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Abstract: Drug discovery now faces a new challenge, where the availability of experimental data is no
longer the limiting step, and instead, making sense of the data has gained a new level of importance,
propelled by the extensive incorporation of cheminformatics and bioinformatics methodologies
into the drug discovery and development pipeline. These enable, for example, the inference of
structure-activity relationships that can be useful in the discovery of new drug candidates. One of the
therapeutic applications that could benefit from this type of data mining is proteasome inhibition,
given that multiple compounds have been designed and tested for the last 20 years, and this collection
of data is yet to be subjected to such type of assessment. This study presents a retrospective overview
of two decades of proteasome inhibitors development (680 compounds), in order to gather what
could be learned from them and apply this knowledge to any future drug discovery on this subject.
Our analysis focused on how different chemical descriptors coupled with statistical tools can be used
to extract interesting patterns of activity. Multiple instances of the structure-activity relationship were
observed in this dataset, either for isolated molecular descriptors (e.g., molecular refractivity and
topological polar surface area) as well as scaffold similarity or chemical space overlap. Building a
decision tree allowed the identification of two meaningful decision rules that describe the chemical
parameters associated with high activity. Additionally, a characterization of the prevalence of
key functional groups gives insight into global patterns followed in drug discovery projects, and
highlights some systematically underexplored parts of the chemical space. The various chemical
patterns identified provided useful insight that can be applied in future drug discovery projects, and
give an overview of what has been done so far.

Keywords: proteasome; proteasome inhibitors; molecular descriptors; fingerprints; chemical space;
decision tree; structure-activity relationship

1. Introduction

Cancer is a complex, aggressive, and heterogeneous disease that affects a large proportion of the
population throughout the world, yet treatment success is still challenging and modest. Recent data
estimate 18.1 million new cases and 9.6 million deaths due to cancer in 2018 [1].
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The ubiquitin-proteasome pathway is responsible for 80% to 90% of eukaryotic intracellular
protein degradation, controlling crucial regulatory proteins associated with cell growth, differentiation
and apoptosis in cancer cells [2–5].

Over the past 15 years, proteasome inhibitors (PIs), namely bortezomib, carfilzomib and ixazomib,
have significantly improved the overall survival and quality-of-life for multiple myeloma (MM) patients,
representing the backbone of the treatment of this cancer [6]. However, a significant percentage of MM
patients do not respond to PI therapies; most patients exhibit resistance (innate or acquired) leading to
disease relapse and, consequently, to an ever growing need for new alternative therapeutic options for
targeting cancer [7–10].

Two decades of proteasome inhibitors development efforts generated a wealth of unexplored
information on proteasome inhibition and an exhaustive analysis of the publicly-available chemical
and bioactivity data is yet to be carried out. Detailed knowledge of what drives activity in proteasome
inhibitors is the key to accelerate the understanding of chemical and biological information vital to
design more efficient and selective drugs.

Different studies have been published in the last two decades, trying to establish structure-activity
relationships (SARs) but these are performed on few and/or low-diversity sets of compounds (Chiba,
Matsuda & Ichikawa [11]; Hovhannisyan et al. [12]; Macherla et al. [13]; Zhu et al. [14]) and such
studies are largely empirical medicinal chemistry analyses. However, a multitude of different ways
to define compounds exists, such as drug-likeness, molecular descriptors and structural fingerprints
(e.g., MACCS, ECFP), that can capture molecules under different perspectives (Figure 1). These have
been widely used to characterize the already known active compounds and correlate chemical patterns
with experimental data, effectively uncovering structural/physicochemical determinants for activity
and specificity across multiple therapeutic applications. This allows deriving knowledge which can
be used in the form of general rules to filter compound databases with billions of compounds and
exclude less promising candidates.

Figure 1. Molecular descriptors and fingerprints are examples of strategies that allow researchers to
extract important information about compounds that can be used in additional computer-aided drug
design techniques, such as virtual screening, quantitative-structure-activity relationship (QSAR) and
prediction of absorption, distribution, metabolism and excretion-toxicity (ADMET) [15].

The aim of this work is to perform a comprehensive analysis of a full dataset comprising
680 small-molecule proteasome inhibitors, developed in the last two decades to generate new knowledge
priceless for new drug discovery campaigns.

1.1. The Proteasome: a “Millennial” Target

The importance of the proteasome in cancer is unquestionable. The ubiquitin-proteasome system
(UPS) plays a fundamental role in adenosine triphosphate (ATP)-dependent protein degradation in the
cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, namely cell
cycle control, apoptosis, DNA repair, transcription, immune response and signaling processes via the
degradation of cellular key players (e.g., cyclins or tumor suppressors like p53) [4,16,17].
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The key component of the UPS is the 26S proteasome (Figure 2), particularly the 20S core particle
(also designated as “20S proteasome” or simply “proteasome”), which is composed by four heptameric
rings (two α rings and two β rings organized as α-β-β-α) [18–23]. In the eukaryotic proteasome, only
three out of the seven different β subunits (β1, β2 and β5) have proteolytic activity because they
bear N-terminal proteolytic active centers due to the existent Thr1 N-terminal residues (being these
protected by propeptides before the core particle maturation), in which the hydroxyl group (Thr1Oγ)
acts as a nucleophile in the hydrolysis of the peptide bond [2,24–29]. Moreover, each of the three
proteolytic β subunits has differences when binding to substrates and activity performed: The β1
subunit presents “caspase-like” (C-L) activity, and cleaves peptide bonds after acidic amino acids; β2
subunit has “trypsin-like” (T-L) activity, and cleaves peptide bonds after basic amino acids; β5 subunit
has “chymotrypsin-like” (CT-L) activity, and acts after neutral amino acids [20–22].

Figure 2. (Left) The eukaryotic 26S proteasome and the three catalytic subunits of the β ring: β1, β2
and β5. (Right) Residues that line the chymotrypsin-like (CT-L) catalytic site, on which we focus in this
paper’s analyses. Residues with * belong to the β6 subunit, otherwise they belong to the β5 subunit.

