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1. INTRODUCTION
This article is concerned with the implementation of optimization algo-
rithms for the solution of smooth discretized optimal control problems. The
problems under consideration can be written as
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min f~y, u!

s.t. c~y, u! 5 0,

y # y # y,

u # u # u (1)

or

min f̂ ~u! 5 f~y~u!, u!

s.t. y # y~u! # y,

u # u # u. (2)

Here u represents the control; y and y~u! represent the state; and c~y, u!
5 0 represents the state equation. If the implicit function theorem is
applicable, the state equation c~y, u! 5 0 defines a function y~ z! of u, and
in this case problem (1) can be reduced to (2). We note that (1) and (2) are
related, but they are not necessarily equivalent. If for given u the equation
c~y, u! 5 0 has more than one solution, the implicit function theorem will
select one solution branch y~u!, provided the assumptions of the implicit
function theorem are satisfied. Hence, the feasible set of (2) is contained in
(1), but the feasible sets are not necessarily equal.

Examples of optimal control problems of the form (1) or (2) are given, for
example, in Borggaard and Burns [1997], Chen and Hoffmann [1991], Cliff
et al. [1997], Friedman and Hu [1998], Gunzburger et al. [1993],
Handagama and Lenhart [1998], Ito and Kunisch [1996], Kupfer and Sachs
[1992], Lions [1971], and Neittaanmäki and Tiba [1994].

Discretized optimal control problems are large-scale nonlinear program-
ming problems with a particular structure. Structure arises from the
partitioning of the variables in controls u and states y, from the underlying
infinite-dimensional problem, and from the discretization. Since these
problems are nonlinear programming problems, they can in principle be
solved using existing nonlinear programming solvers such as LANCELOT
[Conn et al. 1992], LOQO [Shanno and Vanderbei 1997; Vanderbei 1998],
or SNOPT [Gill et al. 1997]. These solvers, as well as other general
nonlinear programming solvers, require user-provided subroutines that
evaluate the objective function and its gradient and the constraint function
and its Jacobian matrix. Thus, they require the evaluation of f~x!, ¹f~x!,

c~x!, c9~x! given x 5 ~y, u! for problem (1), and the evaluation of f̂ ~u!,

¹ f̂ ~u!, y~u!, y9~u! given u for problem (2). If derivative information is not
available, then general nonlinear programming solvers typically have an
option that allows the approximation of first-order derivatives by finite
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differences. For several discretized optimal control problems the applica-
tion of general nonlinear programming solvers has been done. This ap-
proach, however, has severe limitations.

Reasons that limit the applicability of codes for general nonlinear pro-
gramming problems to discretized optimal control problems are the follow-
ing:

(1) If discretizations are refined, problems (1) and (2) tend to exhaust
available memory if Jacobians are stored (e.g., see the numerical tests
performed by Mittelmann and Maurer [1998]).

(2) The description of the optimal control problems in the sparse formats
required by some general nonlinear programming solvers can be very
difficult. This is, for example, the case for optimal control problems
governed by partial differential equations which are discretized using
existing finite-element packages. The incorporation of application-de-
pendent linear solvers such as multigrid methods for the solution of
linearized PDE state equations is very difficult or even impossible.

(3) The view of the discretized optimal control problem as a finite-dimen-
sional nonlinear programming problem ignores the underlying infinite-
dimensional problem structure. Instead of a mesh-independent conver-
gence behavior, one can often observe a deterioration of the
convergence, as the discretization is refined due to improper scaling
and artificial ill-conditioning.

In practice, optimization methods that have been proven successful for
general nonlinear programming problems are tailored to a specific class of
discretized optimal control problems, often optimal control problems gov-
erned by ODEs and DAEs (e.g., see Betts [1997], Petzold et al. [1997],
Schulz [1997], and Varvarezos et al. [1994]). More often, many new
developments in optimization methods are incorporated late or not at all
into solution approaches for optimal control problems. In fact, the gradient
method is still frequently used for the solution of unconstrained optimal

control problems min f̂ ~u!.
We believe that the gap between optimization methods and their applica-

tion to optimal control problems can be narrowed and in many cases even
be closed by the provision of an interface between optimization algorithms
and optimal control applications. The purpose of this article is to develop a
framework for such an interface. We assume that =, 8, and L are
finite-dimensional Hilbert spaces of dimension ny, nu, and ny, respectively.
These Hilbert spaces can be identified with Rny, Rnu, and Rny, respectively,
but are equipped with scalar products ^ z , z&=, ^ z , z&8, and ^ z , z&L. The
functions

f : = 3 8 3 R,

c : = 3 8 3 L,
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are assumed to be at least once differentiable. In some of our discussions
we will also use second derivatives of f and c. This Hilbert space structure
allows us to incorporate scaling information into the problem description,
which is important for a mesh-independent convergence behavior of the
optimization algorithms. The interface explores the structure of the prob-
lem arising from the partitioning of variables into states and controls. In
particular, this will be important for the description of derivative informa-
tion. Solution of systems involving partial Jacobians of c~ y, u! are left to
the application. This ensures that application-dependent linearized state
equation solvers such as multigrid methods can be used. The interface
takes into account that linear system solves and function and derivative
evaluations provided by the application are done inexactly. For example,
this allows iterative linear system solvers on the application side and
sensitivity and adjoint computations based on the infinite-dimensional
problem, not on the discretized problem which might require expensive
mesh sensitivities [Borggaard and Burns 1997].

The interface can be used to implement a variety of optimization algo-
rithms for (1) and (2), including conjugate gradient methods, Newton and
quasi-Newton methods, augmented Lagrangian methods, sequential qua-
dratic programming methods, and interior-point methods. To deal with
storage limitations, matrix-free representations of linear operators in Hil-
bert spaces, and problem scaling, Jacobians and Hessians are not passed to
the optimizer as matrices, but only their application to a given vector is
available through our interface. Thus, typically the above optimization
algorithms have to be implemented in a matrix-free fashion using iterative
methods such as the conjugate-gradient method or GMRES for the solution
of linear systems within the optimization. We believe this interface is
particularly useful for, but not restricted to, problems governed by partial
differential equations.

The description of our interface is conceptual and not tied to a specific
programming language. We have used implementations of this interface in
Fortran 77 and Matlab1 to solve a variety of optimal control problems, most
of which are governed by partial differential equations. Other implementa-
tions of this interface are possible. For example, in C11 our interface could
be implemented elegantly using the Hilbert Class Library (HCL) of Gock-
enbach and Symes [1997] (see also Gockenbach et al. [1997]). HCL is a
collection of C11 classes that implement mathematical objects such as
vectors, linear and nonlinear operators, and some algorithms for solving
linear operator equations and unconstrained minimization problems. HCL
is broader in scope than the interface proposed here and provides all the
ingredients for a concrete implementation of our interface in C11. Our
goal is to describe the information that needs to be exchanged between the
application- and derivative-based optimization algorithms for the specific

1Matlab is a registered trademark of The MathWorks, Inc., info@mathworks.com , http://
www.mathworks.com .
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problem class (1) and (2). The description of our interface is based on the
mathematical language used for optimal control problems and the notation
used in (1) and (2). Our interface is not tied to a specific programming
language.

This article is structured as follows. In Section 2 we approach the scaling
of the problem and illustrate its use in a few particular instances. Section 3
addresses the calculation of derivatives using sensitivity and adjoint equa-
tion methods. The optimization-application interface that we propose for
the numerical solution of distributed optimal control problems is described
in detail in Section 4. A few code fragments corresponding to parts of
known optimization algorithms are given in Section 5 to illustrate the use
of this interface, and Section 5 illustrates the interface from an optimal
control point of view. Section 6 discusses limitations and extensions of our
framework.

2. SCALING OF THE PROBLEM

The scalar products ^ z , z&=, ^ z , z&8, and ^ z , z&L induce a scaling into the
problem that is important for the performance of the optimization algo-
rithms. The scalar products influence the computation of the gradients and
other derivatives; they influence the definition of adjoints; and they are
present in all subtasks that require scalar products, such as quasi-Newton
updates and Krylov subspace methods. We will describe their influence on
the gradient computation here and defer the discussion of their effect on
Hessians, adjoints, and quasi-Newton updates to Appendix A.

