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Classical canonical perturbation theory is applied in the vicinity of the saddle point for a chemical reaction.
This is done by applying successive canonical transformations in the scope of the GustavsonÈBirkho†
approach. It is shown that the calculated approximate classical integrals of motion can be used to describe
classically forbidden tunnelling processes. They are also organically embedded into a hopping method to
incorporate tunnelling e†ects into classical trajectory simulations of chemical reactions. The applicability of
the proposed scheme is demonstrated for the collinear exchange reaction using the double many-bodyH ] H2
expansion potential energy surface.

1 Introduction

Tunnelling is an ubiquitous physical phenomenon which plays
an essential role in phase transitions,1,2 quantum Ðeld
theory,3h5 nuclear physics,6 and solid state physics.7 In chemi-
cal physics, molecular dissociations and interconversion as
well as light-atom transfer reactions with activation energy are
processes where it is also known to be important.8h10

Tunnelling is generally understood as a purely quantum
process when the system under consideration passes through
the potential barrier from one classically acceptable region to
another. The quantum probability for such classically for-
bidden process is nonzero although the wave function (or
probability density) may be exponentially damped. Thus, the
full information about the tunnelling process must in principle
be obtained by solving the Schro� dinger equation with appro-
priate boundary conditions. In practice, however, the exact
quantum solution is often una†ordable and one has to resort
to miscellaneous approximations. Since in the tunnelling
region the wave function may change in absolute value by
orders of magnitude, the usual perturbative methods are inap-
propriate for this purpose and non-perturbative semiclassical
(WKB) approximations have been of primary interest for
treating such tunnelling phenomena.

In the scope of the WKB approach one has to deal with the
HamiltonÈJacobi (HJ) equation, and only in a few cases (such
as 1D systems or others which can be recast as 1D) can its
solution be easily found. In the multidimensional case, the HJ
equation is a partial di†erential equation, and to Ðnd its solu-
tion is almost as difficult as to solve exactly the quantum
problem. There are three basic reasons why multidimensional-
ity plays a crucial role in the application of the WKB method
to tunnelling problems. First, the solution W (r) of the HJ
equation is generally determined with the accuracy of some
arbitrary function in the N-dimensional coordinate space, and
cannot be considered without reference to some speciÐc
boundary conditions. These must be prescribed on some
region of the (N [ 1)-dimensional subspace (initial Lagrange
manifold). Only for N \ 1 does the problem of boundary con-
ditions become trivial and can be reduced to a turning point.
Second, for tunnelling problems, W (r) is generally complex-

valued, which leads to the concept of mixed tunnelling11h13 in
contrast to that of pure tunnelling when the solution in the
classically forbidden region is supposed to be purely imagin-
ary. It was pointed out elsewhere11,13 that, unlike the 1D case,
pure tunnelling is not always adequate in the multidimen-
sional case. At the same time, for mixed tunnelling, no simple
analog of the method of characteristics is available for the
classically unacceptable region. Third, the existence of several
branches of W (r) leads to another purely quantum e†ect, i.e.,
interference, which does not appear in the 1D case. Its full
study is related with the accurate investigation of Stokes phe-
nomena which is handicapped by the absence of an analytical
solution for the HJ equation in the general case.

The numerous approximate quasiclassical theories which
either reduce the dimensionality of the problem or prescribe
some tunnelling path in conÐguration space (escape path, tun-
nelling mode, etc.) have overlooked so far the above-
mentioned questions. Alternative approaches resort to the
saddle point or stationary phase approximation in the path
integral formalism of quantum mechanics and statistics. In
this way, truly multidimensional results (such as instanton
theory,14,15 path decomposition expansion,16 and S-matrix
theory17,18) have been obtained. It has also been shown that
the instanton theory can be reformulated in terms of the HJ
equation for the inverted potential with speciÐc boundary
conditions near its top.19,20 However, it is not relevant for
scattering problems. Moreover, instanton-like results can be
applied only in the case of pure tunnelling and this strict limi-
tation relates actually to any multidimensional theory that
deals with the most probable tunnelling path in real conÐgu-
ration space. Mathematically, such a limitation is due to the
fact that the complex-valued solution of the HJ equation is
described in terms of not one but two coupled sets of EulerÈ
Lagrange equations which are not equivalent to a single set of
ordinary di†erential equations.13 In collisional problems,
complex classical trajectories have been used to calculate S-
matrix elements for classically forbidden processes.21,22 Thus,
semiclassical S-matrix theory is formally free from the above-
mentioned drawback, although the extension of the path inte-
gral formalism to complex phase space and its relation with
complex classical mechanics needs a more rigorous mathe-
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matical foundation. Besides, it requires the proper analytical
behavior of the potential energy surface in complex coordi-
nate space, which cannot be warranted for most existing
models.

From the pragmatic point of view, the above-mentioned
““exact ÏÏ theories are rather difficult to implement for dimen-
sionalities higher than two. Thus, they are often impractical
even for the simplest chemical objects which allow an exact
quantum mechanical treatment. For more complicated poly-
atomic systems, the only computationally a†ordable tool in
reaction dynamics has been so far classical trajectory simula-
tions. These are known to provide good average results for
reactivity even in the least favorable case of the reac-H] H2tion, but fail to describe purely quantum e†ects such as tun-
nelling and zero-point energy conservation. Thus, it is hardly
desirable to develop a method for classical trajectory simula-
tions which is applicable to any dimensionality and incorpor-
ates tunnelling in it. In this sense, the trajectory hopping
method looks a promising route to describe tunnelling
e†ects.23,24 According to its simplest version, the classical tra-
jectories are allowed to jump through the classically forbidden
region with some prescribed probability which must be calcu-
lated for every trajectory. Although this is similar in spirit to
the trajectory surface hopping method for treating non-
adiabatic reactions,25 the justiÐcation for such a strategy and
its physical interpretation is less clear. Indeed, for a classically
acceptable region, a single characteristic of the HJ equation
(classical trajectory) bears no physical meaning. Only a family
of characteristics conforming with the appropriate boundary
conditions provides a WKB solution. Clearly, the full WKB
analysis of tunnelling must appeal to the whole family of char-
acteristics, or, generally speaking, tunnelling cannot be incorp-
orated into a single trajectory. Thus, a single trajectory cannot
also be continued in the forbidden region by means of
complex time or any other single complex parameter (unlike
the one-dimensional tunnelling where the complex time
method has been shown to recover the usual WKB results26).

