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Abstract: A new approach for hair treatment through coating with nanotubes loaded with drugs or
dyes for coloring is suggested. This coating is produced by nanotube self-assembly, resulting in stable
2–3 µm thick layers. For medical treatment such formulations allow for sustained long-lasting drug
delivery directly on the hair surface, also enhanced in the cuticle openings. For coloring, this process
allows avoiding a direct hair contact with dye encased inside the clay nanotubes and provides a
possibility to load water insoluble dyes from an organic solvent, store the formulation for a long time
in dried form, and then apply to hair as an aqueous nanotube suspension. The described technique
works with human and other mammal hairs and halloysite nanoclay coating is resilient against
multiple shampoo washing. The most promising, halloysite tubule clay, is a biocompatible natural
material which may be loaded with basic red, blue, and yellow dyes for optimized hair color, and
also with drugs (e.g., antilice care-permethrin) to enhance the treatment efficiency with sustained
release. This functionalized nanotube coating may have applications in human medical and beauty
formulations, as well as veterinary applications.
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1. Introduction

Beauty is inherent to human wellbeing and hair has aesthetic, historic, and cultural significance,
and is also an indicator of health. Each hair is a skin appendage that consists of a root embedded in
the dermis and a hair shaft, a flexible strand composed of hard keratin fibers (rich in cysteine) bound
through strong (disulfide) and weak (hydrogen) bonds. In the dermis, the hair root is surrounded
by the hair follicle, an epidermal invagination. The basis of the hair follicle is a bulb. In the hair
shaft cross-section, three essential constituents are identified: the inside medulla, circumvent by the
cortex, which is overlaid by the cuticle, the outermost layer of the hair. [1,2]. The cortex is composed
of elongated keratin-rich cortical cells with a unique microstructure responsible for the strength and
elasticity, texture, and healthy visual appearance of the hair. Melanin, produced by melanocytes, gives
the hair color and is found in the cortex of the hair shaft. Two types of melanin can be distinguished:
eumelanin (confers darker tones) and pheomelanin (confers lighter tones). The final hair color is a
mixture of these two types of melanin [3]. At older ages, melanin production is diminished, as well
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as the number of melanocytes, and hair gradually turns grey [4]. The cuticle is the hair’s protective
barrier, formed by multiple layers of keratinized, flattened cells (scales), which overlap in a roof-tile
formation [1,2]. Nearly the entire surface of the human body is covered by hair, but the majority (above
100,000) of hair follicles exist on the scalp [5].

Hair care is an area of the cosmetic and pharmaceutical industries, which invest in formulations
for appearance (hair color) and treatment of scalp and hair diseases (e.g., pediculosis and dandruff).
Hair care cosmetic formulations include shampoos, conditioners, styling products (gels, waxes, and
mousses), and hair dyes. Surfactants that are anionic, amphoteric, or non-ionic are shampoo cleaning
agents. Conditioners needed to neutralize an excessive negative charge of washed hair and silicones are
the most common additives [6]. Any newly suggested hair color formulations have to be compatible
with these components.

There are permanent, semi-permanent, and temporary dyes, depending on the molecular
structure and the cuticle penetration capabilities [7]. Permanent dye colors have aromatic amines
(para-phenylenediamine) and couplers (e.g., resorcinol and meta-aminophenols) in the presence of a
strong oxidant (hydrogen peroxide) and an alkalinizing agent (ammonia). A multitude of colors can be
created, based on blue, red, and yellow-green couplers [2]. Temporary dye molecules do not penetrate
the cuticle layer, and are adhered to the external surface by weak forces [8]. Safe, naturally-occurring
dyes can be found in fruits (juglone–5-hydroxy-1,4-naphthoquinone in walnuts) and plants like
Indigofera ((2E)-2-(3-oxo-1H-indol-2-ylidene)-1H-indol-3-one). Henna is a natural red dye obtained
from the plant Lawsonia alba, by extracting lawsone (2-hydroxy-1,4-naphthoquinone) [9,10]. Red henna,
blue indigo with the addition of a yellow curcumin mixture, delivers brown colors that have been
commonly applied on grey hair for centuries.