The partial gradients of f are defined by the relations

lim
hy30

?f~y 1 hy, u! 2 f~y, u! 2 ^¹yf~y, u!, hy&=? / ihyi= 5 0,

lim
hu30

?f~y, u 1 hu! 2 f~y, u! 2 ^¹uf~y, u!, hu&8? / ihui8 5 0. (3)

In finite dimensions all norms are equivalent, and, thus, the choice of
norms in the denominators in (3) do not influence the definition of the
gradient. The choice of the scalar product in the numerator, however, does.

It will be illustrative to study the effect of the scalar products on the
gradient computation in more detail. Each scalar product on Rk can be
identified with a symmetric positive definite matrix, and we therefore write

^y, v&= 5 yÁTyv, (4)

^u, w&8 5 uÁTuw, (5)

^l, c&L 5 lÁTlc, (6)

where Ty, Tl [ Rny3ny, and Tu [ Rnu3nu are symmetric positive definite
matrices. We emphasize that this is done for illustration only. The weight-
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ing matrices are never directly accessed, but only the value of a scalar
product for two given vectors is needed.

If ^y, v&= 5 yÁv, ^u, w&8 5 uÁw, then (3) yields

¹yf~y, u! 5 e¹yf~y, u!, ¹uf~y, u! 5 e¹uf~y, u!,

where

e¹yf~y, u! 5 S ­

­y1

f~y, u!, . . . ,
­

­yny

f~y, u!DÁ

e¹uf~y, u! 5 S ­

­u1

f~y, u!, . . . ,
­

­unu

f~y, u!DÁ

denote the gradient with respect to the Euclidean scalar products, i.e., the
vectors of first-order partial derivatives.

Now we consider the two scalar products (4) and (5). From

e¹yf~y, u!Áv 5 ~Ty
21

e¹yf~y, u!!Á Tyv 5 ^Ty
21

e¹yf~y, u!, v&= @v,

and (3) we can see that

¹yf~y, u! 5 Ty
21

e¹yf~y, u!. (7)

Similarly, we have

¹uf~y, u! 5 Tu
21

e¹uf~y, u!. (8)

The representations (7) and (8) of the gradients can also be interpreted
differently. Since Ty and Tu are symmetric positive definite, we can write
them as the product of two symmetric positive definite matrices, Ty 5
~Ty

1/ 2!2 and Tu 5 ~Tu
1/ 2!2. Now, we can define ỹ 5 Ty

1/ 2y, ũ 5 Tu
1/ 2u, and

f̃ ~ ỹ, ũ! 5 f~Ty
21/ 2ỹ, Tu

21/ 2ũ!. If we compute the first-order partial deriva-

tives of f̃ , then

¹ỹ f̃ ~ ỹ, ũ! 5 Ty
21/ 2

e¹yf~y, u!, ¹ũ f̃ ~ ỹ, ũ! 5 Tu
21/ 2

e¹uf ~y, u!.

If we scale these vectors by Ty
21/ 2 and Tu

21/ 2, respectively, then we obtain (7)
and (8). See also Dennis and Schnabel [1983].

3. DERIVATIVE COMPUTATIONS: ADJOINTS AND SENSITIVITIES

Sensitivity and adjoint equation approaches are used to compute derivative
information in optimal control problems. In this section, we briefly describe
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what these approaches are in the context of this article and how they can
be used in derivative computations.

We consider the problem

min f~y, u!

s.t. c~y, u! 5 0 (9)

with associated Lagrangian

,~y, u, l! 5 f~y, u! 1 ^l, c~y, u!&L (10)

and the associated reduced problem

min f̂ ~u! 5 f~y~u!, u!. (11)

In (11) the function y~ z! is defined via the implicit function theorem as a
solution of c~ y, u! 5 0. We assume that the assumptions of the implicit
function theorem applied to c~y, u! 5 0 are satisfied.

Typically, sensitivity and adjoint equation approaches are used to com-

pute the gradient and second-order derivative information for f̂ . However,
the same issues also arise for certain first- and second-order derivative
computations related to problem (9). The main purpose of this section is to
show the commonalities in these approaches for (9) and (11) and to
establish a common framework that can be used in many optimization
algorithms for (9) and (11) and in fact for (1) and (2). For more discussions
on sensitivity and adjoint equation approaches we refer to the literature
(e.g., see the collection [Borggaard et al. 1998]).

In this section we use the sensitivity and adjoint equation approaches to

compute the gradient and second-order derivative information for f̂ and ,.

The fact that f̂ and f are objective functions is not important. It is only

important that f̂ : 8 3 R depends on the implicit function y~u!. In general
the sensitivity and adjoint equation approaches are needed when derivative

information of a function ĥ : 8 3 R is computed that is of the form ĥ~u!
5 h~y~u!, u!. Thus, most of what is said in the following also applies in

this context. In particular, if additional constraints d~y, u! 5 0 and d̂~u!
5 d~y~u!, u! 5 0, d : = 3 8 3 Rk are present in (9) or (11), respectively,
then the derivations in this section can be applied to the component

functions d̂i or the Lagrangian f~ y, u! 1 ^l, c~ y, u!&L 1 mÁd~ y, u!.

3.1 First-Order Derivatives

Under the assumptions of the implicit function theorem the derivative of
the implicitly defined function y~ z! is given as the solution of
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cy~y~u!, u!y9~u! 5 2cu~y~u!, u!. (12)

This equation is called the sensitivity equation, and its solution is called the

sensitivity of y. We can now compute the gradient of f̂:

^¹f̂ ~u!, v&8 5 ^¹yf~y~u!, u!, y9~u!v&= 1 ^¹uf~y~u!, u!, v&8

5 ^¹yf~y~u!, u!, 2cy~y~u!, u!21cu~y~u!, u!v&= 1 ^¹uf~y~u!, u!, v&8

5 ^2~cy~y~u!, u!21cu~y~u!, u!!* ¹yf~y~u!, u! 1 ¹uf~y~u!, u!, v&8.

Hence,

¹f̂ ~u! 5 2~cy~y~u!, u!21cu~y~u!, u!!* ¹yf~y~u!, u! 1 ¹uf~y~u!, u!. (13)

The formula (13) is used in the sensitivity equation approach to compute
the gradient. First, the sensitivity matrix

S~y, u! 5 cy~y~u!, u!21cu~y~u!, u!

is computed, and then the gradient is formed using (13).
To introduce the adjoint equation approach, we rewrite the formula (13)

for the gradient as follows:

¹f̂ ~u! 5 2cu~y~u!, u!*~cy~y~u!, u!*!21¹yf~y~u!, u! 1 ¹uf~y~u!, u!.

Thus, one can compute the adjoint variables l~u! by solving the adjoint
equation

cy~y~u!, u!*l~u! 5 2¹yf~y~u!, u! (14)

and then compute the gradient using

¹f̂ ~u! 5 cu~y~u!, u!*l~u! 1 ¹uf~y~u!, u!. (15)

This is the adjoint equation approach to compute the gradient.
Traditionally, the sensitivity equation approach and the adjoint equation

approach have been used in the context of the reduced problem (11).
However, the same techniques are also needed to compute derivative
information for the solution of (9).

Consider the Lagrangian (10). Its partial gradients are

¹y,~y, u, l! 5 ¹yf~y, u! 1 cy~y, u!*l, ¹u,~y, u, l! 5 ¹uf~y, u! 1 cu~y, u!*l.

We see that ¹y,~ y, u, l! 5 0 corresponds to the adjoint equation

cy~y, u!*l 5 2¹yf~y, u!. (16)
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If we define l~ y, u! as the solution of (16), then

¹u,~y, u, l!l5l~ y, u! 5 ¹uf~y, u! 2 cu~y, u!*~cy~y, u!*!21¹yf~y, u!.

In particular,

¹f̂ ~u! 5 ¹u,~y, u, l!y5y~u!, l5l~u!.

With

W~y, u! 5 S 2cy~y, u!21cu~y, u!

Inu

D
we can write

¹u,~y, u, l!l5l~ y, u! 5 W~y, u!*S ¹yf~y, u!

¹uf~y, u! D
and

¹f̂ ~u! 5 W~y, u!*S ¹yf~y, u!

¹uf~y, u! DU
y5y~u!

.