The questions we address are therefore : (i) whether there is
any possibility to justify the intuitive hopping recipe for multi-
dimensional tunnelling, and (ii) how to calculate the tunnelling
hopping probability. Partly, the ideas which substantiate the
current work have already been outlined in a previous pub-
lication,27 where we have proposed a new procedure for calcu-
lating the hopping probability. In fact, the key problems of
multidimensional tunnelling delineated in the previous para-
graphs have not been addressed in our previous paper while
the computational strategy itself was mostly based on an intu-
itive analogy with the separable case. In this paper we cover
such a gap, and examine our earlier approach from a more
rigorous position.

To elucidate the main ideas, we Ðrst note that there are
basically two ways to calculate complex-valued W (r) solutions
in the general case. The Ðrst is through the direct numerical
solution of the HJ equation, which can be done by Huygens-
type construction ;13,28 this consists of a successive evaluation
of equipotential surfaces for Re W (r) and Im W (r). The solu-
tion is joined smoothly onto the classically allowed region,
providing the analytical continuation of the real-valued W (r).
The second approach consists of obtaining Ðrst a closed alge-
braic form for W (r) in the classically allowed region, which is
then assumed to be valid in the forbidden region. This concept
has recently been implemented by Takada29 who has used
classical canonical perturbation theory to get an approx-
imation of quantized tori which could then be analytically
continued at least in the neighboring classical forbidden area.
Since in any tunnelling problem a forbidden region always
separates two allowed regions, we Ðnd it more natural to
invert in some sense TakadaÏs approach. Thus, we look for
some approximate form of W (r) which is valid in the tunnel-
ling region, and also in the neighboring classically acceptable

regions. These must be used to determine the boundary condi-
tions appropriate for the given problem. Although such a con-
sideration is relevant for any kind of tunnelling phenomena,
only scattering processes are mostly addressed in this paper.
In this case, the boundary conditions near the frontier of the
classically allowed regions can be easily calculated through
classical trajectory simulations. We apply classical canonical
transformation30h32 within the GustavsonÈBirkho† formalism
to reduce the initial Hamiltonian to its simplest possible form,
and to calculate all the classical integrals of motion. Such a
reduction is chosen to be valid in the vicinity of the saddle
point of the potential energy surface. We shall Ðnd formally
correct expressions for W (r) and the reaction probability, and
show that the calculated integrals of motion can be used
within the hopping method. The latter will be illustrated for
the collinear exchange reaction at collision energiesH] H2near the classical threshold using the double many-body
expansion (DMBE) potential energy surface.33 Interference
e†ects cannot be described in the scope of the current hopping
method, and we shall not address to this issue any further in
the present work.

The paper is organized as follows. Section 2 presents the
Ñux formulation for the tunnelling collision probability in the
semiclassical approximation. In Section 3 we apply the clas-
sical perturbation theory to get the approximate solution of
the HJ equation, and formulate the numerical strategy for the
hopping method. Section 4 outlines the details of the compu-
tational strategy and presents the main results which have
been obtained for the title reaction. Concluding remarks are
in Section 5. For completness some aspects of the classical
canonical perturbation theory used in the present work are
summarized in the Appendix.

2 Tunnelling probability in the WKB
approximation

We consider the simplest case of a collinear
A] BC] AB] C exchange reaction with a total energy
below the activation potential barrier, and denote the initial
(Ðnal) arrangement channel by i( f ). The rather obvious gener-
alization of notations makes the following results also applic-
able to the more general case. Our aim is to express the
reaction probability in terms of the WKB solution of Schro� d-
ingerÏs equation which corresponds to an incomingWli(q),
wave of unit Ñux in the initial arrangement channel i. We start
with a brief summary of the method of characteristics which
supplies the WKB solution in the classically allowed region.

Let us introduce the compact notation q and p for
coordinates and their conjugate momenta and(q1, q2) (p1, p2),consider the one-parameter family of characteristics [q(a, t),
p(a, t)]. These are classical trajectories which satisfy Ham-
iltonÏs equation of motion with initial conditions

q(a, t \ 0) \ q0(a)
(1)

p(a, t \ 0) \ p0(a)

where deÐnes the initial Lagrange manifold. Next[q0(a), p0(a)]
we determine the single valued function W (a, t)

W (a, t) \ W0(a) ]
P
a,0

a,t
p(a, q) dq(a, q) (2)

where the integral is taken along the characteristics at a Ðxed
value of the parameter a, as explicitly indicated in eqn. (2). To
Ðnally get W as a function of the coordinates, must beW0(a)
deÐned on the initial Lagrange manifold as

W0(a) \
P a

p0(a@) dq0(a@) (3)
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The WKB wave function is then given locally by34,35

W(q)\ ;
l

J f (al)
CD(q1, q2)

D(a, t)
D~1@2 K

l
exp
AiWl

+
B

(4)

where f (a) is a function which depends on the choice of the
parameter a, which will be speciÐed below; the term in square
brackets denotes the Jacobian of the t) trans-(q1, q2)% (a,
formation. The lower integration limit in eqn. (3) is not essen-
tial and only a†ects the constant phase of the wave function.
Although W is a single-valued function of (a, t) it becomes
multivalued in the full conÐguration space, which explains the
appearance of the branch index l in eqn. (4). The di†erent
branches supply the solutions of the HJ equation subjectWl(q)
to the boundary condition