1.2. Proteasome Inhibitors

In vitro studies have shown that malignant cells exhibit greater susceptibility to proteasome
inhibition compared to normal cells, due to their overexpression of proteasome activity (Dou & Li) [30].
Fortunately, the extensive research in the field of proteasome inhibitors during the last two decades
leads already to three drugs on the market mainly used in the treatment of MM-bortezomib (Velcade®),
carfilzomib (Kyprolis®) and ixazomib (Ninlaro®) (Figure 3). Bortezomib is also used in the treatment
of mantle cell lymphoma (MCL) [31,32].
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Figure 3. Clinical or pre-clinical Human 20S proteasome inhibitors. Note that, even though largely
considered an experimental compound, marizomib has received approval as an orphan drug for
glioblastoma. Additional details can be found in Table 1. C-L: Caspase-like active site; T-L: Trypsin-like
active site; CT-L: Chymotrypsin-like active site. References for IC50 values: Bortezomib and carfilzomib,
Demo et al. [33]; ixazomib, Kupperman et al. [34]; carfilzomib, Demo et al. [33]; delanzomib, Piva et al. [35];
marizomib, Chauhan et al. [36]; oprozomib, Zhou et al. [37].

Proteasome inhibitors have improved significantly the survival and quality of life of patients
with MM [38]. Also, marizomib has received “orphan drug” designation to the use in the treatment
of gliobastoma in the USA, and also for the treatment of MM in the USA and the European Union
(EU) [39,40]. Table 1 gives an overview of some of the most important proteasome inhibitors, their
structural classes, administration route, market authorizations and the phase of ongoing clinical trials
(and respective diseases).

Table 1. Inhibitors of the human 20S proteasome on market and submitted to clinical trials. The
corresponding structures and activities can be found in Figure 2.

Proteasome Inhibitor Structural Class Administration Route Market Authorization Phase of Ongoing Clinical Trials
and Respective Disease(s)

Bortezomib Boronate IV, SC MM, MCL

I, II, III, IV
MM, leukemia, myasthenia gravis,

systemic lupus erythematosus,
rheumatoid arthritis, solid tumors

Carfilzomib Epoxyketone IV MM
I, II, III, IV

M, lymphoma, neuroendocrine
cancers, solid tumors

Delanzomib Boronate IV, PO –
I

(Tested in MM, lymphoma, solid
tumors)

Ixazomib Boronate IV, PO MM I, II, III, IV
MM, leukemia, lymphoma

Marizomib β-Lactone IV, PO –
I, II, III

MM, glioma, solid tumors,
lymphoma, leukemia, lung cancer

Oprozomib Epoxyketone IV, PO – I, II
MM

IV = intravenous, SC = subcutaneous, PO = per os (oral), MM = multiple myeloma, MCL = mantle cell lymphoma.
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All clinically-available proteasome inhibitors target at least the CT-L catalytic subunit. So, this study
will only focus upon the inhibition of this catalytic subunit. The most potent proteasome inhibitors
act in the nanomolar range (IC50 values for bortezomib, carfilzomib, ixazomib and marizomib are,
respectively, 7 nM [33], 6 nM [33], 3.4 nM [34] and 3.5 nM [36]). The functional and biological significance
of the different co-inhibitory patterns of the available proteasome inhibitors are still unknown.

Since this is a very active field of research, many other proteasome inhibitors are already in clinical
trials, like oprozomib (an epoxyketone) and delanzomib (a boronate) (Table 1). However, despite some
advances from academia and the pharmaceutical industry, more than fifteen years have passed since
United States Food and Drug Administration (FDA) approval of the first proteasome inhibitor to
treat MM and MCL. This is evidence of how challenging it is to find new therapeutic options for the
modulation of proteasome activity, which creates an opportunity to use computational methods which
can provide invaluable insight.

In this study, we focus on a data-driven strategy, whereby we have identified the important
structural and physicochemical determinants that can guide the future discovery of new lead
compounds and tune their pharmacological properties, saving time and experimental effort.

We shortly introduce and apply some fundamental concepts, e.g., molecular descriptor
dimensionality, fingerprint description and activity landscapes that will allow us to find some
correlations with activity. A step-by-step analysis of the proteasome inhibitors discovered
(approved, in clinical trials or in development) during the last two decades will be presented and
comprehensively analyzed.

2. Material and Methods

2.1. Data Pre-Processing

This study focuses on the analysis of several properties and descriptors of a pool of inhibitors of
the human 20S proteasome that act in the CT-L active site. A dataset comprising 680 compounds with
inhibitory activity in the β5 catalytic subunit (SI1) was assembled and curated using data retrieved
from available literature (2000–February 2019), patents and from ChEMBL24.1 [41]. In this study we
exclusively collected half maximal inhibitory concentration (IC50) data originated from biochemical
assays, therefore excluding any sort of indirect measurements originated from phenotypic assays.
The corresponding SMILES retrieved from ChEMBL were converted to 3D structures with Molecular
Operating Environment (MOE) [42] software (Corporate Headquarters, 910-1010 Sherbrooke St. W.,
Montreal, QC H3A 2R7 Canada).For all of the other compounds found in the literature, structures
were drawn in MOE2018.08.02. All the compounds included in this study were previously protonated
with the Protonate-3D tool (pH = 7.4 (slightly alkali), 310.15 K) and partial charges were assigned
using the MMFF94x force field as implemented in the MOE software package. Compounds were
further energy-minimized (via the “Energy Minimize” tool of MOE 2018.08.02). The dataset was
curated by a visual inspection of each chemical structure, removing duplicates and taking a special
care with tautomers and isomers. The dataset was divided into four classes of proteasome inhibitory
activity (IC50 values between 0.08 and 150,000 nM), namely High activity: Class A, 283 compounds
(0.08 ≤ IC50 ≤ 50 nM); Moderate activity: Class B, 126 compounds (50 < IC50 ≤ 500 nM); Low activity:
Class C, 208 compounds (500 < IC50 ≤ 10,000 nM); and Very Low activity: Class D, 63 compounds
(10,000 < IC50 ≤ 150,000 nM).. Class D compounds are included in this study as a negative control class
as they show what could largely be considered marginal activity. This class is intended to represent
the chemical space of “unspecific activity” in which the proteasome might not even be the main target.
In practical terms, this is the space that typically one would want to avoid during drug design.