An optimization algorithm applied to the solution of (9) may require the
evaluation of the Lagrangian f~ y, u! 1 ^l~ y, u!, c~ y, u!&L, where l~ y,
u! is the solution of (16). If the adjoint equation approach is used for the

derivatives, the adjoint variables l~ y, u! can be calculated. If only the
sensitivities cy~ y, u!21cu~ y, u! and their adjoints are provided, adjoint
variables cannot be computed from (16). In such a situation we can
evaluate the corresponding value of the Lagrangian by solving the linear-
ized state equation

cy~y, u!s 5 2c~y, u! (17)

and by using the relation

^l~y, u!, c~y, u!&L 5 2^~cy~y, u!*!21¹yf~y, u!, c~y, u!&L

5 2^¹yf~y, u!, cy~y, u!21c~y, u!&=. (18)

The introduction of W~ y, u!, which plays an important role in solution
methods for (16), allows an elegant and compact notation for the first-order
derivatives and, as we will see in the following, for the second-order
derivatives. It also localizes the use of the sensitivity equation approach
and the adjoint equation approach in the derivative calculations. In all
derivative computations, the sensitivity equation approach or the adjoint
equation approach is only needed to evaluate the application of W~ y, u!
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and W~ y, u!* onto vectors. For example, the computation of the
y-component zy of z 5 W~ y, u!du is done in two steps:

Compute vy 5 2cu~y, u!du.
Solve cy~y, u!zy 5 vy.

If the sensitivities S~ y, u! 5 cy~ y, u!21cu~ y, u! are known, then zy 5
2S~ y, u!du. The equation cy~ y, u!zy 5 vy is a generalized linearized state
equation, cf. (17). Similarly, for given d the matrix-vector product z
5 W~ y, u!*d, d 5 ~dy, du!, is computed successively as follows:

Solve cy~y, u!*vy 5 2dy.
Compute vu 5 cu~y, u!*vy.
Compute z 5 vu 1 du.

Again, if the adjoint of the sensitivities S~y, u! 5 cy~ y, u!21cu~ y, u! is
known, then z 5 2S~ y, u!*dy 1 du. The equation cy~ y, u!*vy 5 2dy is a
generalized adjoint equation, cf. (16).

3.2 Second-Order Derivatives

The issue of sensitivities and adjoints not only arises in gradient calcula-
tions, but also in Hessian computations. The Hessian of the Lagrangian

¹xx
2 ,~y, u, l! 5 S ¹yy

2 ,~y, u, l! ¹yu
2 ,~y, u, l!

¹uy
2 ,~y, u, l! ¹uu

2 ,~y, u, l! D (19)

and the reduced Hessian

Ĥ~y, u! 5 W~y, u!*S ¹yy
2 ,~y, u, l! ¹yu

2 ,~y, u, l!

¹uy
2 ,~y, u, l! ¹uu

2 ,~y, u, l! DW~y, u!U
l5l~ y, u!

(20)

play an important role. Both matrices (19) and (20) are important in
algorithms based on the sequential quadratic programming (SQP) approach
[Fletcher 1987]. Moreover, it is known, (e.g., see Dennis et al. [1998] and
Heinkenschloss [1996]) that the Hessian of the reduced functional in (11) is
given by

¹2f̂ ~u! 5 Ĥ~y~u!, u!.

We note that the computation of (19) and (20) requires knowledge of the
adjoint variables l. In many algorithms, these are computed via the adjoint
equations (16). If only the sensitivities cy~ y, u!21cu~ y, u! and their ad-
joints are provided, adjoint variables cannot be computed from (16). If no
estimate for l is available, then the operators in (19) and (20) cannot be
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computed. In cases in which ¹yf~ y, u! ' 0 for ~ y, u! near the solution, one
may set l 5 l~ y, u! ' 0, cf. (16). This leads to the approximations

¹xx
2 ,~y, u, l! ' S ¹yy

2 f~y, u! ¹yu
2 f~y, u!

¹uy
2 f~y, u! ¹uu

2 f~y, u! D (21)

and

Ĥ~y, u! ' W~y, u!*S ¹yy
2 f~y, u! ¹yu

2 f~y, u!

¹uy
2 f~y, u! ¹uu

2 f~y, u! DW~y, u!. (22)

The situation ¹yf~ y, u! ' 0 often arises in least-squares functionals
f~ y, u! 5 1/ 2iy 2 ydi=

2 1 g / 2iui8
2 , where yd is some desired state. In this

case, we have ¹yf~ y, u! 5 y 2 yd, and if the given data yd can be fitted
well, then ¹yf~ y, u! ' 0. In this case, the approximation (22) is the

Gauss-Newton approximation to the Hessian ¹2f̂ ~u!, provided y 5 y~u!.

The Hessian ¹2f̂ ~u! of the reduced objective can also be computed by
using second-order sensitivities. In this approach one applies the chain rule

to ¹ f̂ ~u! 5 y9~u!*¹yf~ y~u!, u! 1¹uf~ y~u!, u!, and one computes the sec-
ond-order derivatives of y~u! by applying the implicit function theorem to
(12). Unlike (19) and (20), this approach avoids the explicit use of Lagrange
multipliers.

We let H~ y, u, l! be the Hessian ¹xx
2 ,~ y, u, l! or an approximation

thereof. If conjugate-gradient-like methods are used to solve subproblems,
then Newton-based optimization methods for (11) or reduced SQP-based
optimization methods for (9) require the computation of some of the
quantities

H~y, u, l!s,

^s, H~y, u, l!s&-,

W~y, u!*H~y, u, l!s,

W~y, u!*H~y, u, l!W~y, u!su,

^su, W~y, u!*H~y, u, l!W~y, u!su&8

for given s 5 ~sy, su! and su.
Often, one does not approximate the Hessian ¹xx

2 ,~ y, u, l!, but the
reduced Hessian. This is, for example, the case if a quasi-Newton method is
used to solve (11) or if a reduced SQP method is used to solve (9). If

Ĥ~ y, u! ' W~ y, u!*¹xx
2 ,~ y, u, l!W~ y, u!, then this approximation fits

into the previous framework in which the full Hessian is approximated by
setting
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H~y, u, l! 5 S 0 0
0 Ĥ~y, u!

D. (23)

If H~y, u, l! is given by (23), then the definition of W~y, u! implies the
equalities

H~y, u, l!s 5 S 0

Ĥ~y, u!su,
D

^s, H~y, u, l!s&- 5 ^su, Ĥ~y, u!su&8,

W~y, u!*H~y, u, l!s 5 Ĥ~y, u!su,

W~y, u!*H~y, u, l!W~y, u!su 5 Ĥ~y, u!su,

^su, W~y, u!*H~y, u, l!W~y, u!su&8 5 ^su, Ĥ~y, u!su&8.

4. USER INTERFACE

Table I lists the functions or subroutines that are part of the user interface.
In this section, we will describe the calling sequences of these functions or
subroutines using Matlab syntax. The input parameters appear in paren-
thesis after the name of the function or subroutine whereas the output
parameters are displayed in brackets. Of course, the interface is not
language specific, and Matlab is used for illustration only. The main
purpose is to show what information needs to be passed from the applica-
tion routines to the optimizer. We do not promote a specific language for
the implementation of this information transfer.

Not all interface routines listed in Table I are needed in the implementa-
tion of all optimization algorithms. For example, if quasi-Newton updates
are used to approximate second-order derivative information, the subrou-
tine hs_exact is not used, and if the optimization problem formulation (1)
is used, then state is not needed.

More details about the user-provided subroutines will be given in the
following sections. All user-provided subroutines return a variable iflag ;
all user-provided subroutines but xnew have an input parameter tol ; and
all user-provided subroutines have an input parameter user_parms . The
return variable iflag indicates whether the required task could be per-
formed. On return, the iflag should be set as follows:

iflag 5 0 The required task could be performed.

iflag . 0 The required task could not be performed.

iflag , 0 The required task could be performed, but the results are not
ideal.
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If iflag . 0 during the execution of the optimization algorithm, the
optimization algorithm can return with an error message providing the
value of iflag and the place in the optimization code where the error
occurred. A negative value of iflag can be used to communicate, for
example, (near) singularity of matrices, or other potentially serious events
that fall short of fatal errors. If iflag , 0 during the execution of the
optimization algorithm, the optimization algorithm can issue a warning
that contains the value of iflag and the place in the optimization code
where the error occurred.