Wl(q0)\ W0(al) (5)

while the branching lines are caustics where the mapping
t) becomes singular(q1, q2)% (a,

D(q1, q2)
D(a, t)

\ 0 (6)

and hence the WKB approximation breaks down. Note that
the problem of constructing a global WKB solution has been
solved by Maslov and co-workers34 using a mixed
coordinateÈmomentum representation in the vicinity of the
singularities and successive matching of local solutions. The
Ðnal result has the same form as in eqn. (4) except for the
extra phase [ink/2 where k is the Morse index of the charac-
teristic.34 Since the e†ect of interferences is left out in the
present analysis we will not indicate this extra phase explicitly
and omit also the branch index hereafter. Further details con-
cerning the construction of the global WKB solution can be
found in ref. 34.

It is now convenient to rewrite eqn. (4) in a di†erent form.
Following Wilkinson,36 we make a local orthogonal trans-
formation to the new coordinate system (g, m), such that

The WKB wave function assumes then the formpm \ 0.

W(q)\ J f (a)
C
l

dm
da
D~1@2

exp
AiW

+
B

(7)

where l\ Ln/Lt is the velocity along the characteristics. Note
that for the general multidimensional case, the factor dm/da in
eqn. (7) is replaced by the Jacobian of the mapping via rays.37

To describe tunnelling we need to consider W(q@) in regions
where the equation

q@\ q(a, t) (8)

has no real-valued roots, and hence the WKB wave function
must be expressed in terms of complex classical mechanics.
This is equivalent to the analytical continuation of W (q) as
formulated by Wilkinson.36 For complex-valued (a, t), or
equally in complex coordinate space, the WKB wave function
still preserves its form in eqn. (7). To show this we closely
follow the derivation given by Takada29 [with minor changes
owing to the di†erent representation of the WKB wave func-
tion in eqn. (7)], and utilize a decomposition approach based
on GreenÏs theorem. For simplicity we take + \ M \ 1 and
apply GreenÏs theorem

W(q@)\ [
1

2

P
&

dq
C
G(q@, q)

dW(q)

dq
[

dG(q@, q)

dq
W(q)

D
(9)

with the semiclassical GreenÏs function being given by38

G(q@, q)\ (2ni)~1@2
A 1

pg pg@
L2W @
Lm Lm@

B1@2
exp(iW @) (10)

where W @(q, q@) is the action integral along the classical trajec-
tory (generally complex) connecting q and q@. We locate the

surface R (line in the 2D case) in the classically allowed region
and perform the integration in eqn. (9) using the stationary
phase approximation. The direct calculation, similar to that in
ref. 29, gives

W(q@) \ J f (a*)
C
pg@

dm
da
D
*

~1@2

]
C
[
A L2W @
Lm Lm@

B~1 L2
Lm2

(W ] W @)
D
*

~1@2

] exp
Ci(W ] W @)

*
+

D
(11)

where the asterisk indicates that the variables are evaluated at
the critical point q* which is a solution of the stationary phase
condition

L
Ls

[W (q) ] W @(q, q@)]\ 0 (12)

and s is the coordinate along R. It is rather easy to prove that
eqn. (11) concurs with eqn. (7). Indeed, the secondary phase
condition together with the energy conservation law may be
shown to lead to the more general equation

L
Lq

[W (q) ] W @(q, q@)]\ 0 (13)

which is satisÐed along some complex classical trajectory.36
Along such a trajectory both (W ] W @) and the parameter a
are constants, and one has at once a* \ a@ and W (a@, t@)\ (W

where (a@, t@) is the solution of eqn. (8). In addition, by] W @)
*using eqn. (13), the expression in square brackets in eqn. (11) is

reduced to Lm@/Lm which ends the proof. Note that even in the
WKB approximation the left-hand side of eqn. (9) is not
a†ected by the choice of R in the classically acceptable region.
The crossing of the family of trajectories [q(a, t), p(a, t)] with R
determines in the phase space a one-parameter line [q8 0(a),

which can be regarded itself as the initial Lagrangep8 0(a)]
manifold. Thus, we have some freedom in the choice of initial
conditions for the characteristics which can be used for sim-
plifying purposes in the consideration of the tunnelling region.

We proceed now with our main goal to calculate the reac-
tion probability. This can be deÐned as

Nli \
P
S

dsjli(q) (14)

where

jli(q) \
1

2i

CLWli(q)

Lq
Wli*(q) [

LWli*(q)

Lq
Wli(q)

D
(15)

is the current associated with The physical meaning ofWli .depends on the choice of the line S. Thus, if we take S toNlibe the line placed in the asymptotic region of the arrange-S
fment f, eqn. (15) determines the reaction probability Nli?fwhich is cumulative with respect to the quantum numbers l

f
.

To get the WKB approximation for the reaction probability it
is more convenient to use the wave function in the form of
eqn. (4). Thus, by inserting eqn. (4) in eqn. (15), one obtains

Nli \
P
S

ds
; f (a)

D(q1, q2)
D(a, t)

;
Re(nv)exp([2Im W )

\
P

ds
K da
ds

f (a)
KRe(nv)
o (nv) o

exp([2Im W ) (16)

where n is the unit vector perpendicular to S, v is a velocity
which is proportional to +W and, as usual, the higher order
terms in + have been neglected. Eqn. (16) gives the reaction
probability in terms of the characteristics and requires the
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solution of eqn. (8) with q@ ½ S, which determine both a(s) and
W (a(s), t(s)).