2.2. Computation of Molecular Descriptors

Molecular descriptors were calculated using MOE 2018.08.02 (“QuaSAR-Descriptor”), which
included several traditional molecular descriptors, such as structural keys, physicochemical properties,
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3D molecular features and also some pharmacophore-based descriptors [43]. The selection of calculated
molecular descriptors was based upon drug-likeness/lead-likeness rules, desirable drug features, namely
water solubility and descriptors directly related with medicinal chemistry properties [44–46]. A total
of 21 descriptors were ultimately obtained and used to carry out all analysis in this work in order
to maximize the interpretability of results: The number of atoms (a_count), number of hydrophobic
atoms (a_hyd), number of hydrogen bond acceptor atoms (HBA), number of hydrogen bond donor
atoms (HBD), number of aromatic bonds (b_aro), number of single bonds (b_single), number of double
bonds (b_double), number of triple bonds (b_triple), number of rotatable bonds (b_RotN), number of
rotatable single bonds (b_1RotN), number of rings (rings), number of chiral centers (chiral), molecular
weight (MW), logarithm of the octanol/water partition coefficient (logP(o/w)), water solubility (logS),
topological polar surface area (TPSA), molecular refractivity (MR), Lipinski druglike test (lip_druglike),
number of violations of Lipinski’s Rule of Five (lip_violation), presence of potential toxic groups
(mutagenic) and presence of reactive groups (reactive).

2.3. Chemical Space, Similarity and Scaffolds Analysis

The distribution of classes within the chemical space defined by the 21 descriptors annotating
the dataset was visualized using t-distributed Stochastic Neighbor Embedding (t-SNE) [47]. This is
one of the most successful multi-dimensional scaling tools in conserving relative distances when
compressing high-dimensional space into low-dimensional space [47]. The 21-dimension matrix
was compressed into two dimensions, using the default parameters set for t-SNE implementation
in Scikit-learn [48]. The different classes were also characterized in terms of scaffolds, which were
obtained using the Murcko Scaffolds [49] decomposition available in RDKit [50]. The similarity between
scaffolds was measured using the Tanimoto coefficient (Tc) [51] computed over Morgan fingerprints,
the Extended-Connectivity Fingerprints [52] implementation in RDKit (calculated for a radius of
2 atoms, folded over 1,024 bits). RDKit was used to perform similarity calculations, calculate Morgan
fingerprints and Murcko Scaffolds.

2.4. Statistical Analysis and Machine Learning

Statistical analysis of molecular descriptors was performed with IBM SPSS Statistics [53] version
25 and with SciPy [54]. The statistical data visualization was performed with Seaborn [55] and
Matplotlib [56]. The data analysis workflow was assembled in Jupyter [57]. In order to derive useful
rules that determine activity, a decision tree was trained, using Scikit-learn implementation in Python,
to classify the activity data using the 21 physicochemical descriptors under study in this work. In order
to allow for sufficiently general patterns to arise, tree depth was limited to seven, and the minimum
number of samples per leaf was set to five. The most relevant branches were then extracted for
detailed analysis.

3. Results and Discussion

During the drug design process, to assess the potential druggability of a compound as a new
starting point, some initial rules like drug-likeness (as defined by Lipinski and colleagues in 1997 [58]),
lead-likeness (as defined by Oprea [59,60]) and known drug space, are usually applied. In general, the
rules to characterise/filter compound collections are based upon physicochemical parameters, e.g., logP,
logS, MW, TPSA, MR, RotN, HBA and HBD, among others [61]. As a result, it would be interesting to
assess how proteasome inhibitors are positioned with respect to the typically expected “drug-like”
chemical space.

To do so, we performed a comprehensive analysis of the 680 small-molecules proteasome inhibitors
dataset spanning a large range of activity (0.08 nM < IC50 ≤ 150,000 nM). This entailed looking at
chemical space distribution, scaffold similarity and the extraction of chemical rules with machine
learning, using either direct structural information (scaffolds and Morgan fingerprints) or being
based on 21 general molecular (QuaSAR) descriptors. This set of analyses was ultimately employed
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to produce meaningful chemical patterns that are correlated with proteasome inhibitory activity.
The dataset comprises only human proteasome activity data for the CT-L catalytic site, as this is the
only site with the largest number of compounds, and is divided into four classes. Full data are available
in Table S1.

Analysis of chemical space distribution and the scaffold similarity of proteasome inhibitors. First,
we analyzed human proteasome inhibitors’ chemical space distribution. To address this analysis,
chemical space was defined by the t-SNE calculation applied to the 21 calculated molecular descriptors
listed in the Supplementary Information (Table S1). The proximity in a t-SNE plot is relative in nature,
and the distance between points simply represents relative proximity (i.e., it is not a direct scaling from
real distances in the 21 dimensional space).

In Figure 4 (left) the difference of distribution of the four activity classes is easily perceptible,
with the most active compounds (class A, purple) having close to half of its compounds (~47%) in
the top-right quadrant of the plot, while the least active compounds (class D, orange) are mainly
concentrated in the bottom-left quadrant (~58% of class D compounds), as quantified in Figure 4 (right).
Classes B (blue) and C (green) have a more disperse distribution, but show some higher density areas
close to the bottom-left corner. This indicates that class D, for example, is fundamentally different to
the remaining classes from a structural and physicochemical level, and therefore supports the existence
of a SAR in the proteasome inhibitors developed in the last 20 years. Additionally, no particular
cluster was formed with a single class, which means there is no particular location in chemical space
(at least one that is defined by the descriptors that we considered) which is reserved to one single
class. This observation indicates that carrying out compound selection biased for physicochemical
similarity to known inhibitors might be a good initial filter to enrich the set of compound candidates
with active hits.

Figure 4. (Left) Chemical space of the four half maximal inhibitory concentration (IC50) value classes,
where an uneven distribution of classes can be seen. (Right) Density of data points per class, represented
as % points from a given class found in a specific region of the plot, with respect to the total amount of
points from that class. Class A preferentially populates the top-right quadrant of the plot, while C and
D populate the lower-left corner.

Next, we wanted to investigate what characteristics are responsible for the differences between
classes in the chemical space distribution. Upon applying the Tc to characterize the similarity between
Murcko scaffolds within each class, we observed a high diversity in the dataset, not just within each
class, but also between the different classes, with most pairs of compounds showing a Tc below 0.5 that
represents a considerable dissimilarity (Figure 5). Nonetheless a clear trend of correlation between
activity and similarity is observed.
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Figure 5. Scaffold similarity between the four IC50 classes of proteasome inhibitors.