The input parameter tol can be used to control inexactness. Often, in
practical applications the state equation, the linearized state, and the
adjoint equations are solved using iterative linear system solvers. More-
over, the derivatives of f and c may be approximated by finite differences.
In such situations user-provided information will never be exact, and an
optimization algorithm has to adapt to this situation. In fact, allowing
inexact, but less expensive function and derivative information could lead
to more efficient optimization algorithms, provided this inexactness is
controlled properly. An example are inexact Newton methods for large-
scale problems [Nash and Sofer 1996]. The input parameter tol allows the
optimization algorithm to control the inexactness.

Finally, all subroutines have an input parameter user_parms that
allows to pass problem-specific information such as physical parameters or
weighting coefficients in the objective function. These parameters are never
accessed by the optimizer. In a Matlab implementation user_parms could
be a structure array.

Table I. User-Provided Subroutines

Adjoint and Sensitivity Equation Approaches

fval evaluate f~ y, u!
cval evaluate c~ y, u!

lcval evaluate cy~ y, u!sy 1 cu~ y, u!su 1 c~ y, u!
state solve c~ y, u! 5 0 for fixed u

linstate solve cy~ y, u!sy 5 2cu~ y, u!su 2 c~ y, u!
yprod compute ^ y1, y2&=

uprod compute ^u1, u2&8

lprod compute ^l1, l2&L

hs_exact compute ¹xx
2 ,~ y, u, l!s

xnew (re)activate a new iterate

Adjoint Equation Approach

adjoint solve cy~ y, u!*l 5 2¹yf~ y, u!
adjval evaluate cy~ y, u!*l 1 ¹yf~ y, u!

grad evaluate cu~ y, u!*l 1 ¹uf~ y, u!

Sensitivity Equation Approach

sens compute S~y, u!v
sensa compute S~y, u!*v
fgrad compute ¹yf~ y, u! and ¹uf~ y, u!
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4.1 Vectors

The Hilbert spaces =, 8, and L are finite dimensional and can be identified
with Rny, Rnu, and Rny, respectively. Thus, vectors in these spaces can in
principle be stored as arrays. In many cases, however, other representa-
tions such as derived types in Fortran 90/95, objects in C11, or structure
arrays in Matlab might be more useful. In this case the user also has to
provide functions that create and initialize a vector with zeros, create a
vector and copy an existing vector into this newly created one, multiply a
vector by a scalar, and add a scalar multiple of one vector to another vector.
Each of these functions has to be provided for vectors in =, 8, and L, i.e.,
each of these functions has to be provided three times.

4.2 User-Provided Functions Used in the Adjoint and Sensitivity Equation
Approaches

fval . Given y and u, evaluate f~ y, u!. The generic function is
[ f, iflag ] 5 fval( y, u, tol, user_parms )

cval . Given y and u, evaluate c~ y, u!. The generic function is
[ c, iflag ] 5 cval( y, u, tol, user_parms )

lcval . Given y, u, sy, su, and tol , approximately evaluate the linear-
ized constraints

cy~y, u!sy 1 cu~y, u!su 1 c~y, u!,

i.e., compute lc such that

ilc 2 ~cy~y, u!sy 1 cu~y, u!su 1 c~y, u!!iL # tol .

The generic function is
[ lc, iflag ] 5 lcval( y, u, sy, su, tol, user_parms )

state . Given u, an initial approximation yi, and tol , compute an
approximate solution ys to the state equation c~ y, u! 5 0, i.e., compute ys

such that

ic~ys, u!iL # tol .

The generic function is
[ ys, iflag ] 5 state( yi, u, tol, user_parms )

linstate . Given y, u, su, c, and tol , compute an approximate solution
sy of the linearized state equation

cy~y, u!sy 1 cu~y, u!su 1 c 5 0,

i.e., compute sy such that
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icy~y, u!sy 1 cu~y, u!su 1 ciL # tol .

Particular cases of the previous task are the following ones:
Given y, u, c, and tol , compute an approximate solution sy of the

linearized state equation cy~ y, u!sy 1 c 5 0. Given y, u, su, and tol ,
compute an approximate solution sy of the linearized state equation
cy~ y, u!sy 1 cu~ y, u!su 5 0. The generic function is

[ sy, iflag ] 5 linstate( y, u, su, c, job, tol, user_parms )

In an optimization algorithm linstate might be called with c 5 0 or
su 5 0. In these cases the linearized state equation simplifies. The param-
eter job is used to communicate this to the user-supplied linstate so that
the user can take advantage of these special cases. The parameter job has
the following meaning:

job 5 1 Solve cy~ y, u!sy 1 cu~y, u!su 1 c 5 0 for sy.

job 5 2 Solve cy~ y, u!sy 1 c 5 0 for sy. If job 5 2, then su is a
dummy variable and should not be referenced in linstate .

job 5 3 Solve cy~ y, u!sy 1 cu~ y, u!su 5 0 for sy. If job 5 3, then c is a
dummy variable and should not be referenced in linstate .

yprod . Given y1 and y2, evaluate the scalar product ^ y1, y2&=. The
generic function is

[ yp, iflag ] 5 yprod( y1, y2, tol, user_parms )

uprod . Given u1 and u2, evaluate the scalar product ^u1, u2&8. The
generic function is

[ up, iflag ] 5 uprod( u1, u2, tol, user_parms )

lprod . Given l1 and l2, evaluate the scalar product ^l1, l2&L. The
generic function is

[ lp, iflag ] 5 lprod( lambda1, lambda2, tol, user_parms )

hs_exact . Given y, u, l, sy, and su, compute the product of the Hessian
of the Lagrangian ¹xx

2 ,~ y, u, l! times the vector s 5 ~sy, su!. The generic
function name is

[ hsy, hsu, iflag ] 5 hs_exact( y, u, lambda, sy, su, tol, ind,
user_parms )

The input variables are the y-component y , the u-component u, the
Lagrange multiplier lambda , the y- and u-component sy and su of the
vector s, a dummy variable tol (this variable is included to make the
parameter lists of the Hessian functions uniform, but is not used in this
case), and an indicator ind :

ind 5 0 sy and su are nonzero.

ind 5 1 sy is zero. In this case the vector sy may never be referenced.
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ind 5 2 su is zero. In this case the vector su may never be referenced.

The return variables are the y- and the u-component hsy and hsu of
¹xx

2 ,~ y, u, l!s, and the error flag iflag .
Instead of ¹xx

2 ,~ y, u, l!, one can also use approximations of
¹xx

2 ,~ y, u, l! such as (21). In particular, the input parameter lambda
provided by the optimizer may not be the solution of (14) or (16) but a
suitable approximation.

In many of the above interface functions, the input list contains a
parameter job . This is included to identify special cases that in some
applications may be executed more efficiently than the general task. The
following interface function xnew is also added to allow more efficient
implementations and to improve monitoring. In many applications a con-
siderable overhead, such as the computation of stiffness matrices or the
adaptation of grids, is associated with function or gradient evaluations.
Often, these computations only depend on the iterate ~ y, u!. If ~ y, u! is
unchanged, these computations do not need to be redone, regardless of how
many function or derivative evaluations at this point are computed. In this
case it may be desirable to do these computations only once per iterate and
change these quantities only if the iterate changes. Moreover, if one knows
that a certain point x 5 ~ y, u! is only used temporarily, one may decide to
keep the information corresponding to the point x that one will return to,
rather than recomputing it when one returns. The purpose of xnew is to
communicate the change of x 5 ~ y, u! to the application. The optimization
algorithm should call xnew whenever the argument x 5 ~ y, u! changes.
Another application of xnew is the storage of intermediate information. For
example, the user may wish to record the development of iterates, or to stop
the optimization algorithm and to restart it at a later time. In this
situation the subroutine xnew can be used to store intermediate informa-
tion on hard disk.

xnew. The subroutine xnew activates, or reactivates an iterate. The
generic function is

[ iflag ] 5 xnew( iter, y, u, new, user_parms )

After the call to xnew the pair ~ y, u! passed to xnew is used as the
argument in all functions until the next call to xnew. The input parameter
new is passed to help the user to control the action taken by xnew. The
following is a set of possible options for this input parameter:

new 5 ’init’ Initialize with ~ y, u! as the current iterate. xnew
has never been called before.

new 5 ’current_it’ ~ y, u! is the current iterate.

new 5 ’react_it’ ~ y, u! is reactivated as the current iterate.
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new 5 ’trial_it’ ~ y, u! is a candidate for the next iterate. xnew
has never been called with ~ y, u! before.

new 5 ’new_it’ ~ y, u! will be the next iterate. xnew has been
called with ~ y, u! and option new 5 ’trial_it’
before.

new 5 ’temp’ ~ y, u! is only used temporarily. Usually only one
or two function evaluations are made with argu-
ment ~ y, u!.