Let us now return to the deÐnition of the function f (a)
which is proportional to the density of trajectories describing
the given scattering process. For the scattering wave function

this is explicitly written asWli(q),

f (a) da \
dn
N

(17)

where dn is the number of trajectories within the interval
(a [ a ] da) and N is their total number in the family. Indeed
let us consider in the asymptotic region i the bunch of N tra-
jectories n \ 1, . . . N, which describe the incoming waveq

n
(t),

function, and choose the parameter a ½ (0, 2n) as a phase vari-
able for the diatomic BC. If we impose a homogeneous dis-
tribution of the phase, eqn. (17) gives at once f (a) \ 1/2n,
which corresponds to the incoming Ñux as followsJinc\ 1
from eqn. (16) if one locates the line S in the asymptotic region
of the initial arrangement channel. At the same time, using
Jacobi coordinates for the initial arrangement, the(R

i
, r

i
)

initial conditions for the family of trajectories can be deter-
mined in such a way that that it is then possibleR

i0(a)\ const
to show that in the asymptotic region the WKB wave function
eqn. (4) assumes the correct form

W(R
i
, r

i
)\

1

Jv
Ri

exp([iP
Ri

R
i
)Uli(ri) (18)

where is the normalized diatomic wave function.UliThe calculation of the Ñux in eqn. (16) requires the solution
of eqn. (8), which implies, generally, the knowledge of q(a, t) in
complex-valued (a, t) space. However, in the threshold region
of a chemical reaction, the vicinity of the saddle point is
believed to play the most important role in the description of
tunnelling. Thus, we may restrict our consideration to a small
area of the complex phase space where the form of the charac-
teristics can be found by use of the classical perturbative
approach.

3 Complex-valued characteristics, classical
perturbation theory and hopping method
We begin by specifying q as the normal coordinates in the
saddle point of the potential energy surface, and look for some
approximate algebraic form of W (q) at small q. The tunnelling
e†ects are mostly important when Im W O +, since the tunnel-
ling probability is exponentially damped otherwise. This
implies the natural scaleD +1@2 for the region of conÐgu-X

Wration space where the approximation for W (q) has to be
valid. At the same time we require to be sufficiently largeX

Wto overlap with the classically acceptable regions in the initial
and Ðnal arrangement channels. Under these conditions we
can shift from the asymptotic region of the Ðnal arrange-S

fment channel to and use classical trajectory simulationsX
W

,
to determine the boundary conditions in for the solutionX

Wof the HJ equation. More explicitly, let us consider again the
family parametrized by the phase a ½ (0, 2n) of the diatomic
BC and prescribe some smooth line which lies totallyS

i
½ X

Win the classically allowed area of the initial arrangement
channel. For every trajectory q(a, t) we then determine t(a) as
the time when the trajectory Ðrst crosses This will deÐneS

i
.

the initial Lagrange manifold

q0(a)\ q(a, t(a))
(19)

p0(a)\ p(a, t(a))

which uniquely determines the solution of the HJ equation.
All the calculations at this stage are purely classical and the
functions and can be obtained with any requiredq0(a) p0(a)
accuracy. We further assume that the Ñux through the shifted

line can still be identiÐed with the reactive Ñux. This corre-S
fsponds to the neglect of ““multitunnelling ÏÏ which, in most of

cases, is not a strong limitation of the theory. Thus the
problem of calculating the tunnelling probability is reduced to
the approximate solution of the HJ equation in with givenX

Wboundary conditions. Within the scope of the method of char-
acteristics we must then consider a small region (D+1@2) of the
complex phase space where q(a, t) and p(a, t) can be found
within the formalism of GustavsonÈBirkho† perturbation
theory.32

3.1 Characteristics in the tunnelling region

The details of the implemented perturbative approach can be
found elsewhere,27,32 and we simply outline here the main
steps of the procedure. We use a Taylor series expansion of
the potential energy surface in the vicinity of the saddle point,
and employ the classical canonical transformation with the
second type generator q) deÐned byF2(P,

F2(P, q) \ Pq] S(P, q) (20)

which converts (q, p) into a set of new (Q, P) canonical vari-
ables

Q\ q]
LS
LP

(21)

p\ P]
LS
Lq

(22)

The Ðrst term in eqn. (20) corresponds to the identity trans-
formation, while S(P, q) is found in such a way that the new
Hamiltonian H(P, Q) approximately becomes a polynomial
function of whereI

i
,

I
i
(P

i
, Q

i
) \

1

ou
i
o

A P
i
2

2M
]

Mu
i
2 Q

i
2

2

B
(23)

M is the mass (in the case of atomÈdiatom collisions it is the
corresponding reduced mass), and are the normal fre-u

iquencies at the saddle point [S is eqn. (20) should not be con-
fused with the notation used before for the surface in the Ñux
integration]. A similar approach is well known for the semi-
classical quantization of potential wells and no new concepts
are required to calculate S(P, q) and H(P, Q) for the present
case when only one of the normal frequencies is imaginary.27
In practice the canonical tranformation which is implied in
eqn. (20) results from a sequence of transformations

(q, p) ÈÈÈÈ ÕF2(3)(P1, q)
(Q1, P1) ÈÈÈÈÕF2(4)(P2, Q1)

(Q2 , P2) ÈÈÈÕ. . .

É É É (Q, P)

where (k \ 3, 4, . . .) are generators for the canonical trans-F2(k)formation which successively remove the anharmonicity of
k-th order, and have polynomial form in the canonical vari-
ables. Within the accuracy of the perturbation expansion, Iiare classical integrals of motion and the characteristics can
easily be calculated in terms of the new canonical variables
(Q, P).