Hair coloring formulations have to be examined for their toxicity, ranging from allergic contact
dermatitis and skin irritations, to carcinogenicity [11]. The high alkaline pH and hydrogen peroxide
in oxidative dyes contribute to damage of the hair shaft and often cause allergies. Another concern
is that irritating dye molecules reach the scalp and face skin. Hair dye application from neutral
water solutions, avoiding chemical reactions during coloring, could be a promising strategy for new
formulations. We will demonstrate such hair coloring methods based on a self-assembly coating of
pigment clay nanotubes from aqueous dispersion.

Permanent hair dyes often have a negative effect on biological organisms by triggering allergic
responses, such as contact dermatitis [3]. Nano/micro encasings could decrease dyes toxicity, e.g., the
polyglutamic acid encapsulated polydiacetylate allowed for 200–300 nm particles, which were applied
for safe hair coloring [12].

Dermatological afflictions, such as hair loss, affect a large amount of the population and have
been a subject of intensive research. For better delivery, nanostructured lipid carriers were developed
with minoxidil and finasteride, showing a synergic action of the two anti-alopecia used drugs [13].
Polymeric nanoparticles were synthesized for finasteride topical delivery into hair follicles [14]. Results
showed a reduced finasteride skin penetration, enhancing its permanence time and durability of
therapeutic effect, as well as a prolonged release for over 3 h.

A synthesis of gold nanoparticles inside the hair cortex showed brown color for 16 days.
Chloroauric acid in alkaline solvent formed 10–20 nm gold particles with HAuCl4 reduction. Amino
acid-cysteine enhanced this reduction, and the majority of gold nanoparticles occurred in the keratin
regions, enriched with cysteine [15]. Melanin extracted from cuttlefish ink was encapsulated in tiny
lipid capsules for hair delivery via micro-needling inside the follicles, thus darkening grey hair [16].
These hair-delivered nanoparticles allowed deeper penetration into the follicles and increased color
storage [17,18]. The idea of encapsulation of dyes into nanoscale tubular containers capable of being
assembled on hair looks very promising and has already produced some results.

Carbon materials, particularly graphene-based nano-sheets, have also shown promise for hair
dyeing. Graphene oxide is dispersible in water and may be safely used in cosmetics, contrary to
carbon nanotubes. Graphene oxide hair formulations were mixed with chitosan, giving brown to
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black colors. They demonstrated a durable effect, resisting multiple shampooing, antistatic, and heat
dissipation [19]. Fullerene nanoparticles have also been explored for hair growth stimulation [20].
Finasteride encapsulated in liquid crystalline nanoparticles gave a decrease in posology and unwanted
side effects due to scalp skin retention [21].

Nanotubes, nanoscale materials with a tubular shape, are promising for dye encapsulation,
producing versatile and stable nanopigments [22]. Despite the many engineering applications of
carbon nanotubes, they are unsafe for health care and other types of nanotubes are more promising due
to their non-toxic aqueous processing. They are naturally-occurring halloysite clay nanotubes (HNT),
silica nanotubes, boron-nitride nanotubes, and nickel vanadate nanotubes. We developed versatile
nanoclay-based materials for health and personal care applications [23]. We emphasize a potential
usage of biocompatible and abundantly available halloysite clay nanotubes for haircare formulations.

2. Nanotube-Based Formulations for Human Hair Treatment

2.1. Halloysite Clay Nanotubes

Halloysite clay nanotubes (HNT) are multiwall inorganic structures of 50–70 nm in outer diameter,
10–20 nm in inner diameter, and 500–1000 nm in length [24]. Belonging to the phyllosilicates (sheet
silicates) group, these tubes are rolled aluminosilicate sheets, appearing as elongated cylinders,
Scheme 1 [25]. Similar to many naturally formed minerals, water molecules are embedded between
the wall sheets, imparting an empirical formula of (Al2Si2O5(OH)4 × nH2O) and an increased space
between consecutive spiral layers from 0.7 to 1.0 nm [26]. The lumen volume can be increased
by chemically etching alumina and widening the lumen diameter for higher dye/drug loading
capacity [24]. The differing internal–external chemistry (Al2O3/SiO2) makes opposite inner/outer tubes’
charges at pH 4–8.5 (Figure 1). Such a structure makes the halloysite surfaces selective for charged
molecules, increasing loading negative components into the tube’s lumens and positive ones at the
outside surface [24]. The hydroxyl groups on the tube’s surface enable hydrophobization by silane
grafting [26,27].