Since, in xnew, vital information, like stiffness matrices or grids, may be
computed, xnew also returns iflag .

As we have mentioned before, the options for new depend on the particu-
lar optimization algorithm. The set of values for new above will be useful in
a trust-region or a line-search framework [Dennis and Schnabel 1983; Nash
and Sofer 1996]. Trust-region algorithms generate steps ~sy, su! and evalu-
ate functions at the trial iterate ~ y 1 sy, u 1 su!(new 5 ’trial_it’ ).
Depending on some criteria, the trial iterate ~ y 1 sy, u 1 su! will become
the new iterate (new 5 ’new_it’ ); or it will be rejected, and ~ y, u! will
remain the current iterate (new 5 ’react_it’ ). For the use of xnew in a
simple line-search algorithm see Section 5. The option new 5 ’temp’ will
be useful, for example, in finite-difference approximations.

The settings above are motivated by a trust-region algorithm. In other
optimization algorithms more or fewer settings may be useful. For example,
the steepest descent algorithm in Section 5 requires fewer settings. There-
fore, the actual settings for new depend on the particular optimization
algorithm and should be described in the documentation of each individual
optimization algorithm.

4.3 User-Provided Functions Used Only in the Adjoint Equation Approach

adjoint . Given y, u, and tol , compute an approximate solution l of
the adjoint equation

cy~y, u!*l 1 ¹yf~y, u! 5 0,

i.e., compute l such that

icy~y, u!*l 1 ¹yf~y, u!i= # tol .

A slightly more general task is the following:
Given y, u, fy, and tol , compute an approximate solution l of the

generalized adjoint equation

cy~y, u!*l 1 fy 5 0.
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Here fy is an arbitrary vector and not necessarily the gradient of the
objective with respect to y. Since the gradient ¹yf~ y, u! often has a
particular structure, e.g., has many zero entries, the equation cy~ y, u!*l

1 ¹yf~ y, u! 5 0 might be solved more efficiently than the equation
cy~ y, u!*l 1 fy 5 0 with a generic vector fy. The generic function is

[ lambda, iflag ] 5 adjoint( y, u, fy, job, tol, user_parms )

The parameter job specifies which equation has to be solved.

job 5 1: Solve cy~ y, u!*l 1 ¹yf~ y, u! 5 0 for l.
If job 5 1, then fy is a dummy variable and should not be referenced
in adjoint .

job 5 2: Solve cy~ y, u!*l 1 fy 5 0 for l.

adjval . Given y, u, l, and tol , approximately evaluate the residual of
the adjoint equation

cy~y, u!*l 1 ¹yf~y, u!,

i.e., compute the vector a such that

ia 2 ~cy~y, u!*l 1 ¹yf~y, u!!i= # tol .

The generic function is
[ adj, iflag ] 5 adjval( y, u, lambda, tol, user_parms )

grad . Given y, u, l, and tol , approximately evaluate the reduced
gradient

cu~y, u!*l 1 ¹uf~y, u!,

i.e., compute g such that

ig 2 ~cu~y, u!*l 1 ¹uf~y, u!!i8 # tol .

A slightly more general task is the following: given y, u, l, fu, and tol ,
approximately compute

cu~y, u!*l 1 fu.

Here fu is an arbitrary vector and not necessarily the gradient of the
objective with respect to u. Again, we distinguish between the two cases
because ¹uf~ y, u! is often a very simple vector. The generic function is

[ g, iflag ] 5 grad( y, u, lambda, fu, job, tol, user_parms )

The parameter job specifies which expression has to be evaluated.

job 5 1: Compute cu~ y, u!*l 1 ¹uf~ y, u!.
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If job 5 1, then fu is a dummy variable and should not be referenced
in grad .

job 5 2: Compute cu~ y, u!*l 1 fu.

4.4 User-Provided Functions Used Only in the Sensitivity Equation Approach

fgrad . Given y, u, and tol , compute approximate partial gradients
¹yf~ y, u! and ¹uf~ y, u! of f, i.e., compute fy and fu such that

i¹yf~y, u! 2 fyi= # tol , i¹uf~y, u! 2 fui8 # tol .

The generic function is
[ fy, fu, iflag ] 5 fgrad( y, u, job, tol, user_parms )

The parameter job specifies which partial gradient has to be computed
and is included to allow the optimization algorithm to take advantage of
special cases. It has the following meaning:

job 5 1: Compute ¹yf~ y, u!.

job 5 2: Compute ¹uf~ y, u!.

job 5 3: Compute ¹yf~ y, u! and ¹uf~ y, u!.

sensa . Given y, u, and tol , compute

z 5 cu~y, u!*~cy~y, u!*!21v

approximately, i.e., compute z such that

iz 2 cu~y, u!*~cy~y, u!*!21vi8 # tol .

The generic function is
[ z, iflag ] 5 sensa( y, u, v, tol, user_parms )

sens . Given y, u, and tol , compute

z 5 cy~y, u!21cu~y, u!v

approximately, i.e., compute z such that

icy~y, u!z 2 cu~y, u!viL # tol or iz 2 cy~y, u!21cu~y, u!vi= # tol .

The generic function is
[ z, iflag ] 5 sens( y, u, v, tol, user_parms )

4.5 Stopping Criteria

The output parameter iflag could also be used to implement user-supplied
stopping tests that augment standard convergence tests based on gradient
norms, function values, step norms, or iteration numbers. In addition to
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these standard convergence tests, the user could implement stopping
criteria based on quantities computed within the user-supplied subroutines
and force the optimization algorithm to return by setting iflag . 0.

A sensible place to implement an application-dependent stopping crite-
rion could be in the user-suplied subroutine xnew.

4.6 Consistency and Derivative Checks

For the Adjoint Equation Approach. In exact arithmetic, the adjoints
have to satisfy

^cy~y, u!sy, l&L 5 ^sy, cy~y, u!*l&=, @sy, l,

^cu~y, u!su, l&L 5 ^su, cu~y, u!*l&8, @su, l,

^cy~y, u!21c, sy&= 5 ^c, ~cy~y, u!21!*sy&L, @c, sy.

If inexact solvers are used with tolerances as described in the previous
section, then

^cy~y, u!sy, l&L 2 ^sy, cy~y, u!*l&= 5 2~tol !, @sy, l,

^cu~y, u!su, l&L 2 ^su, cu~y, u!*l&8 5 2~tol !, @su, l,

^cy~y, u!21c, sy&= 2 ^c, ~cy~y, u!21!*sy&L 5 2~tol !, @c, sy.

Derivative computations can be checked using finite differences. If only
the user-provided functions described in Sections 4.2 and 4.3 are to be used
for these checks, then not all derivatives can be accessed. For example,
cu~ y, u!* is never computed explicitly. Using the functions in Sections 4.2
and 4.3, one can perform the checks

Icy~y, u!sy 2
1

a
~c~y 1 asy, u! 2 c~y, u!!I

L

5 2~a!, (24)

Icu~y, u!su 2
1

a
~c~y, u 1 asu! 2 c~y, u!!I

L

5 2~a!, (25)

^cy~y, u!*l, sy&= 2
1

a
~^c~y 1 asy, u!, l&L 2 ^c~y, u!, l&L! 5 2~a!,

^cu~y, u!*l, su&8 2
1

a
~^c~y, u 1 asu!, l&L 2 ^c~y, u!, l&L! 5 2~a!,
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U^¹yf~y, u!, sy&= 2
1

a
~f~y 1 asy, u! 2 f~y, u!!U 5 2~a!, (26)

U^¹uf~y, u!, su&8 2
1

a
~f~y, u 1 asu! 2 f~y, u!!U 5 2~a!. (27)

For the Sensitivity Equation Approach. Similarly, one can check user-
provided information for the sensitivity equation approach. With the user-
provided functions described in Sections 4.2 and 4.4 one can perform the
consistency check

^S~y, u!su, sy&= 2 ^su, S~y, u!*sy&8 5 2~tol !, @sy, su

and the finite difference checks (24)–(25) and (26)–(27).