The scaffolds of class B differ negligibly from class A, however, class C shows a two-peak
distribution which suggests it contains scaffolds similar to both classes A/B, as well as with lower
activity compounds (class D). This is probably a result of the practical strategies applied in medicinal
chemistry where inactive structures are modified/derivatized to meet or better resemble substructures
seen among actives, thus creating this transition from A to D. As concluded from the chemical space
observation, this also shows that functionalizing scaffolds from more potent compounds (class A/B)
might be a feasible initial strategy to find new actives. However, selected scaffolds should also be
sufficiently dissimilar to the lower activity scaffolds, effectively avoiding the right-end tail of the class
D (i.e., the most similar scaffolds to A, which are still largely inactive).

Beyond looking at similarity, we wanted to address scaffolds that are actually shared between
classes, as these are scaffolds which are more prone to an unexpected loss of activity from
functionalization. The Venn diagram of scaffolds between different classes (Figure 6) confirms the
scaffold differences between the four classes, where there is a significant decrease in the number of
common scaffolds when comparing the overlap of class A vs. B (24 scaffolds), A vs. C (22 scaffolds) and
A vs. D (2 scaffolds). Furthermore, the four classes have only one scaffold in common. Special attention
should be paid to the 22 shared scaffolds (lower-left plot, Figure 6) shared between A and C/D, which
are potentially more prone to drastic changes in activity, and which can be used to prevent loss of
activity or search for gain in activity. In Table S2, the comprehensive list of common scaffolds between
the several classes is provided.

Figure 6. Venn diagrams representing the scaffolds common to the four IC50 classes.
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Figure 7 shows the only sufficiently large scaffolds shared between classes A and D. Inspecting
cases such as this one can give insight into what chemical transformations drive activity, and the
analysis of this particular scaffold reveals that small changes in the position, volume and/or polarity of
the substituents at extreme ends of the scaffold induces a dramatic shift in activity. For example, a
single change from a trifluoromethhyl (compound 126, Figure 7) to a methyl ether (compound 658) in
the meta-position of one of the benzene rings drives a 2500-fold loss in activity.

Figure 7. Compounds with the main, largest scaffold shared between class A (top) and D (bottom).

3.1. Building a Decision Tree to Derive Chemical Rules That Determine Proteasome Inhibition

In order to rationalize the difference between activity classes, a decision tree (Figure S1) was built
using the full dataset and the calculated descriptors. This is a strategy to exhaustively find the most
meaningful chemical patterns that determine proteasome inhibitory activity. Here, a decision tree
algorithm was tasked to find the decision splits that are able to separate, with the highest efficiency,
the four inhibitory classes. Generally speaking, at the top of the three the algorithm looks through
all available descriptors and picks the one that allows for the best numerical threshold for separation
between classes, which produces two child nodes. Next, the algorithm looks again for the best
descriptors to split each of the child nodes into two new nodes each. The process is iterated until
maximal separation is found (or until stopping parameters, like minimum compounds per node, are
reached) [62]. The obtained decision tree revealed two decision rules which are responsible for the
classification of a large fraction of the most potent activity class A (63.6% of class A compounds).
These are defined in the decision tree scheme in Figure 8, and additional information on class ratios in
the different nodes of the decision rules is provided in Figure S1.
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Figure 8. Schematic representation of the most important decision rules for the classification of class A
compounds within the decision tree built from the proteasome inhibitors dataset.

Both rules efficiently separate class A from the remaining three classes, which is shown by the high
purity level (i.e., compounds of class A/All compounds) achieved after the last decision split in each rule
(e.g., 86% and 70%, respectively). These can be therefore used as general rules of thumb when searching
for high potency compounds. Generally speaking, these rules indicate that in order for a compound to
be a potent proteasome inhibitor, it must have some sort of hydrogen bonding ability; a considerable
amount of double bonds must exist, but be accompanied by sufficient flexibility. A surprisingly high
maximum atom count (107.5) requirement was also found in these rules, however this might just be a
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result of the general “molecular obesity” trend in the last decades [63]. Compounds must also show
some polarity, seen by the fact that a lower limit is set for MR; however this last feature is not very
informative, seeing as many drugs span between 40 and 130 m3

·mol−1 in MR [64,65]. Finally in order
to be active, a compound must obey to the maximum allowance for HBD atoms of five, or show a
limited TPSA. Due to the high coverage combined with the high degree of separation between class A
and the other three classes, this rule can be useful to bias compound selection prior to virtual screening,
for example.

3.2. Analysis of Key Molecular Descriptors and How They Relate to Proteasome Inhibition

The decision tree generated (Figure 8) uncovered some of the key molecular descriptors that set
apart the most active compounds from medium-to-lower activity compounds. However, it might be
useful to examine how these and related descriptors behave across all classes (no longer focusing
on one class vs. rest). As a result, we will now provide an overview of the molecular descriptors
calculated for all of the classes in the entire dataset, where we characterized each one with respect to
their distribution and spread in each activity class. The performance (mean and medium values) of
each descriptor was evaluated for each of the classes individually, and whenever possible correlations
were established between the variation of the descriptor value with the class of proteasome inhibitory
activity. Emphasis was placed on the key descriptors in the decision tree. A table with descriptive
statistics can be seen in Table S3.

3.3. Size Descriptors (MW, Number of Atoms)

One of the most important descriptors whose profile has been changing in the recent years
of drug development is MW, which is due, for example, to its influence in pharmacokinetics and
off-target effects [43,66]. However, in this particular case, it has become difficult to infer with confidence
a correlation between this descriptor and compounds activity, mainly due to a wide distribution
MW range, from 129 g·mol−1 (compound 616, class C) to 2315 g·mol−1 (compound 190, class A).
The distribution plots in Figure 9 (descriptive statistics in Table S3) show that the mean and medium
values of MW tend to decrease from class A do class D (607 to 443 and 596 to 452, respectively).

Figure 9. Distribution of Molecular Weight (MW) (left) and number of atoms (a_count) (right) across
the different activity classes.

Interestingly, and directly related to MW, one of the descriptors that proved key in the decision
tree was the number of atoms (a_count). In a general way, a higher number of atoms is correlated with
a higher MW, but of course the type of atoms present in the molecule will determine differences in the
MW values. In this case, we see a significant decrease of the mean and median number of atoms from
class A to class D (86 to 60 and 85 to 65, respectively).