A variety of dyes and drugs can be loaded into the lumen, and the sustained release profile
of the loaded compounds makes halloysite an efficient delivery material [28]. There is a diversity
of compounds loaded into/onto halloysite and a controlled release, represented by tetracycline,
ciprofloxacin, dexamethasone, nifedipine, paclitaxel, insulin [29], genetic material [30], and by its usage
as bioscaffold for tissue engineering [31]. Adding their low toxicity, availability, and low price, HNTs
appeared to be a competitive nanomaterial for biomedical research and applications [32,33].
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2.1.1. Cosmetic Applications

A recent study explored the potential of clay nanotubes for cosmetic applications through
self-assembly. The technique combined selectivity of lumen loading, sustained release of active dyes,
and the nanotubes’ self-assembly on the exterior hair surface [23]. The process takes advantage of the
mesoporous structure of hair with 1 µm-thick flap-like cuticles covering the surface. A simple washing
of hair for 3 min by 1 wt. % of water halloysite dispersion provides a 2–3 µm thick clay coating in
and around the cuticle flaps. In an aqueous environment, the cuticles open up like flower petals and
allow for the halloysite dispersion to enter the inter-cuticle space, where micro-confinement aligns the
tubes under the influence of capillary forces during drying. Halloysite-encapsulated dye may be water
soluble, or soluble only in organic solvents. Thus, the loading of the clay nanotubes may be performed
from any, possibly harmful, solution, but when the formulation is competed, we apply these colored
nanopigments to hair from safe aqueous dispersions.
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Figure 1. Introduction to the self-assembly of halloysite nanotubes on hair and development of the
coating from anchoring in the cuticle to capillary force/drying driven surface assembly (A), and atomic
force microscopic and scanning electron microscopic (AFM, SEM) images of dried clay nanotubes (B,C).
Reproduced from Ref. [23] with permission from the Royal Society of Chemistry.

The choice of dyeing agent was demonstrated with 2-hydroxy-1,4-naphthoquinone, commonly
known as lawsone. Lawsone is an unstable and insoluble extract of the popular henna plant (Lawsonia
inermis). A crucial feature of the coating process is the selective modification of positively charged clay
lumen by the adsorption of negative amphiphiles, which enable the encapsulation of hydrophobic
agents such as lawsone. The 6.0 ± 1.0 wt.% of lawsone loaded into the halloysite lumen changed
the color of old grey hair to bright vivid brown through the assembly process (Figure 1). Figure 2
shows that the coating originates from cuticles and is then spread over the whole hair (at very low
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HNT concentrations it may be restricted only to the cuticle area). The colored hair is able to stand as a
semi-permanent dye, preserved for up to 10 shampoo washes. In particularly, a multiple shampoo
with 10% sodium dodecyl sulfate gives a loss of the coloring clay nanopigment of ca. 30% after five
and 50% after eight washing cycles.
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Figure 2. SEM image of halloysite coating in cuticle vicinity (A) and EDX mapping-aluminium (B)
and silica (C) mapped of hair coated with halloysite. Al and Si areas represent a distribution of the
nanotubes. (D) SEM image of hair completely coated with halloysite.

The principle of natural dye loading into the halloysite lumen was extended to include the basic
colors: blue indigo, purple alkanet extract, and yellow curcumin extract, for all spectra of hair color
formulations. Our method, based on physical forces, is applicable over the spectrum of hair types and
is less damaging and nontoxic to hair and skin.

In Figure 3 shows images of grey human hair colored brown with the halloysite coating technique,
using the nanotube loading with 6.7 wt.% of lawsone. Even though the halloysite loading is restricted
by 10 vol.% of the lumen, this amount of dye is sufficient to color hair. Higher halloysite loading mans
that some dye is adsorbed outside, which is not favorable because it may change physical-chemistry of
the self-assembly process.
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Figure 3. Color treatment of hair via halloysite self-assembly: grey hair (upper image, A) washed
for 3 min and treated with an aqueous dispersion of lawsone-loaded halloysite gives a bright orange
color (bottom image, (A)). High definition images of hair coated with brown lawsone loaded halloysite
(B,C). Dark field images of intact grey (D) and colored grey (E) hair from the same person (note the
color change and the visible halloysite-dye aggregate indicated by the arrow); reflected light spectra
recorded in transmission dark field microscopy mode demonstrating the color change in grey hair
after dye-halloysite composite deposition onto hair (G). Thermogravimetric analysis (TGA) results
of lawsone-loaded halloysite tubes. (F) shows their increased weight loss against pristine halloysites
referring to the incineration of organic dye content.