5. EXAMPLES

5.1 Examples of Optimization Algorithms

In this section we provide code or code fragments for some optimization
algorithms to illustrate the use of the interface. To keep our illustration
simple, we make no use of the return flag iflag and simply assume that
all requested operations can be performed. Moreover, we do not address the
control of inaccuracy, and we simply carry tol along without ever modify-
ing it. What to do in an optimization algorithm if certain application
information cannot be computed and how to control the inexactness are
important and interesting questions. The answers to these questions be-
long in a article on optimization algorithms and are beyond the scope of
this article. Again, we use Matlab syntax for illustration. In particular we
assume that all vectors are arrays so that we can use existing arithmetic
operators for the addition of vectors and scalar multiplication (see Section
4.1).

The first example is the steepest descent method with Armijo line search
rule for the solution of the reduced problem (11). Depending on whether the
sensitivity equation approach or the adjoint equation approach is used the
gradient is computed by (13) or by (15). In this example, u is the unknown
variable, and y is a function of u. As a consequence, only u is passed to
xnew, and the variable y is only used as a dummy argument.

...
% Loop k: a current iterate u is given and the corresponding
% solution y of the state equation has been computed.
%
% Compute the gradient W(y(u),u)*gradf(y(u),u) of the reduced
% function.

if der_cal 55 ’adjoints’
% Solve the adjoint equation.

[lambda, iflag] 5 adjoint( y, u, zeros(size(y)), 1, tol, user_parms );

An Interface between Optimization and Application • 177

ACM Transactions on Mathematical Software, Vol. 25, No. 2, June 1999.



%
% Compute the reduced gradient.

[rgrad, iflag] 5 grad( y, u, lambda, zeros(size(u)), 1, tol, user_parms );
elseif der_cal 55 ’sensitivities’

% Compute the gradient of f wrt y and u.
[grady, gradu, iflag] 5 fgrad( y, u, 3, tol, user_parms );

%
% Compute the reduced gradient.

[z, iflag] 5 sensa( y, u, grady, tol, user_parms );
rgrad 5 -z 1 gradu;

end
%
% Compute step size t.

t 5 1;
[gradnrm2, iflag] 5 uprod( rgrad, rgrad, tol, user_parms );
succ 5 0;
while( succ 55 0 )

% Compute trial iterate (y is a dummy variable).
unew 5 u - t*rgrad;
[iflag] 5 xnew( iter, y, unew, ’trial_it’, user_parms );

%
% Solve the state equation.

[ynew, iflag] 5 state( y, unew, tol, user_parms );
%
% Evaluate objective function.

[fnew, iflag] 5 fval( ynew, unew, tol, user_parms );
%
% Check step size criterion.

if( fnew - f ,5 -1.e- 4 * t * gradnrm2 )
succ 5 1;

end
%
% Reduce the step size.

t 5 0.5 * t;
end

%
% Set new iterate.

y 5 ynew;
u 5 unew;
f 5 fnew
[iflag] 5 xnew( iter, y, u, ’new_it’, user_parms );

%
% End of loop k.

...

As our second example, we consider a simple version of a reduced SQP
method with no strategy for globalization (e.g., see Heinkenschloss [1996]).
At a given point ~y, u!, the SQP method computes a solution of

Ĥ~y, u!su 5 2 W~y, u!*¹f~y, u!,

where Ĥ~ y, u! is the reduced Hessian or an approximation thereof (see
(20)) and then a solution of

178 • M. Heinkenschloss and L. N. Vicente

ACM Transactions on Mathematical Software, Vol. 25, No. 2, June 1999.



cy~y, u!sy 5 2c~y, u! 2 cu~y, u!su.

The following code fragment illustrates the use of the user interface to
implement the reduced SQP method.

...
% A new iterate (y,u) has been computed before and xnew has been called.
%
% Compute the reduced gradient W(y,u)*gradf(y,u).

if der_cal 55 ’adjoints’
% Solve the adjoint equation.

[lambda, iflag] 5 adjoint( y, u, zeros(size(y)), 1, tol, user_parms );
%
% Compute the reduced gradient.

[rgrad, iflag] 5 grad( y, u, lambda, zeros(size(u)), 1, tol, user_parms );
elseif der_cal 55 ’sensitivities’

% Compute the gradient of f wrt y and u.
[grady, gradu, iflag] 5 fgrad( y, u, 3, tol, user_parms );

%
% Compute the reduced gradient.

[z, iflag] 5 sensa( y, u, grady, tol, user_parms );
rgrad 5 -z 1 gradu;

end
%

Compute the value of c(y,u).
[c, iflag] 5 cval( y, u, tol, user_parms );

%
% Compute the norms of c and rgrad squared.

[rgradnrm2, iflag] 5 uprod( rgrad, rgrad, tol, user_parms );
[cnrm2, iflag] 5 lprod( c, c, tol, user_parms );

%
% Termination criterion.

if( sqrt(rgradnrm2) , gtol & sqrt(cnrm2) , ctol )
return

end
%
% Compute su.

...
%
% Compute sy.

[sy, iflag] 5 linstate( y, u, su, c, 1, tol, user_parms );
% Set the new iterate.

y 5 y 1 sy;
u 5 u 1 su;
[iflag] 5 xnew( iter, y, u, ’current_it’, user_parms );
...

One possible merit function to globalize the SQP method is the aug-
mented Lagrangian:

f~y, u! 1 ^l~y, u!, c~y, u!&L 1 ric~y, u!iL
2 ,

where r is a positive penalty parameter. The following code fragment
describes the use of the interface to compute the value of the augmented
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Lagrangian function. The calculation of the scalar product ^l~ y, u!,
c~ y, u!&L by the sensitivity equation approach is shown in (18).

...
Compute the values of f(y,u) and c(y,u).
[f, iflag] 5 fval( y, u, tol, user_parms );
[c, iflag] 5 cval( y, u, tol, user_parms );

%
if der_cal 55 ’adjoints’

% Solve the adjoint equation.
[lambda, iflag] 5 adjoint( y, u, zeros(size(y)), 1, tol, user_parms );

%
[ctlambda, iflag] 5 lprod( lambda, c, tol, user_parms );

elseif der_cal 55 ’sensitivities’
% Solve the linearized state equation.

[sy, iflag] 5 linstate( y, u, zeros(size(u)), c, 2, tol, user_parms );
%
% Compute the gradient of f wrt y.

[grady, gradu, iflag] 5 fgrad( y, u, 1, tol, user_parms );
%

[ctlambda, iflag] 5 yprod( grady, sy, tol, user_parms );
end

%
% Compute the norm of c squared.

[cnrm2, iflag] 5 lprod( c, c, tol, user_parms );
%
% Compute the value of the augmented Lagrangian function.

augLag 5 f 1 ctlambda 1 rho * cnrm2;
...

The next example concerns the implementation of limited-memory BFGS
updates for the approximation of ¹xx

2 ,~ y, u, l!. We set

si 5 S~sy!i

~su!i
D, vi 5 S~vy!i

~vu!i
D, ^si, vi&- 5 ^~sy!i, ~vy!i&= 1 ^~su!i, ~vu!i&8,

where ~sy! i 5 yi11 2 yi, ~su! i 5 ui11 2 ui, ~vy! i 5 ¹y,~ yi11, ui11, l i11! 2

¹y,~ yi, ui, l i!, and ~vu! i 5 ¹u,~ yi11, ui11, l i11! 2 ¹u,~ yi, ui, l i!. If
^sk21, vk21&- Þ 0 and if the Hessian approximation Hk21 is invertible, then
the inverse of the BFGS update is given as

Hk
21 5 ~Inx 2 rk21sk21 R vk21!Hk21

21 ~Inx 2 rk21vk21 R sk21! 1 rk21sk21 R sk21, (28)

where nx 5 ny 1 nu and rk21 5 1/^sk21, vk21&- (e.g., see Nocedal [1980]).
Given x and w, x R w is defined by ~x R w!z 5 ^w, z&-x. See the appen-
dix.

Equation (28) leads to a limited-storage BFGS (L-BFGS), by using the
recursion L times and replacing Hk2L

21 by
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Hk2L
21 3 1

1

gy

Iny 0

0
1

gu

Inu
2.

The computation of Hk
21g, where Hk is the L-BFGS matrix, can be done in a

efficient way following Matties and Strang [1979], Nocedal [1980], or Byrd
et al. [1994]. We demonstrate the computation of z 5 Hk

21g, where g 5
~gy, gu! is a given vector, and Hk

21 is the L-BFGS approximation of
¹xx

2 ,~ y, u, l! using our interface and the recursive formula given in
Matties and Strang [1979] and Nocedal [1980]. The integer L denotes the
number of vector pairs si, vi stored. The last character in the variable name
indicates whether the quantity corresponds to the = space or to the 8
space. Otherwise, the naming of variables and the structure of the algo-
rithm follow that found in Nocedal [1980]. For simplicity, we assume that
k . L.