Let the coordinate correspond to the imaginary normalq2frequency In the (Q, P) variables, HamiltonÏs equationu22\ 0.
of motion assumes the form

Q0
i
\

LH
LI

i

LI
i

LP
i

\
LH
LI

i

P
I

M ou
i
o

(24)

P0
i
\ [

LH
LI

i

LI
i

LQ
i

\ [sign(u
i
2)

LH
LI

i

M ou
i
oQ

i
(25)

and can be integrated exactly to give

Q1(a, t) \ a1(a)eX1(a)t] b1(a)e~X1(a)t
(26)

Q2(a, t) \ a2(a)eX2(a)t] b2(a)e~X2(a)t
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where we have introduced the e†ective frequencies X
i
\

The expressions for the momenta P are directlyLH/LI
i
.

obtained from eqn. (24) and have a similar form. The canon-
ical transformation maps the initial conditions in eqn. (19)
into the new phase space determining and[Q0(a), P0(a)],
hence and which are known polynomiala

i
(a), b

i
(a), X

i
(a), I

i
(a),

functions of and It is also convenient to rewrite W (a, t)Q0 P0 .
directly in terms of the new canonical variables. The phase
integral along any contour in the phase space can then be
expressed as

P
p dq\

P
P dQ] S(P, q)[ P

LS
LP

(27)

Using eqn. (27) in eqn. (2) and (3), one then gets

W (t, a)\ W3 0(a)]
P
a, 0

a, t
P(a, q) dQ(a, q)

] S(P, q)[ P
LS
LP

(28)

with

W3 0(a)\
P a

P0(a@) dQ0(a@) (29)

Thus, apart from two last terms in eqn. (28), W preserves its
form in the new variables. Moreover the integral in eqn. (28) is
taken at a Ðxed value of the parameter a and can be rewritten
as

P
a, 0

a, t
P dQ\ ;

i/1, 2

P
Qi(a, 0)

Qi(a, t) S
I
i
ou

i
o[

Mu
i
2Q

i
2

2
dQ

i
(30)

which is the same as a harmonic potential barrier. Note also
that, except for the term Re(nv)/ o (nv) o , the form of eqn. (16) is
invariant in any canonical variables. We assume that the
surface can be chosen in such a way that the Ñux does notS

fvary signiÐcantly with its location. It means that the main
contribution to the integral in eqn. (16) comes from the area
where the Im +W is small. Hence the factor Re(nv)/ o (nv) o^ 1
and one may also neglect the two last terms in eqn. (28) since
they are just functions of the canonical variables (if the latter
are real then we can skip such terms). This reduces the
problem of multidimensional tunnelling to the consideration
of the harmonic case while the only remaining trace of the
initial anharmonicity is the di†erence between and theu

ie†ective frequencies in eqn. (26). Thus, once speciÐed,X
i

Q0(a),
in the new canonical variables, eqn. (26) and (28)P0(a)

together with the appropriate expressions for P(a, t) give the
complex-valued W in the algebraic form and provide the full
information about tunnelling. However, even after all of the
above simpliÐcations, such a numerical analysis is not easy
and the crucial obstacle stems from the initial conditions Q0and Although these functions can be accurately calculatedP0 .
for real a, their extrapolation in the complex a space is not a
trivial task. In this paper, we use the above similarity with the
harmonic case to formulate a strategy for the hopping
method. This is very simple in practice, and allows one to
estimate the tunnelling probability with exponential accuracy.

3.2 The hopping method

As shown above, the canonical perturbation theory allows one
to reduce the anharmonicities in the initial Hamiltonian, and
to rewrite the exponential factor W for the tunnelling prob-
ability in a form equivalent to the parabolic barrier case. Of
course, we assume that the perturbation treatment is per-
formed with the required accuracy, which can always be satis-
Ðed in practice. Moreover, under additional conjectures the
expression for the tunnelling probability does not depend on

the choice of the canonical variables. This gives a hint on how
to implement the hopping method by using ““actions ÏÏ toI

icalculate the hopping probability in a way similar to the har-
monic case. According to the hopping recipe, we consider a
bunch of N trajectories which describe the scattering process
and calculate for every trajectory the values For classicallyI

i
.

nonreactive trajectories and the hopping probabilityI2\ 0,
is determined as where n \ 1, . . . NP

n
P

n
\ exp[(2nI2n)/+]

labels the di†erent trajectories in the bunch. Then the tunnel-
ling probability is given byPtun

Ptun\
1

N
;
n/1

N
P

n
(31)

It is worthwhile to stress that the limitation of such an
approach is related to the initial conditions in eqn. (19), and it
has nothing to do with the anharmonicity of the potential.
Thus, if one could continue the family of trajectories into the
tunnelling region with complex time and real a, the calcu-
lation of Im W would give exactly In fact, by usingn o I2 o .
eqn. (17), the probability in eqn. (16) becomes just the average
value of the exponential factor over the bunchexp[(2nI2n)/+]
of the trajectories, i.e., assumes the form of eqn. (31). As we
have pointed out above such an intuitive picture of multidi-
mensional tunnelling relies on our experience with the 1D
problem.27 Generally the integration in eqn. (16) is performed
along a contour in complex a-space, and one must take into
account the a-dependence of at complex-valued a. In theI

isimplest ““ separable ÏÏ case when one can neglect this depen-
dence and deem the ““actions ÏÏ to be constant within theI

iwhole family, the calculation of Im W according to eqn. (30)
then gives again Thus, the exponential factor in eqn.n o I2 o .
(16) is a constant, giving the tunnelling probability with an
exponential accuracy. Of course this result is also reproduced
by the hopping method since and in eqn. (31) are theI2n P

nsame for all n. The hopping recipe looks realistic also in the
more general case. Thus, if the function has a[I2(a)
minimum at one can approximately treat as con-a \ a0 , J

istants in the vicinity of note that the energy is the same fora0 ;
all the trajectories in the bunch and therefore has also anI1extrema at This is close in spirit to the concept of ““ locallya0 .
conserved actions ÏÏ in transition state theory although in a
space rather than in time. The value of determines thenI2(a0)the tunnelling probability with an exponential accuracy which
is also consistent with the hopping recipe in eqn. (31) where
the main contribution comes from the trajectories with I2nclose to Such a situation is realized in pure tunnelling ifI2(a0).corresponds to the trajectory having the classical turninga0point p\ 0. The disregard of a dependence in can be recastI

ias changes in the initial conditions which do not a†ect the
position of the turning point but modify the form of the caus-
tics. The numerical evaluation of the prefactor requires an
accurate approximation of and in the vicinity ofQ0(a) P0(a) a0and a study of eqn. (26). We refrain from such a detailed
analysis here, and postpone this and related issues to a forth-
coming publication.