Int. J. Mol. Sci. 2019, 20, 5326 12 of 26

3.4. Hydrogen-bonding Descriptors (HBA, HBD)

As expected, due to the importance of hydrogen bonds, particularly HBD, these were found to
be crucial to identify very active compounds within the decision tree. Hydrogen bonds influence
the molecule reactivity, modifying the electron distribution of the environment of the electron-donor
atom, influencing biological reactions, namely membrane permeability and drug action, through the
stabilization of the ligands [43,67,68]. This type of interaction is particularly important in the case
of proteasome inhibition, since, besides the van der Waals interactions (which are predominant in
number), hydrogen bonds are essential for the stabilization of the ligand in the CT-L active site, mainly
due to the existence of polar neutral amino acids (e.g., Thr and Tyr) and nonpolar residues (e.g., Ala,
Gly) among the residues that line the catalytic site (Figure 2). For example, bortezomib, carfilzomib
and ixazomib establish HBA interactions with Thr21 and Ala49, performing also HBD interactions
with Thr21 and Gly47, among other residues [69].

Both HBA and HBD show an overall decrease that follows the decrease in activity (i.e., going
from A to D) in all distribution measures (Table S3), particularly evident by the decreasing median
lines of the boxplots in Figure 10. Both mean and median values decrease from class A to class D (5.72
to 3.4 and 5 to 3, respectively, in HBA; 3.9 to 1.6 and 4 to 1, respectively, in HBD), indicating an overall
trend to lose activity with a lower HBD count. This was an expected pattern given that the loss in
the ability to establish H-bonds limits the compound’s ability to interact with and be stabilized in the
proteasome active site, and therefore this loss of activity as a function of HDB count is not surprising.

Comparing the boxplot of class A for HBA versus HBD (Figure 10), HBA has clearly a much
larger dispersion of the values (50% above the median) than HBD (which has a higher concentration of
values less than or equal to the median).

Figure 10. Distribution of hydrogen bond donor (HBD) atoms (left) and hydrogen bond acceptor (HBA)
atoms (right) across the different activity classes.

The fact that even lower activity compounds show some hydrogen-bonding ability is likely a
result of the clear bias towards selecting peptidomimetic compounds for screening. In addition, vinyl
sulfones were introduced by Bogyo et al. in 1997 [70] as a scaffold of irreversible inhibition, where it was
suggested that the double bond of the vinyl sulfone moiety reacts with the hydroxyl on the threonine
in the active site. Later in 2008, Baldisserotto et al. [71] in addition showed that compounds bearing
α,β-dehydro-phenylalanine are good substrates for the catalytic threonine. Both scaffolds contain a
significant amount of HBA and HBD atoms and, as they have likely influenced future compound
selection, this explains the observed distribution of HBA/HBD counts. An example of such influence is
the study by Akhlaghi, Daeihamed, & Abdolmajid [72] in 2018, where the authors explicitly built upon
one of these scaffolds.
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3.5. Shape and Surface Descriptors (MR, TPSA)

Two descriptors present in the relevant decision paths within the decision tree encode information
on shape and surface properties: MR and TPSA. MR encodes information about molecular volume
and polarizability, being used as a measure of the binding force between polar portions of an enzyme
and its substrate [43]. MR can be defined as the volume of the substance taken up by each mole
of that substance, being calculated through the Lorenz–Lorentz equation [73,74] (also known as the
Clausius–Mosotti equation) and expressed as m3

·mol−1 [43]. Bahmani et al. [75] define the polar
surface area (PSA) of a molecule as “the sum of the contributions to the molecular surface area of
polar atoms such as oxygen, nitrogen and their attached hydrogens”. However, a faster and larger
equivalent method to calculate this descriptor is the TPSA. This topological descriptor combines shape
and electronic information. Both TPSA and MR slightly increase as bioactivity increases (Figure 11).
This is particularly evident by comparing the white center-point (median) of class C with the remaining
classes. According to the values specified by the Veber rules [76] and the Rule of Three by Congreve et
al. [77], the drug-like benchmark value for the PSA should be ≤ 140 Å2, and the lead-like reference
value should be ≤ 60 Å2, which coincides with the lower and upper ranges for class A. The PSA (similar
to TPSA) value defined as an upper limit of the drug-like space is 140 Å2, because it is the highest
value at which oral absorption occurs (at higher values, the compounds tend to be poor at permeating
cell membranes). In the case of compounds that should penetrate the blood-brain barrier, the PSA
must be lower than 90 Å2 [75,76,78,79]. This is not important in the case of MM, but could be very
important in other tumors.

As seen for other descriptors, these recommended filters probably influenced the compounds
selected for experimental testing, which explains that all classes show similar upper limits to their
corresponding TPSA distribution Figure 11. Regarding MR, the increase in volume and polarizability
can be explained by the fact that the typical inhibitor structure has been proposed to require an
electrophilic trap from as early as 2000 [80], which increases functionalization with more bulky polar
groups such as sulfones, boronates and halogens [81,82], and consequently increases polarizability and
volume. Nonetheless, there are outliers in class A with remarkably high TPSA, more than four times
larger than the 140 Å2, which means that, when it comes to activity alone, much larger polar surface
area is allowed while still maintaining excellent inhibitory capability. The same scenario is seen for
MR, where outliers in class A show that a large volume is allowed.

Figure 11. Distribution of molecular refractivity (MR) (left) and topological polar surface area (TPSA)
(right) across the different activity classes.