...
for i 5 L-1:-1:0

j 5 i 1 k - L;
[vtsy, iflag] 5 yprod( vy(j), sy(j), tol, user_parms );
[vtsu, iflag] 5 uprod( vu(j), su(j), tol, user_parms );
rho(j) 5 1 / ( vtsy 1 vtsu );
[gtsy, iflag] 5 yprod( gy, sy(j), tol, user_parms );
[gtsu, iflag] 5 uprod( gu, su(j), tol, user_parms );
alpha(i) 5 ( gtsy 1 gtsu ) * rho(j);
gy 5 gy - alpha(i) * vy(j);
gu 5 gu - alpha(i) * vu(j);

end
gy 5 gy / gammay;
gu 5 gu / gammau;
for i 5 0:L-1

j 5 i 1 k - L;
[gtvy, iflag] 5 yprod( gy, vy(j), tol, user_parms );
[gtvu, iflag] 5 uprod( gu, vu(j), tol, user_parms );
beta(i) 5 ( gtvy 1 gtvu ) * rho(j);
gy 5 gy 1 ( alpha(i) - beta(i ) ) * sy(j);
gu 5 gu 1 ( alpha(i) - beta(i ) ) * su(j);

end
...

5.2 Example of an Optimal Control Problem

Examples that illustrate the use of this interface from an application
perspective are given in Cliff et al. [1997], Heinkenschloss and Vicente
[1999], and, with less detail, in Cliff et al. [1998]. The numerical computa-
tions in those papers were performed using an implementation of this
interface in Matlab or Fortran 77.

We discuss the optimal control problem from Cliff et al. [1997] in more
detail. The state equations in this problem model the steady flow of an
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inviscid fluid in a duct. They are a simplified version of the one-dimen-
sional Euler equations. The goal is to find a shape of the duct, represented
by u, so that the flow velocity, denoted by y, matches a desired velocity
indicated by the superscript d. The boundary conditions in this example
are so that the flow exhibits a shock at ys. Therefore, it is useful to split the
state equation into an equation left of the shock and an equation right of
the shock. In the notation of this article the infinite-dimensional problem
corresponding to (1) is given by

min f~y, u! 5
1

2E
0

ys

~yL~x! 2 yd~x!!2dx 1
1

2E
ys

1

~yR~x! 2 yd~x!!2dx

subject to the equality constraints

~h~yL!!x 1 g~yL, uL! 5 0, x [ @0, ys#,

~h~yR!!x 1 g~yR, uR! 5 0, x [ @ys, 1#,

h~yL~ys!! 5 h~yR~ys!!,

yL~0! 5 yin, yR~1! 5 yout,

and to the inequality constraints

0 # ys # 1, u # uL~x!, uR~x! # u,

where y 5 ~ yL, yR, ys! [ W1, `~0,1! 3 W1, `~0,1! 3 R and u 5 ~uL, uR!
[ L2~0,1! 3 L2~0,1!. The conditions h~yL~ys!! 5 h~yR~ys!! are the Rank-
ine-Hugoniot conditions. Here yL, yR denote the velocity of the fluid left
and right of the shock location ys, and uL, uR are related to the cross
sectional area of the duct left and right of the shock. The superscript d
indicates the desired velocity profile. The functions h and g are given by

h~y! 5 y 1 H# /y, g~ y, u! 5 u~g# y 2 H# /y! with g# 5 1/6 and H# 5 1.2.
For the discretization of the optimal control problem we use a cell-

centered grid. The subinterval @0, ys# left of the shock is subdivided into NL

equidistant subintervals of length hL 5 ys/NL; the subinterval @ ys, 1# right
of the shock is subdivided into NR equidistant subintervals of length
hR 5 ~1 2 ys!/NR. The point xi denotes the midpoint of the ith cell: xi 5
~i 2 ~1/ 2!!hL, i 5 1, . . . , NL, xi 5 ys 1 ~i 2 ~1/ 2! 2 NL!hR, i 5 NL 1
1, . . . , NL 1 NR.
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The objective function is discretized using the midpoint rule which leads
to the discretized objective

f~y, u! 5
1

2
O
i51

NL

hL~yi 2 yd~xi!!
2 1

1

2
O

i5NL11

NL1NR

hR~yi 2 yd~xi!!
2.

The derivatives in the equality constraints of the infinite-dimensional
problem are discretized using forward and backward differences. This leads
to a set of NL 1 NR 1 1 equality constraints c~y, u! 5 0, where

ci~y, u! 5 5 NL~h~yi! 2 h~yi21!! 1 ys g~yi, ui! i 5 1, . . . , NL,
NR~2h~yi11! 1 h~yi!! 1 ~ys 2 1!g~yi, ui! i 5 NL 1 1, . . . , NL 1 NR,
h~yNL! 2 h~yNL11! i 5 NL 1 NR 1 1

and y0 5 yin, yNL1NR11 5 yout. The discretized states are y 5 ~ y1, . . . ,
yNL1NR, ys!

Á, and the discretized controls are u 5 ~u1, . . . , uNL1NR!
Á. We

will use the notation l 5 ~l1, . . . , lNL1NR, ls!
Á for the adjoint variables.

We now discuss a few interface functions in more detail.

5.2.1 Linearized State Equation. The partial Jacobian cy~ y, u! is a
bordered matrix given by

cy~y, u! 5 1 BL~y, u! 0 eL~y, u!

0 BR~y, u! eR~y, u!

dL~y!Á dR~y!Á 0
2,

where BL~ y, u! [ RNL3NL is a lower bidiagonal matrix; BR~ y, u! [

RNR3NR is a upper bidiagonal matrix; and eL~ y, u!, dL~ y! [ RNL, eR~ y, u!,
dR~ y! [ RNR. The partial Jacobian

cu~y, u! 5 1 DL~y, u! 0
0 DR~y, u!

0 0
2,

is a ~NL 1 NR 1 1! 3 ~NL 1 NR! “diagonal” matrix with diagonal entries
given by ~DL~y, u!! ii 5 ys gu~yi, ui!, i 5 1, . . . , NL, and ~DR~y, u!! ii 5
~ ys 2 1!gu~ yi, ui!, i 5 NL 1 1, . . . , NL 1 NR.

Given c, y, u, and su, linstate requires the solution of cy~y, u!sy 5
2cu~ y, u!su 2 c. The structure of cy~ y, u! can be used to solve this system
using a Schur complement approach.

5.2.2 Scalar Products. Even though this discretized optimal control
problem is a rather small dimensional nonlinear programming problem, the
computations in Cliff et al. [1997] have shown that the choice of the scalar
product can noticeably influence the performance of an optimization algo-
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rithm and the quality of the solution. For this problem suitable scalar
products are

^y1, y2&= 5 O
i51

NL 1

NL

~y1!i~y2!i 1 O
i5NL11

NL1NR 1

NR

~y1!i~y2!i 1 ~y1!s~y2!s,

^u1, u2&8 5 O
i51

NL 1

NL

~u1!i~u2!i 1 O
i5NL11

NL1NR 1

NR

~u1!i~u2!i,

^l1, l2&L 5 O
i51

NL 1

NL

~l1!i~l2!i 1 O
i5NL11

NL1NR 1

NR

~l1!i~l2!i 1 ~l1!s~l2!s.

Given y1 and y2, yprod requires the evaluation of ^ y1, y2&=. The interface
functions uprod and lprod are defined analogously.

5.2.3 Adjoint Equation. The adjoint cy* of the partial Jacobian cy de-
pends on the scalar products ^ z , z&=, ^ z , z&L (see Appendix A). For the
scalar products specified above we find that

cy
*~y, u! 5 1 BL~y, u!Á 0 d̃L~y!

0 BR~y, u!Á d̃R~y!

ẽL~y, u!Á ẽR~y, u!Á 0
2,

where d̃L~ y! 5 NLdL~ y!, d̃R~ y! 5 NRdR~ y!, ẽL~ y, u! 5 eL~ y, u!/NL, and
ẽR~ y, u! 5 eR~ y, u!/NR.