4 Numerical illustration of the hopping method :
collinear exchange reactionH + H

2
To provide a numerical test of the proposed hopping method
we consider the collinear exchange reaction at colli-H] H2sion energies near the classical threshold. All calculations have
been done using the popular DMBE potential energyH3surface :33 this has a saddle point which is characterized by a
classical barrier height for reaction of 9.65 kcal mol~1 at a
geometry of symmetry with a characteristic bond lengthD=hof For comparison purposes, we have alsoRH{~H \ 1.755 a0 .
carried out the exact solution of the 2D quantum problem
using the same potential energy surface. For this we have
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implemented the R-matrix propagation technique39 in hyper-
spherical coordinates deÐned as usually carried out for col-
linear three-atom systems.40 The whole interval in the
hyperradius has then been divided into a numbero ½ [o

i
, o

f
]

of sectors, and within each sector the R-matrix basis was cal-
culated using the smooth variable discretization (SVD) tech-
nique.41 Zero boundary conditions at for the R-matrix haveo

ibeen guaranteed by the choice of the Jacobi polynomials P
n
(0,2)

to construct the discrete variable representation (DVR) quad-
rature for the Ðrst sector. After propagating the R-matrix up
to the asymptotic solutions in the Jacobi coordinates wereo

fused to calculate K- and S-matrices in the usual way. Most
calculations are rather well known and we omit a complete
description of the numerical procedure. The details of the
implemented SVD approach for the collisional problem and
the matching procedure can be found in ref. 42.

In the scope of the hopping method we Ðrst have to calcu-
late the anharmonic force constants, i.e., the partial derivatives
of the potential function V with respect to the normal coordi-
nates at the transition state. We use the notation

F
ij
(2)\

L2V
Lq

i
Lq

j

, F
ijk
(3)\

L3V
Lq

i
Lq

j
Lq

k

, etc.

Thus the upper indexes indicate the order of anharmonicity,
and the normal coordinates for are determined at theq

i
H3transition state as(RHhH\ 1.7546353 a0)

*X11\ [J16 q4 *X12 \ J23 q4 *X13 \ [J16 q4
*X21\ [J16 q3 *X22 \ J23 q3 *X23 \ [J16 q3

*X31\
q1
J2

[ J16 q2 *X32 \ J23 q2

*X33\ [
q1
J2

[ J16 q2

where are displacement along the i-th direction for the*X
i
k

nucleus k. To calculate the force constants it is enough to con-
sider only one of the degenerate bending modes or Toq3 q4 .
evaluate the partial derivatives we introduce the auxiliary
functions

Uj(z)\ V (S1j z , S2j z, S3j z) (32)

where V (q) in the potential energy surface written in terms of
the normal coordinates and (i\ 1, 2, 3) are some arbi-q

i
, S

i
j

trary sets of stretches. Using a NAG LIBRARY subroutine we
then calculate the derivatives dkUj/dzk , which are linear com-
binations of the partial derivatives F(k). Thus, by calculating
the derivatives of di†erent Uj we have a system of linear equa-
tions to determine all the force constants F(k). The calculated
values are given in Table 1.

For the collinear version of the reaction only the symmetric
stretching and antisymmetric tunnelling modes are rel-(q1, q2)evant, while the anharmonic approximation in the vicinity of

Table 1 Harmonic and anharmonic force constants F(n) in normal
coordinates for the DMBE potential energy surface at the tran-H3sition state 1 \ symmetric stretching,(RHhH \ 1.7546353 a0) :2 \ tunnelling mode, 3\ degenerate bending modes

ij F
ij
(2) ijk F

ijk
(3) ijkl F

ijkl
(4)

11 0.1629385 111 [0.33812 1111 0.614237
22 [0.0850237 222 0.0 2222 11.8587
33 0.03086142 112 0.0 3333 0.59467

122 [0.79698 1122 1.87
133 0.15717 1133 [0.519
233 0.0 2233 [0.937

All values are given in atomic units (Eh/a0n )

the saddle point assumes the form

V (q1, q2) \
F11
2

q12]
F22
2

q22 ]
F111(3)

6
q13]

F122(3)
2

q1q22

]
F1111(4)

24
q14]

F2222(4)
24

q24]
F1122(4)