3.6. Compound Flexibility (Double Bonds, Rotatable Bonds)

As uncovered by the decision tree, the number of double bonds and rotatable bonds are relevant
predictors of high versus low proteasome inhibitory activity. Further inspection of the distribution of
these descriptors across activity classes revealed a SAR across classes, beyond just the separation of
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class A versus remaining classes, with both variables increasing as a function of activity (Figure 12).
Here, the activity of proteasome inhibitors appears to follow a balanced flexibility-rigidity, where, as
both rotatable bonds and double bonds increase, activity increases as well. It appears that an increasing
amount of rotatable bonds is effectively being offset by an also increasing number of double bonds
(Figure 13), which can mean that, in order to bind to the active site, flexibility must exist, but only
to some extent. The presence of multiple double bonds in compounds highly influences molecular
properties, rigidity and reactivity [43]. Another reason for this correlation between double bonds
and rotatable bonds might simply be a result of multiple classical inhibitors showing somewhat of
an elongated structure with multiple peptide bonds. This, alongside the knowledge that inhibitors
are purposefully designed to act as peptidomimetics in order to mimic natural peptide substrates,
might have biased medicinal chemists to add terminal groups to previous less active compounds
through peptide (or peptide-like) bonds. This effectively would have increased both the number
rotatable bonds, while also adding the double bond within the peptidic bond. In fact, double bonds
can be mainly found in the carbonyl group of the peptide chains of some molecules. However, it is
worth pointing out that, for example, while marizomib has almost as many double bonds as it does
rotatable bonds, carfilzomib shows only a small number of double bonds with respect to the number
of rotatable bonds. As they show essentially similar bioactivities (3.5 and 6 nM), it shows the observed
flexibility–rigidity balance obviously does not single-handedly determine activity.

Figure 12. Distribution number of rotatable bonds (left) and number of double bonds (right) across the
different activity classes.

Figure 13. Correlation between double bond count and rotatable bond count for the full dataset. Each
point corresponds to a compound, as it is colored by the compound’s class membership.
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3.7. Physicochemical Properties (LogS, LogP)

Both solubility and lipophilicity are generally important properties to control during drug
development, and are usually measured as logS and logP. However, for the data gathered in the last
20 years on proteasome inhibitors, no statistically significant trend was observed between activity and
either logS or logP. The same pattern was found by Shultz [66] from the analysis of approved oral
drugs from 1998 to 2017. This indicates that, regardless of activity, all compounds were kept within the
same range of values, which corresponds to relatively high lipophilicity, on average. This is in line
with the fact that ever since the 1990s, it became well established that both low and high lipophilicity
might be associated with poor ADMET properties [83].

Rules such as Lipinski’s Ro5 established an upper boundary for logP (set at 5) to avoid absorption
issues solubility/absorption and in vivo toxicity [61,78,84,85]. However, studies such as Lipinski’s
2000 paper [86] also called attention to potential problems in having too low a logP, as also did a
seminal work in 2009, where Keserü and Makara [87] recommend the use of lipophilic ligand efficiency
(LLE), which essentially corrects for activity simply caused by increased size and lipophilicity. From
this point on, a range for lead-like compounds of −3 < logP < 3 has been proposed which certainly
influenced posterior drug development. It is worth pointing out that the fact that logP maintains
roughly the same distribution in Figure 14, regardless of activity class, might be an indication of
compliance to parameters such as LLE, since is it otherwise very common to observe trends of direct
correlation between activity and lipophilicity.

Figure 14. Distribution of logS (left) and logP(o/w) (right) across the different activity classes.

3.8. Analysis of Drug-likeness of Two Decades of Proteasome Inhibitors

The search for new hits to enter drug discovery pipelines often starts with a hit-finding campaign
in which large collections of available compounds are screened. This step is critical to drug discovery
success to assure the tractability of these collections and decrease the attrition rate of drug development
candidates in reaching the market. Some initial rules like drug-likeness, lead-likeness and known
drug space coverage are often applied to facilitate the decision-making process and to increase the
probability of high quality compounds. Drug-likeness is typically used as a rule of thumb intended to
identify compounds that fall into the so-called “drug-like” chemical space. A drug-like compound has
characteristics that are historically associated with approved drugs, namely good solubility, lipophilicity,
membrane permeability and good pharmacophoric features to interact with the binding pocket of the
target protein [88]. Several empirical guidelines or rules have been developed: Lipinski’s rule of five
(Ro5) [58], Ghose rules [64,65], Veber rules [76] (more commonly known as extended Ro5), and Oprea’s
drug-like rules [59,60] (Table 2). Additionally, one can look at similar rules defined for lead-likeness, as
well as overall druggable space. However, due to their general nature, it would be interesting to know
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whether these rules are useful for proteasome inhibitors and, if any, which are the more predictive
of activity?

Table 2. Several drug-likeness rules.

Drug-likeness Rules Lead-likeness Marketed Drug Space

Molecular
Descriptor Lipinski [58] Ghose [64,65] Veber [76] Oprea [59,60] Oprea’s

Lead-likeness [60]
Known Drug Space,

KDS [89]

MW ≤500 [160; 480] – [200; 450] ≤450 ≤800
LogP ≤5 [−0.4; 5.6] – [−2; 4.5] [−3.5; 4.5] ≤6.5
HBA ≤10 – – [1; 8] ≤8 ≤15
HBD ≤5 – – ≤5 ≤5 ≤7

Number of atoms – [20; 70] – – – –
MR – [40; 130] – – – –

RotN – – ≤10 [1; 9] ≤10 ≤17
Rings – – – ≤5 ≤4 –

PSA (Å2) – – ≤140 – – ≤180
LogD7.4 – – – [−4;4] – –

MW: molecular weight; logP: octanol–water partition coefficient; HBA: number of hydrogen bond acceptor atoms;
HBD: number of hydrogen bond donor atoms; MR: molecular refractivity; RotN: number of rotatable bonds; PSA:
polar surface area.

Lipinski’s Ro5 [58], by far the most influential rule, was proposed in 1997, and is related to the
prediction of oral bioavailability for compounds that have achieved phase II clinical trials. Lipinski’s rule
defines that an orally active compound has no more than one violation of any of the four criteria
shown in Table 2 [58,84]. A compound that fails to comply with two or more properties is theoretically
more likely to have poor permeation or absorption, leading to poor bioavailability. However multiple
exceptions to this continue to occur ever since Ro5 was introduced. It is known that about 6% of drugs
orally administered are outside of Lipinski’s space, which means that some therapeutic approaches
may include molecules in the “beyond rule of 5 (bRo5)” chemical space. Actually, 21% of new
molecules approved by the U.S. Food and Drug Administration (FDA) are bRo5 compounds, in which
antineoplastic drugs are also included [90].