Given y, u, the interface function adjoint requires the solution of
cy*~y, u!l 5 2¹yf~ y, u!, if job 5 1. Here ¹yf~ y, u! is the partial
gradient of the objective function with respect to y. This partial gradient
depends on the scalar product ^ z , z&= (see Section 2). In our case it is given
by

¹yf~y, u! 5 ~ys~y1 2 yd~x1!!, . . . , ys~yNL 2 yd~xNL!!, ~1 2 ys!~yNL11 2 yd~xNL11!!,

. . . , ~1 2 ys!~yNL1NR 2 yd~xNL1NR!!, ­ys f~y, u!Á.

The partial derivative ­ys f~ y, u! is a lengthy expression because all grid
points xi depend on the shock location ys. We omit it here. If job 5 2, then
we have also given fy, and adjoint requires the solution of cy*~ y, u!l 5
2fy. In both cases we can use a Schur complement approach to solve the
system.

6. LIMITATIONS AND EXTENSIONS

In the previous section we have illustrated how some optimization tasks
can be implemented using our interface. We have used our interface to
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implement a class of affine-scaling interior-point optimization algorithms
[Dennis et al. 1998] for the solution of

min f~y, u!

s.t. c~y, u! 5 0,

u # u # u (29)

in Fortran 77 and Matlab. However, our interface is certainly not sufficient
to implement all optimization algorithms for the solution of (29) or the
more complicated problem (1). For example, the types of constraints may
limit the applicability of the interface. In particular the presence of
inequality constraints poses interesting questions. For example, for infi-
nite-dimensional problems of the type (29) with controls u in Lp, p $ 1, the
inequality constraints are pointwise constraints and are associated with
the Banach space L`. The use of the Hilbert space 8 5 L2 in this context
seems questionable. We have obtained quite good numerical results with
our algorithms in Dennis et al. [1998] for solving (29) if in this situation we
select 8 5 L2. These numerical observations are supported by the theory
in Ulbrich et al. [1999]. In general, however, the pure Hilbert space
structure underlying our interface (and others) does not seem sufficient. If
one assumes that vectors are stored as arrays, the vectors must be small
enough so that they can be held in-core. This is problematic for problems
with time-dependent partial differential equations or problems with large
data sets such as those arising in seismic inversion. Sometimes such
optimization problems can be reformulated by elimination of part of the
constraints c~ y, u! 5 0 so that the resulting problem is significantly
smaller. Additionally, functions like those implemented in HCL [Gocken-
bach et al. 1997] are needed to accomplish tasks like vector additions, if
vectors cannot be stored in-core, but have to be stored on, say, hard disk.
See also Section 4.1.

Besides the above-mentioned limitations, we believe the interface pre-
sented in this article is very useful. It can be used to implement a large
number of algorithms for a significant class of optimal control problems.
For instance, any problem of the form

min f~w, u!

s.t. d~w, u! 5 0, g~w, u! $ 0,

w # w # w,

u # u # u
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can be reformulated as problem (1) by setting y 5 ~w, s! with g~w, u! 2
s 5 0. In this case the nonsingularity of dw~w, u! would imply the nonsin-
gularity of cy~ y, u!.

We expect that the functions in this interface will be contained in
interfaces developed to handle the very large scale problems mentioned
above. The interface serves an important theoretical purpose in the use of
structure for algorithmic design. By using this interface or some of its
features, optimization algorithm designers are forced to separate optimiza-
tion and application tasks within the algorithms.

APPENDIX

A. SCALING OF THE PROBLEM

We continue the discussion in Section 2 and describe the influence of the
scalar products on the computation of Hessians, adjoints, and quasi-
Newton updates.

A.1 Influence of the Scalar Products on Derivative Computations

The partial Hessians are defined by

lim
hy30

i¹yf~y 1 hy, u! 2 ¹yf~y, u! 2 ¹yy
2 f~y, u!hyi= / ihyi= 5 0,

lim
hu30

i¹yf~y, u 1 hu! 2 ¹yf~y, u! 2 ¹yu
2 f~y, u!hui= / ihui8 5 0,

lim
hy30

i¹uf~y 1 hy, u! 2 ¹uf~y, u! 2 ¹uy
2 f~y, u!hyi8 / ihyi= 5 0,

lim
hu30

i¹uf~y, u 1 hu! 2 ¹uf~y, u! 2 ¹uu
2 f~y, u!hui8 / ihui8 5 0. (30)

The partial derivatives of c are defined by

lim
hy30

ic~y 1 hy, u! 2 c~y, u! 2 cy~y, u!hyi= / ihyi= 5 0,

lim
hu30

ic~y, u 1 hu! 2 c~y, u! 2 cu~y, u!hui8 / ihui8 5 0. (31)

Because of the equivalency of norms in finite dimensions the Hessians are
the first-order partial derivatives of the gradients (which depend on the
scalar product), and the partial Jacobians of c are the matrices of first-
order partial derivatives. Thus, the choice of the scalar product does not
influence (30) and (31) directly. They are important, however, when inexact
derivative information is allowed. Inexactness has to be measured in the
appropriate norm.

If the scalar products are given by (4) and (5), then the Hessians are
given by
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¹yy
2 f~y, u! 5 Ty

21
e¹yy

2 f~y, u!,

¹yu
2 f~y, u! 5 Ty

21
e¹yu

2 f~y, u!,

¹uy
2

¹uu
2 f~y, u! 5 Tu

21
e¹uu

2 f~y, u!,

where e¹
2 is used to denote the matrices of second-order partial deriva-

tives. Note that the partial Hessians ¹yy
2 f~ y, u! and ¹uu

2 f~ y, u! are sym-
metric with respect to the scalar products (4) and (5), respectively, and that
^¹yu

2 f~ y, u!w, v&= 5 ^w, ¹uy
2 f~ y, u!v&8. See also the following discussion

on adjoints.

A.2 Influence of the Scalar Products on Adjoint Computations

The adjoints of cy and cu are defined by the relations

^cy~y, u!*l, v&= 5 ^l, cy~y, u!v&L @l, v,
^cu~y, u!*l, w&8 5 ^l, cu~y, u!w&L @l, w. (32)

With the scalar products (4), (5), (6), and the adjoint relations (32) we
find that

^l, cy~y, u!v&L 5 lÁTlcy~y, u!v

5 ~Ty
21cy~y, u!ÁTll!ÁTyv

5 ^cy~y, u!*l, v&= @l, v.

Thus

cy~y, u!* 5 Ty
21cy~y, u!ÁTl.

Similarly,

cu~y, u!* 5 Tu
21cu~y, u!ÁTl.

A.3 Influence of the Scalar Products on Quasi-Newton Updates

Given u and v in 8, we define the linear operator u R v on 8 by
~u R v!w 5 ^v, w&8u. Thus, if ^v, w&8 5 vÁw, then u R v 5 uvÁ. If
^v, w&8 5 vÁTuw with Tu symmetric positive definite, then u R v 5 uvÁTu.

We consider the BFGS update (see Dennis and Schnabel [1983] or Gruver
and Sachs [1980]) in the u component to illustrate the influence of this
scaling onto the quasi-Newton update. We assume that y is fixed. The
BFGS update is given by
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H1 5 H 1
~¹uf~y, u 1! 2 ¹uf~y, u!! R ~¹uf~y, u 1! 2 ¹uf~y, u!!

^¹uf~y, u 1 ! 2 ¹uf~y, u!, s&8

2
Hs R Hs

^Hs, s&8

.

If ^v, w&8 5 vÁw, then ¹uf~y, u! 5 e¹uf~y, u!, and we obtain the stan-
dard BFGS update [Dennis and Schnabel 1983]. If ^v, w&8 5 vÁTuw, then
¹uf~ y, u! 5 Tu

21
e¹uf~ y, u! and

H1 5 H 1
Tu

21~e¹uf~y, u 1! 2 e¹uf~y, u!!~e¹uf~y, u 1! 2 e¹uf~y, u!!Á

~e¹uf~y, u 1! 2 e¹uf~y, u!!Ás

2
Hs~TuHs!Á

sÁTuHs
.

A.4 Influence of the Scalar Products on Krylov Subspace Methods

The use of weighted scalar products in conjugate-gradient methods is
equivalent to a preconditioning with the inverse of the weighting matrix.
This is described, for example, in the works by Axelsson [1994, Sec. 11.2.6]
and Gutknecht [1993].
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