4
q12 q22 (33)

where odd terms in are missing owing to symmetryq2reasons.
The numerical procedure to calculate the reaction probabil-

ity can now be summarized as follows. We start a bunch of N
classical trajectories which describe in the asymptotic region
the incoming wave function for a given collision energy, and
assume a homogeneous distribution of the phase for the
diatomic in the ground vibrational state. When the trajec-H2tories move in the vicinity of the saddle point of the potential
energy surface, we expect the anharmonic expansion in eqn.
(33) to be appropriate and use the canonical perturbation
approach to calculate the two classical integrals of motion I1and Since we consider the Taylor expansion of the poten-I2 .
tial energy surface only with an accuracy up to quartic terms,
two successive canonical transformations are sufficient to
accomplish our goal. The Ðrst of them removes the third order
anharmonicity from the Hamiltonian, while the second con-
verts the terms of the fourth order into a quadratic form of I

iin eqn. (23). The explicit form of the appropriate generators
S(3) and S(4) are given in the Appendix. For every trajectory
we prescribe a reaction probability which is equal to unity if
the trajectory is reactive in the classical sense, and

otherwise. The main numerical problemexp[(2n o I2 o )/+]
arises from the fact that eqn. (33) is applicable only in a rela-
tively small area of the coordinate space. Fig. 1 presents a
comparison between the DMBE potential energy surface33
and its approximation given by eqn. (33). An illustrative
example of classical trajectories used in the scattering calcu-
lations is also given on the same plot. To provide the numeri-
cal test of the applicability of the perturbative approach, we
have Ðrst performed the calculations of the actions alongI

ithe trajectories moving on the model potential of eqn. (33)
rather than in the real one. Fig. 2 shows the time-behaviour of
the action along such a trajectory with an energy of aboutI20.27 eV. From here onwards we refer the total energy to the
ground state of Clearly visible from Fig. 2 is a plateauH2 .
where remains nearly constant during almost 200 atomicI2units of time. Thus, for this trajectory the two-step canonical
transformation provides a reliable approximation for the clas-
sical integrals of motion and the trajectory moves for a longI

itime in the region of applicability of the perturbative
approach. The width of the plateau decreases with energy and
the test provides a numerical estimation for the energy region

Fig. 1 DMBE potential energy surface in normal coordinates and its
anharmonic expansion in the vicinity of the saddle point. Classical
trajectories correspond to the collisional energy Etr B 0.27 eV.
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Fig. 2 Time behavior of the ““actionÏÏ calculated along the clas-I2sical trajectory in the model potential of eqn. (33).

where the two-step perturbative treatment is sufficient. The
anharmonicity in the considered case is rather strong, and for
E\ 0.26 eV we cannot see any apparent plateau such as that
in Fig. 2. For trajectories on the real potential energy surface
the evaluation of is less clear. We cannot expect a time-I

iindependent behavior even at sufficiently high energies since
the trajectories spend only a short time in the region where
the expansion in eqn. (33) is valid. Hence it is not quite evident
at what moment the actions should be calculated. In this work
the following procedure has been employed. For every trajec-
tory in the bunch we have stored its coordinates and
momenta at the point where the di†erence between the

Fig. 3 Exchange probability for the title reaction at collisional ener-
gies near the classical threshold : exact quantum (È); hopping
method The purely classical reactivity is also depicted.(+). (…)

Fig. 4 Exchange probability for the title reaction. The hopping
probability is calculated using eqn. (34) with the number of iterations

4, 6, 8.Ni \ 2,

DMBE potential energy surface and eqn. (33) becomes
minimal and then used these values to calculate the new coor-
dinates (Q, P) and the hopping probability.

The results of the calculations are presented on Fig. 3. The
solid line shows the exact quantum probability element of(S00the S-matrix) and we also plot, for comparison, the classical
probability without tunnelling correction (QCT). One can see
the excellent agreement between the exact and semiclassical
results at collisional energies below the classical threshold

eV). We cannot expect such an agreement at high(Etr^ 0.275
energies near the classical threshold where quantum inter-
ference plays an important role. At the same time for the ener-
gies below 0.25 eV the classical trajectories pass too far away
from the saddle point and the approximation in eqn. (33)
becomes inappropriate. For this reason the calculated semi-
classical probability shows some chaotic jumps at smaller Etrwhich we have omitted to display in the plot of Fig. 1. As
mentioned above, even without paying attention to the accu-
racy of eqn. (33), the two-step perturbative approach is prob-
ably not enough for energies below 0.26 eV and the good
agreement at these energies is rather surprising. A rough test
to determine the possibility of dismissing the higher anhar-
monicity terms in the Hamiltonian can be done by determin-
ing iteratively the new momenta in eqn. (22) as

Pi`1\ p[
LS(Pi , q)

Lq
(34)

Note that eqn. (21) does not need to be considered since it
directly gives the new coordinates Q in terms of (P, q). Thus
the nontrivial part of the generators S(3), S(4) are proportional
to the anharmonic force constants F(3) ; F(3)2, F(4) and the
truncation of the perturbation expansion of the Hamiltonian
implies that it is possible to omit higher terms. Generally the
iterative procedure in eqn. (34) is not reliable for solving eqn.
(22), and its poor convergence indicates that the higher
degrees of the force constants are very important to calculate
the integrals of motion. Fig. 4 shows the reaction probability
using eqn. (34) with the iteration number 4, 6, 8. OnceNi \ 2,
again, we conclude that the truncated perturbative procedure
is mostly reliable aboveD 0.26 eV. This is the threshold area
where tunnelling plays a crucial role while the classical reac-
tive probability is zero. Thus, near the threshold, the proposed
hopping method provides a simple tool to incorporate tunnel-
ling e†ects in classical trajectory simulations.

5 Concluding remarks
In this work we have considered the problem of multidimen-
sional tunnelling in reactive scattering dynamics. By neglect-
ing interference between di†erent branches of the semiclassical
solution, we have derived a simple expression for the tunnel-
ling probability and shown that the method of classical
canonial transformations reduces the problem to the harmo-
nic barrier case. This analogy has then been used to suggest a
simple hopping method which allows the incorporation of
tunnelling e†ects in classical trajectories simulations.