Typically, the leakage of dyes loaded into halloysite nanotubes occurs during 10–15 h, which
much exceeds a possible time for hair exposure to water, and even this leaked dye will stay on hair,
preserving color.

2.1.2. Biomedical Applications

Anti-lice treatments to eliminate infestations provoked by the commonly-known human lice
Pediculus humanus capitis are very important [35,36]. Resistance to common pesticides like pyrethroids
and permethrin and re-infestations are the problems with conventional anti-lice formulations [37]. It is
necessary for anti-lice drug delivery to be sustained and hair-localized. For effective anti-lice treatments,
we loaded permethrin into the clay nanotube lumens. A lumen modification with negative amphiphiles
(sodium dodecyl sulphate), to render the cavity hydrophobic and susceptible to encapsulate the
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highly insoluble permethrin, was developed, as shown in Figure 4 [23,38,39]. A slow and sustained
release of permethrin from the tube’s lumens was demonstrated, elucidating the capabilities of this
nanoclay-based anti-lice disinfestation strategy for a sustained hair treatment.
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Figure 4. Illustration of sodium dodecyl sulphate (SDS) amphiphile coating inside the lumen, aiding
in loading water insoluble compounds (permethrin and minoxidil) into the halloysite lumen (A).
thermo-gravimetric (TGA) spectra of halloysites pre-treated with SDS and loaded with water insoluble
active agents, permethrin (B) and minoxidil (C). Reproduced from Ref. [23] with permission from the
Royal Society of Chemistry.

The permethrin-loaded nanoformulation was tested in vivo in nematodes, Caenorhabditis elegans,
considered a convenient model organism [23,40]. Strong adhesion to the nematodes’ cuticle of the
nanotubes, as well as their preferential intestinal presence, was shown. The results suggest the favored
biocide effect of permethrin by its halloysite loading, perhaps due to nanotube intestinal penetration,
leading to permethrin uptake enhancement, and achieving a worm death toll of 85% [23].

Another important issue regarding hair maintenance is hair loss treatments [41]. Since the
introduction of topical minoxidil for androgenetic alopecia treatment, it has been included in several
formulations for hair growth [42]. Researchers developed minoxidil-loaded nanoclay, to test the
performance of the nanotubes. The loaded halloysites were prepared similarly to the permethrin-loaded
ones, with methanol used as a solvent. The resulting halloysite formulations represent a strategy for
topical hair surface coating with anti-hair loss agents, exhibiting a slow release profile. [23]

We have to underline that halloysite color formulation and drug loading may be used together, by
the hair application of mixture of dyes and drug loaded nanotubes.

2.2. Carbon Nanotubes

Carbon materials, particularly graphene-based ones, have also shown promise for hair dyeing.
Graphene-based sheets, obtained via exfoliation of graphite powders in the presence of strong oxidizing
agents, are presented as graphene oxide and reduced graphene oxide. Graphene-based nanosheets
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were mixed with chitosan, yielding color nanoformulations. This demonstrated a toxic-free procedure
for dyeing light-colored hair with dark shades, ranging from brown to black. These formulations
exhibited a resistance to multiple shampoos and also antistatic and heat dissipation capabilities [19].

Chemically functionalized carbon nanotubes (CNT), synthetized for coloring hair, eyebrows, or
eyelashes, usually follow well-defined steps: covering the target surface by a polymeric layer (amine,
cationic or anionic), followed by contact with the chemically functionalized CNT for the first colorant
layer. Additional repeated cycles allow for the formation of multiple intercalated layers, reinforcing
the final color. Simple coating mechanisms, by dipping in CNT-dispersions, yielded a black color on
bleached and non-bleached grey hair [43]. Peptide-based CNT colorants, formed by the coupling of a
hair-binding peptide to the nanotube surface, formed diblock compositions and increased the affinity
to hair by covalent conjugation [44]. Besides the biomedical and cosmetic context, the hair-related
multifaceted applications of carbon nanotubes led to the development of CNT-based artificial fiber
sensors [45]. A bioinspired artificial CNT hair sensor for air flow detection, with a “hair-plug” design,
was composed of the nanotubes coated on micro-capillary support [46].

