclusions
We used an analogy between the 2D Schrödinger and 
Maxwell equations to obtain an electromagnetic equiva-
lent of the electronic Haldane and Kane-Mele models. 
First, we introduced a novel realization of photonic gra-
phene based on a photonic crystal formed by dielectric 
cylinders arranged in a honeycomb lattice and embedded 
in a metallic host with a Drude-type dispersion. Then, it 
was shown that a spatially varying pseudo-Tellegen cou-
pling is the photonic equivalent of a magnetic field acting 
on electrons. Using this result, we proposed an exact elec-
tromagnetic analogue of the Haldane model.

Furthermore, by imposing that the permittivity and 
the permeability are matched, it is possible to create two 
copies of the photonic Haldane model in the same physi-
cal platform, and in this manner implement the Kane-
Mele model. Interestingly, this nonreciprocal platform 
is related through a duality transformation with a much 
simpler reciprocal system with the same edge states. 
Thereby, our analysis proves that the Kane-Mele model 

can be rigorously implemented using matched non-
bianisotropic dielectrics and that such structures can 
support bi-directional edge states immune to backscat-
tering. The link between this system and P T  D-invariant 
materials was established. Furthermore, it follows from 
our analysis that all the known mechanisms that enable 
the propagation of light in reciprocal structures with no 
backscattering, for example, relying on pseudomagnetic 
fields or time-reversal invariant topological insulators, 
fall under the umbrella of P T  D-invariant systems.
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Appendix A. Wave-equation in a 
pseudo-Tellegen medium
We consider a nonreciprocal material described by the 
tensors [32]:

	
ˆ ˆ ˆ ˆ ˆ ˆ( ) ,zzε ε ε= + +xx yy zz�

� (A.1)

	
ˆ ˆ ˆ ˆ ˆ ˆ( ) ,zzµ µ µ= + +xx yy zz�

� (A.2)

	 ˆ ˆ .ξ ζ= = ⊗ + ⊗z zξ ξ
� (A.3)

The symmetric magnetoelectric coupling tensors 
determine a nonreciprocal pseudo-Tellegen response. 
Here ε||, εzz, μ||, μzz are the parallel (in-plane) and perpen-
dicular (out-of-plane) components of the relative permit-
tivity and permeability, respectively, and ˆ ˆ

x yξ ξ= +x yξ  is a 
vector lying in the xoy plane.

In the absence of current sources and for a time-har-
monic variation of the form e−iωt, the Maxwell equations 
(4) in this material system reduce to

	
0

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ( ) ) ,zzi
c

ω µ µ µ
 

∇ × = ⊗ + ⊗ ⋅ + + + ⋅  E z z E xx yy zz H�ξ ξ
�

(A.4)

	
0

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ) ( ) .zzi
c

ω ε ε ε
 

∇ × = − + + ⋅ + ⊗ + ⊗ ⋅  H xx yy zz E z z H� ξ ξ
�

(A.5)

Remarkably, for a medium invariant to translations 
along the z-direction ( / 0)z∂ ∂ =  the pseudo-Tellegen 
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magnetoelectric coupling considered here does not mix 
the polarizations, i.e., the decomposition into TE ( ˆ

zE=E z) 
and TM ( ˆ

zH=H z) waves is valid. Then (A.4) and (A.5) lead 
to the two following independent equations for TE and TM 
waves:

2

2
1ˆ ˆ ˆ ˆ( ) = ,z zz zi i E E

c c c
ω ω ω

ε
µ

    
∇ − × × ∇ − × ×         

z z z z
�

ξ ξ � (A.6)

2

2
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ω ω ω
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    
∇ + × × ∇ + × × =         

z z z z
�

ξ ξ �(A.7)

The above equations can be further simplified if one 
also assumes that the parallel components of the permit-
tivity ε|| or permeability μ|| are space independent, leading 
to the following uncoupled wave equations for TE and TM 
waves, respectively:

	

2 2
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c c
ω ω

µ ε
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