First we applied Lipinski’s Ro5 to proteasome inhibitors with marketing authorization, and to
three compounds in clinical trials. It is interesting to note that the carfilzomib violates Lipinski’s
Ro5 (exceeding weight and HBD), as shown in Table 3, being considered a non-druglike compound,
while two other marketed drugs, bortezomib and ixazomib, are well within the Ro5 boundaries.
However, oprozomib also fails Lipinski’s drug-like test (also due to high MW), even though it is
currently in phase II, which means it obviously shows acceptable pharmaceutical properties (Table 3).
Regarding the coverage of drug-like, lead-like and known-drug spaces, bortezomib is exclusively
covered by the known-drug space (KDS), carfilzomib is not covered by any of the three spaces and
ixazomib is included in all three chemical spaces. Once again, this is evidence of the natural drift from
these different chemical spaces defined two decades ago.
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Table 3. Molecular descriptors for proteasome inhibitors already with marketing authorization or in
clinical trials.

Compounds with marketing authorization Compounds in clinical trials

Molecular Descriptors Bortezomib Carfilzomib Ixazomib Delanzomib Marizomib Oprozomib

MW 384.2 719.9 361.0 413.3 313.8 532.6
LogP (o/w) 0.95 4.08 2.48 1.801 0.774 0.007

HBA 6 8 4 6 3 8
HBD 4 4 4 5 2 3

hydrophobic atoms 17 35 14 19 14 22
MR 11.02 20.18 9.36 11.78 7.85 14.03

Rotatable bonds 11 24 9 11 4 17
Rings 2 4 1 2 3 3
TPSA 124.4 158.5 98.7 131.8 75.6 148.3

Lipinski’s drug-likeness Yes No Yes Yes Yes No
Ro5 violations 0 2* 0 0 0 2*

* Values obtained from HBA/HBD counts as defined by Lipinski et al. [58].

Next we extended the analysis to the dataset of 680 inhibitors of the proteasome CT-L active site.
We observed that the percentage of compounds with drug-like properties increases from class A to
class D (47 to 66%) (Figure 15). Focusing our analysis on class A compounds, MW is a major cause
of non-compliance to Lipinski’s drug-like test, with 79% of compounds having MW > 500. As we
mentioned earlier, this rule was highly influential to the drug development community ever since it
was published, and there exist different examples of proteasome inhibitor screening projects being
driven by its use (Maréchal et al. [91], Lavecchia and Giovanni [92]). However, the increased rate of
compounds that are not covered by Ro5 as a function of increased activity can probably be explained
by the fact that, even if this filter was applied for early compound selection (therefore covering close to
half of all compounds), it ultimately did not influence actual hits found in later stages of screening and
optimization. The consistent decrease in the amount of drug-like compounds is likely just a result of
the natural expansion from the chemical space used in 1997 to establish the Ro5.

Figure 15. Comparison between the proportion of Lipinski drug-likeness as well as the presence
of potential toxic (“mutagenic”) groups across activity classes. The p-values were calculated with
Fischer’s [93] test adjusting the false discovery rate using the Benjamini-Hochberg procedure [94].

Drug development is biased towards finding new active scaffolds or simply just different
compounds from already covered chemical space, which means new actives are more likely to be
more dissimilar to the compounds used by Lipinski et al. [58]. These results show that when it comes
to proteasome inhibitors, the Ro5 should be applied with some caution, at the risk of stunting the
exploration of new regions of chemical space, never forgetting that anticancer drugs are frequently
intended for IV rather than oral administration. Overall, the coverage of the various drug-like spaces
is quite low for this dataset, with 53% of all compounds obeying Ro5, 22% obeying the extended
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Ro5, and 0% obeying either Ghose rules or Oprea’s drug-like rules. Additionally, only 11% of all
compounds fall inside the Oprea’s lead-like space, and only 51% of compounds are contained in
the KDS. This generalized lack of coverage can largely be ascribed to the fact that general drug
chemical spaces (as defined by these rules) are fundamentally different to that of proteasome inhibitors,
frequently containing very large, peptidomimetic compounds.

Next, we wanted to inspect the data for the presence of potential toxic (“mutagenic”) compounds.
This parameter was calculated according to the mutagenic toxicophores prediction defined by
Kazius et al. [95] (Figure 15). It shows that the presence of possible toxic groups is predominant in
the whole dataset, and as anticipated, it steadily increases from class D to A. This is an expected
outcome, since we are in the presence of antineoplastic drugs, which are more likely to have potential
toxic/mutagenic groups (e.g., three membered-heterocycles are signaled as toxicophores, but an epoxide
is the main functional group of carfilzomib).

3.9. Relationship between Functional Groups and Activity Classes

Prompted by the observation that certain groups that are predicted to lead to toxicity are
increasingly more prevalent as a function of activity, we analyzed which chemical groups are generally
preferred in a proteasome inhibitor project, or alternatively, specifically more/less common in highly
active classes. To answer this question we employed a substructural search to characterize the presence
of 26 functional groups as defined by Daylight SMARTS, which was done using RDKit.

Figure 16 (left) shows the frequency of the various functional groups in class A, three of which
(amide, carbonyl and carbonyl with nitrogen groups) exist in all compounds within class A, but steadily
and markedly decrease with a decreasing activity (Figure 16, right). This is expected, given all three
groups are essentially a synonym of, or contained in, peptide (or peptide-like) bonds, which play a
central role in allowing interaction within the catalytic sites of the proteasome. Additionally, there are
two groups (hydroxyl in alcohol and vinylic carbon) whose frequency shows moderate increase as the
activity level decreases (Figure 16, right).

Given vinyl sulfones are one of the classes of proteasome inhibitors, this inverse correlation with
activity indicates that multiple candidates bearing a vinyl carbon were selected for testing with a
relatively low success rate, which is a hint that vinyl sulfones are a more challenging class from which
to derive new inhibitors. Figure 16 (right) also shows multiple groups with constant low frequency
across activity classes (up to a maximum of 20%), among which hydrazone groups, and to a lesser
extent, phenol, sulfide and two primary/secondary amine groups, are rare/uncommon across the
board. The absence of primary and secondary amines or hydrazone groups is probably a result of the
introduction of nitrogen mainly within peptide bonds. As for phenol groups, these have probably a
low representation across the board, given the first phenolic ether inhibitors were only introduced in
2013, found by chance though in vitro screening [96]. It is worth noting that these compounds and
their derivatives are commonly affected by stability issues only recently addressed in a 2019 study (Yu
et al.) [97]. Figure 16 indicates that, on the other hand, ether and arene groups appear to be relatively
common across the board as well (ranging between 50% and 80% frequency). For instance, a SAR
study in 2007 by Imbach and colleagues [98] revealed several modifications which introduced a benzyl
group and lead to high inhibitory activity. This probably influenced the process of candidate design or
selection from compound libraries.
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Figure 16. Frequency of common functional groups defined by Daylight SMARTS among proteasome
inhibitors. (Left) Frequency (%) of functional groups in class A, sorted by descending order of
percentage. Dotted line indicates 50% frequency. (Right) Functional groups highlighted according
their (inverse or direct) correlation with activity. The gray lines in the background are the additional
functional groups defined in the left plot, and correspond to groups with lower correlation with activity.