3. Nanotube-Based Formulations for Animal Hair Treatment

The indications for the design of veterinary treatments are similar to human hair. The majority of
the physical and chemical properties remain consistent for hair belonging to different animal species.
The clay nanotube assembly may be extendable to deliver veterinary drugs to animals, including dogs,
cats, and sheep (Figure 5). The loading of biocidal compounds like permethrin creates avenues of
anti-flea formulations for animals, especially those involved in farming activities [47].

Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 13 

 

cationic or anionic), followed by contact with the chemically functionalized CNT for the first colorant 
layer. Additional repeated cycles allow for the formation of multiple intercalated layers, reinforcing 
the final color. Simple coating mechanisms, by dipping in CNT-dispersions, yielded a black color on 
bleached and non-bleached grey hair [43]. Peptide-based CNT colorants, formed by the coupling of 
a hair-binding peptide to the nanotube surface, formed diblock compositions and increased the 
affinity to hair by covalent conjugation [44]. Besides the biomedical and cosmetic context, the hair-
related multifaceted applications of carbon nanotubes led to the development of CNT-based artificial 
fiber sensors [45]. A bioinspired artificial CNT hair sensor for air flow detection, with a “hair-plug” 
design, was composed of the nanotubes coated on micro-capillary support [46].  

3. Nanotube-Based Formulations for Animal Hair Treatment  

The indications for the design of veterinary treatments are similar to human hair. The majority 
of the physical and chemical properties remain consistent for hair belonging to different animal 
species. The clay nanotube assembly may be extendable to deliver veterinary drugs to animals, 
including dogs, cats, and sheep (Figure 5). The loading of biocidal compounds like permethrin creates 
avenues of anti-flea formulations for animals, especially those involved in farming activities [47].  

 

 

 

 

 

Figure 5. Wool fibers before (A) and after (B) halloysite dispersion exposure. 

Hair treatments applicable to human hair are transferable to animal hair as well. For example, 
the use of benzotriazole to protect the keratin composition of hair fibers from UV radiation was tested 
for animal care [48]. Similarly, polymer additives that prevent the deleterious effects of heat on hair 
are also indicated for veterinary care [49]. Figure 6 demonstrates successful halloysite nanotube 
coatings for dog, cat, and horse hair. 

 

Figure 5. Wool fibers before (A) and after (B) halloysite dispersion exposure.

Hair treatments applicable to human hair are transferable to animal hair as well. For example, the
use of benzotriazole to protect the keratin composition of hair fibers from UV radiation was tested for
animal care [48]. Similarly, polymer additives that prevent the deleterious effects of heat on hair are
also indicated for veterinary care [49]. Figure 6 demonstrates successful halloysite nanotube coatings
for dog, cat, and horse hair.

Both wool and hair have the same components—cuticle, consisting from overlapping scale cells of
ca. 0.5 µm and enriched with cysteine, cortex and media [50]. The nano-assembly technique is based on
physical forces and the specific structure of hair similar for hair and wool. The underlying phenomena
of cuticle swelling and opening on wetting are similar for wool and human hair determining the main
parameters of halloysite assembly for the both types of biological fibers.
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4. Nanotubes’ Safety

Though nanomaterials are used in the cosmetics industry in an increasing fashion [51], concerns
have been expressed regarding the potential toxicological profiles in contact with the human body [52].
The large surface area of nanoparticles can interfere with biological mechanisms [53]. Concerning the
toxicity of nanotubes, similar to the other types of nanomaterials this depends on size, shape, and
chemical composition. Halloysite safety was studied with worms, fish, and mice [40,54], subjected to
oral administration of the nanotubes. Different aspects were measured, for instance, serum biochemical
parameters, aluminum and silica contents in the liver, and oxidative stress measurements, by assessing
the profiles of endogenous antioxidative enzymes, glutathione peroxidase, and superoxide dismutase.