To calculate the classical integrals of motion and hoppingI
iprobability, we have employed the GustavsonÈBirkho†30h32

canonical perturbation theory in the vicinity of the transition
state. We have tested the proposed numerical recipe for the
collinear exchange reaction and found an excellentH] H2agreement with the exact quantum results at collisional ener-
gies near the classical threshold. In the general case, when the
exact solution is una†ordable, the examination of accuracy of
the hopping method requires an analysis of a system of alge-
braic equations which provides the complex-valued solution
of the HamiltonÈJacobi equation in the tunnelling region.
This depends on the distribution of the values among theI

itrajectories, and requires an analytical approximation for the
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initial conditions in the transformed canonical vari-(P
0
, Q

0
)

ables. Work along these lines is in progress in our group.
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Appendix Canonical transformation at the
transition state of the systemH

3
The details of the implemented perturbative approach can be
found in ref. 32 and we simply outline here the main steps. In
the vicinity of the saddle point of the potential energy surface
we use the Taylor series expansion up to fourth order terms
and write the Hamiltonian in the form

H(q, p)\ ;
i/1

H0i ] V (3)(q)] V (4)(q) (A1)

where and the anharmonic termsH0i\ (p
i
2/2k) ] (ku

i
2/2)q

i
2 ,

are meant to be proportional to the force constants F(3) and
F(4).

After canonical transformation with the second-type gener-
ator in eqn. (20), the Hamiltonian in the new variables (Q, P)
becomes

H(P, Q)\ H ] MS, HN] 12MS,MS, HNN

]
1

2
;
i/1

(S
Qi

MH, S
Pi
N] S

Pi
MH, S

Qi
N)] É É É (A2)

where M , N denotes a Poisson bracket, S di†ers from S(P, q)
only in the fact that the new coordinates Q replace q, and we
have used the compact notation andS

Qi
4 LS/LQ

i
S
Pi

4
The Ðrst canonical transformation is chosen toLS/LP

i
.

remove the cubic terms DF(3) from the Hamiltonian and the
appropriate generator S(3) must satisfy the equation

V (3)\ MH0 , S(3)N (A3)

The solution of eqn. (A3) is formally written as

S(3)\D~1V (3) (A4)

where the operator D is

D\ MH0 ,N\;
i

A
k
i
u

i
2 Q

i

L
LP

i

[ k
i
~1P

i

L
LQ

i

B
(A5)

A convenient way to calculate the right-hand side in eqn. (A4)
is to introduce the new coordinates (z

i
, z

i
*)32

P
k
\
Sk

2
i(z

k
* [ z

k
) (A6)

Q
k
\

1

u
k

S 1

2k
(z

k
* ] z

k
) (A7)

In terms of D assumes the form(z
i
, z

i
*),

D\ ;
k/1

N
iu

k

A
z
k

L
Lz

k

[ z
k
*

L
Lz

k
*

B
(A8)

while the harmonic Hamiltonians become

H0i\ z
i
* z

i
(A9)

Any function of canonical variables can be written now as a
sum of monomials These are eigenfunctions of D%

i
z
i
liz

i
*mi.

with eigenvalues and hence are also the eigen-&
i
iu

i
(l
i
[ m

i
)

functions of D~1. V (3) does not contain terms with zero eigen-
values, and the calculation of eqn. (A4) is straightforward

S(P, Q) \
F111(3)

3

A P13
3u13M3

]
P1Q12
2u12M

B

]
F122(3)

2

A 2u22[ u12
u12(4u22 [ u12)

P1Q22
M

]
2P2 Q1Q2

(4u22 [ u12)M
]

2P1P22
u12(4u22[ u12)M3

B
(A10)

The quartic anharmonicity in the transformed Hamiltonian in
eqn. (A2) is handled in a similar way. The only di†erence ema-
nates from the presence of the quartic tems (z1z1*)l1 (z2 z2*)l2
referred to as ““null space termsÏÏ. For these terms the operator
D~1 is not deÐned and they must be omitted in calculating
S(4), which assumes the form

S(P, Q) \
A 17F111(3)2
576u16M4

]
F1111(4)

64u14M3
B
P13Q1

]
A 7F111(3)2
576u14M2

]
5F1111(4)

192u12M
B
P1Q13

]
A (20u22 [ 3u12)F122(3)2
64u24(4u22[ u12)2M4

]
F2222(4)

64u24M3
B
P23 Q2

]
A 5F2222(4)
192u22 M

]
(12u22[ 5u12)F122(3)2

64u22(4u22[ u12)2M2
B
P2 Q23

]
A(16u26[ 16u24u12] 10u22 u14 [ u16)F122(3)2

8u22 u14(u22 [ u12)(4u22 [ u12)2M4

[
F111(3) F122(3)

16u22(4u22[ u12)(u22[ u12)M4

]
F1122(4)

16u22(u12[ u22)M3
B
P12P2Q2

]
A (5u12] 4u22)F122(3)2
8u12(u12[ u22)(4u22 u12)2M4

]
F111(3) F122(3)

48u14(u22[ u22)M4

]
F1122(4)

16u12(u22[ u12)M3
B
P22P1Q1

]
A (12u24[ 4u12u22 ] u14)F122(3)2
8u22(u12[ u22)(4u22 [ u12)2M2

]
(2u22[ u12)F111(3) F122(3)

16u22(4u22[ u12)(u22[ u12)M2

]
(u12[ u22)F1122(4)

16u22(u12[ u22)M
B
P2 Q12Q2

]
A (12u24 [ 5u12u22 ] 2u14)F122(3)2
8u12(u22[ u12)(4u22 [ u12)2M2

]
(4u24 ] 2u14[ 9u12u22)F111(3) F122(3)
48u14(4u22 [ u12)(u22[ u12)M2

]
(u22[ 2u12)F1122(4)
16u12(u22[ u12)M

B
P1Q22 Q1 (A11)

After the second canonical transformation the Hamiltonian
still contains the ““null space termsÏÏ of fourth order DF(3)2,
F(4), which are simply the products of harmonic Hamiltonians

as is seen from eqn. (A9).H0i
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