3.10. Final Remarks on General Guidelines for Drug Design of Proteasome Inhibitors

This study allowed the identification of typical chemical patterns associated with potent inhibitory
activity against the 20s proteasome, specifically regarding the CT-L catalytic site. We have distilled these
into a general guideline for drug design of proteasome inhibitors, summarized in Figure 17. However
one should not forget that, as for any rule-of-thumb, these too are general rules. Despite covering a
large proportion of the most potent class of compounds, this guideline 1) does not cover all known
potent active space and 2) it is not exclusive to potent actives. This set of rules can be used in initial
stages of drug design to bias the search towards a region of chemical space which is more likely
associated with potent activity.

Figure 17. General guidelines for proteasome inhibitors, extracted from the analysis of publicly
available inhibition data of the last two decades.



Int. J. Mol. Sci. 2019, 20, 5326 20 of 26

4. Conclusions

After the discovery of bortezomib, the first-in-class proteasome inhibitor, two decades ago,
bioactivity data on proteasome inhibitors has continuously grown; however, to date, no attempt has
been made to harness this data towards distilling any insight on chemical patterns that drive activity.
Prompted by this knowledge gap, the main goal of this study was to identify the key structural and
physicochemical determinants of proteasome inhibitors to drive future drug discovery and optimization
campaigns. To enable this, we assembled and curated a dataset comprising of 680 compounds divided
into four activity classes and with inhibitory activities between 0.08 and 150,000 nM, measured for the
CT-L catalytic subunit. Specifically, we calculated and statistically analyzed 21 molecular descriptors
that allowed us to map the chemical space occupied by proteasome inhibitors from different classes of
potency; we analyzed scaffold similarities, and based on the molecular descriptors, a decision tree
was trained.

The determination of the chemical space led to the conclusion that there is a difference in
the distribution of the four IC50 classes, with the most active compounds (class A) populating a
different region of chemical space than the least active compounds (class D). This shows that class
D is fundamentally different from the three other classes at a structural and physicochemical level,
supporting the existence of a SAR in this dataset. Calculations of the similarity between Murcko
scaffolds within each class suggests a high diversity of scaffolds in each class and between the
four classes. We found a transition between scaffolds across classes, where class C has a two-peak
distribution, which suggests some common scaffolds with classes A/B, as well as with compounds of
class D. These data were confirmed through the Venn diagrams of scaffolds which show a decrease
in the common scaffolds from class A to D. This activity-related pattern indicates that exploring the
modifications of the scaffolds seen in class A, which are simultaneously dissimilar from scaffolds in
class D, might be a good strategy for the initial prioritization of screening libraries in the search for
new inhibitors.

A decision tree was trained in which we identified two decision rules that allow classifying 63.6%
of class A. Both rules efficiently separate class A from the remaining three classes, which is shown
by the high purity level (i.e., compounds of class A/all compounds) achieved after the last decision
split in each rule (e.g., 86% and 70%, respectively). This observation was followed up by a careful
analysis of molecular descriptors which disclosed some trends that drive activity. From our results we
saw a decrease in the MW and number of atoms for class A to class D, however surprisingly, only the
number of atoms was found as a relevant descriptor in the two main decision rules. As anticipated
by the expected interactions in the proteasome CT-L catalytic site binding pocket topology, HBA and
HBD were of significant importance, which was translated into a drop-off of the inhibitory potency
with the observed decrease of HBA to HBD from class A to D.

These results confirm the importance of H-Bonds that could stabilize the compounds improving
the protein-ligand affinity.

In class A, the HBA and HBD mode in both is 4 (30 being the mode of the number of hydrophobic
atoms), allowing this considerable number of atoms to establish the required interactions with the key
amino acids (e.g., polar amino acids Thr21 and nonpolar amino acids such as Ala20, Met45, Ala49,
Gly47 and Lys52).

Our results show a clear trend with compounds activity for the shape and surface descriptors
MR and TPSA, demonstrating that both descriptors slightly increase as proteasome inhibitory activity
increases, from class D to A. Giving an overall look of the bond descriptors related with compound
flexibility, namely, the number of double and rotatable bounds, our results are peculiar, revealing a
structure-activity relationship across classes. What we observe is that both the number of double and
rotatable bonds increases as activity increases, from class D to A.

A curious aspect is the existence of only three molecules with triple bonds in the whole database,
one in class B and two in class C, giving the idea that their presence would restrict too much the
flexibility of the molecules and hamper the interactions in the pocket. In our analyses, there are two
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descriptors for which we are not able to observe significant changes in the different classes, logP
and logS.

We found that the percentage of compounds with drug-like properties (Lipinski’s Ro5), always an
important rule to consider in the drug development process, tend to decrease from class D to A, and
the presence of toxic groups increases with activity. However, this is not surprising, first due to the
tendency to increase the MW during the last years, and also, the toxicity is completely justifiable, since
we are dealing with potentially antineoplastic drugs.

Prompted by the observation that certain groups that are predicted to lead to toxicity are
increasingly more prevalent as a function of activity, we analyzed which chemical groups are generally
preferred. We found that amide, arene and different carbonyl groups are among the most prevalent
in those among the most active compounds, and these also decrease in frequency as one transitions
from classes A to D. This is a result of the fact that most proteasome inhibitors are peptidomimetic
compounds bearing multiple peptide (or peptide-like) bonds.

Finally, evaluating how this dataset is covered by the multiple typically used druggability filters
indicates an apparent drift into different locations of chemical space, evident by the overall low coverage
by various such filters. The systematic analysis of proteasome inhibitors tested in the last 20 years
revealed multiple chemical patterns which can be used to inform future drug discovery projects,
effectively helping in biasing the search into known active spaces, as well as into yet unexplored spaces.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/21/
5326/s1.
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