In vivo halloysite toxicity testing in C. elegans by the ingestion of HNT-coated cells showed that,
despite mechanical stress to the nematodes’ digestive system, no major harm was caused to the
organism, eliciting little toxicity—contrasting with other nanomaterials, which can avidly experiment
cellular uptake and transport to tissues. The experiment deemed halloysite as safe to soil nematodes,
therefore suggesting that further industrial applications are probably safe for the environment [40].
Reduced uptake due to the length of the clay nanotubes and efficient excretion can be key aspects
for the safety of this nanomaterial. Another study showed halloysite to be non-toxic for cells; for
that, the nanotubes were added to different cell lines for cytotoxicity assessment. Cellular viability
was determined and was shown to be safeguarded until concentrations up to 0.1 mg/mL. Moreover,
laser confocal microscopy provided information regarding cellular uptake, in which halloysites were
preferentially localized in the nucleus vicinity [55].
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The oral administration of halloysite had a growth stimulatory effect in mice, with no hepatic
toxicity (for the low dose), but had an opposite effect in mice administered with the high dose.
In addition, an induction of aluminum ion accumulation was observed, and thus oxidative damage
in the liver, leading to hepatic dysfunction and histopathological modifications, despite no silica ion
accumulation being verified [54].

The inhaled clay nanotubes suggested not only subchronic toxicity in mice, but also autophagy
blocking abilities, with a consequent accumulation of sequestosome-1, a ubiquitin-binding protein,
resulting in exaggerated apoptosis, anti-flame responses, and oxidative stress generation [56]. They
also could be an effective way of diminishing HNT-mediated inhaled toxicity via a p62 clearance
enhancement mechanism. The cosmetic ingredient review (CIR) panel concluded that aluminum
silicate, as well as other minerals, was safe for cosmetic use, despite emitting a reservation regarding
the need to minimize inhalation of these ingredients [57].

Carbon nanotubes have raised health concerns, as several in vitro and in vivo studies have
underlined. Results suggest that the relevance of physicochemical characteristics, such as size—shorter
tubes have proven to be less toxic when compared to the longer ones—shape, length, and
functionalization, which can affect bio-distribution and elimination, hence contributing to higher or
lower potential toxic responses [58]. Pulmonary exposure may be the most probable route of exposure
to carbon nanotubes, but in the occupational work context. This way, evidence shows that a carbon
nano-fibrous shape is important for the development of lung pathogenicity, including inflammation,
fibrosis, and granuloma formations [59].

5. Future Prospects

The relevance of hair follicle-targeted drug delivery is a significant goal. Since follicular-targeted
stem cells have shown excellent results in hair regrowth, nanoparticles can be used as a non-viral
method to deliver and assist the regeneration of induced pluripotent stem cells via the transfection of a
gene, aiming to circumvent the pathological condition [60]. Other studies gravitate around in vitro
models for studying de novo hair follicle regeneration and treatment [61].

With HNT-encapsulation, we are opening the way for the application of water insoluble dyes,
which prior to this were not used in hair coloring. For this, one could dissolve such dyes in an organic
solvent for the loading process, and the resulting nanopigments eliminate traces of the solvent. In many
cases, such loading may request hydrophobization of the clay nanotube lumens, as demonstrated
in [38,39]. For applications, such tubule nanopigments may be dispersed in water, resulting in stable
long-standing coloring.

New approaches for dye/drug based nanosystems are developing, including additional care with
encapsulated keratin, curcumin, and other vitamins. Similar to other nanomaterials, Halloysite and
carbon nanotubes were exploited regarding their suitability for dye-loading and hair delivery intents
or solely nanotubes themselves. These new avenues are promising to open new nanotube-based
formulations for hair dye/drug delivery, with increased efficiency and enhanced biosafety.

6. Conclusions

Although haircare products, including both hair treatment and hair embellishment formulations,
have been widely developed, a need for innovation is rising with an increasing demand and requests
to make the coloring process less irritating. Nanotechnology may change a panorama of cosmetic and
biomedical sciences because it makes it possible to avoid a paradox in the process of hair coloring, when
one is trying to use an aqueous dye solution to get not-water soluble hair coloring, which inevitably
needs a chemical reaction during coloring. The encasing of dye or drugs into nanoparticle containers
allows the development of stability in the water pigment (like color-loaded clay nanotubes), which
then could be applied onto hair to form aqueous dispersions.
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