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ABSTRACT The problem of minimum distance calculation between line-segments/capsules, in 3D space,
is an important subject in many engineering applications, spanning CAD design, computer graphics,
simulation, and robotics. In the latter, the human–robot minimum distance is the main input for collision
avoidance/detection algorithms to measure collision imminence. Capsules can be used to represent humans
and objects, including robots, in a given dynamic environment. In this scenario, it is important to calculate the
minimum distance between capsules efficiently, especially for scenes (situations) that include a high number
of capsules. This paper investigates the utilization of QR factorization for performing efficient minimum
distance calculation between capsules. The problem is reformulated as a bounded variable optimization in
which an affine transformation, deduced fromQR factorization, is applied on the region of feasible solutions.
A geometrical approach is proposed to calculate the solution, which is achieved by computing the point
closest to the origin from the transferred region of feasible solutions. This paper is concluded with numerical
tests, showing that the proposed method compares favorably with the most efficient method reported in the
literature.

INDEX TERMS Minimum distance, line-segments, capsules, robotics.

I. INTRODUCTION
The subject of minimum distance calculation between line-
segments/capsules is important in many areas, for example
in CAD design, computer graphics/games and in simulation.
In such cases, minimum distance calculations are used to
detect any overlap or collision between elements. This sub-
ject is also important in robotics for the problem of path
planning and safety in human-robot interaction, where the
minimum distance is used as a measure of collision immi-
nence. In this scenario, calculating the minimum distance
on-line is required for time critical applications such as
human-robot collision avoidance and the path planning of
robots navigating obstacles towards a goal. Most of collision
avoidance methods require the calculation of the minimum
distance between robot and surrounding environment (includ-
ing humans), which are commonly represented by geometric
primitives (capsules and/or spheres). By using higher num-
ber of geometric primitives the accuracy of representation

increases. In such a case, the acquisition of more data from
sensors is required, resulting in higher computational cost
associated with sensor data processing and minimum dis-
tance calculation between the robot and the surrounding
humans/objects. Outside computer graphics science the num-
ber of studies approaching human and object representation
in real environment from real sensor data is very limited.
In this context, quite a few methods had been proposed in
literature. Ellipses have been utilized to represent the links
of a robot while obstacles are represented by spheres [1].
A computationally efficient solution is based on the repre-
sentation of the robot and obstacles by segments of lines with
spheres swept onto them [2]. In [3] and [4] a humanoid robot
is represented by capsules, while in [5] robot and human
are represented by a collection of spheres. In [6], an indus-
trial manipulator and a human are represented by capsules.
A novelmethod for evaluating the distances between dynamic
obstacles using multiple depth cameras is presented in [7].

5368
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2312-4594
https://orcid.org/0000-0003-2177-5078
https://orcid.org/0000-0002-6186-0755


M. Safeea et al.: Efficient Calculation of Minimum Distance Between Capsules and Its Use in Robotics

A depth space oriented discretization of the Cartesian space is
introduced, including occluded points. Robot and surround-
ing environment can be precisely described using mesh rep-
resentation [8]. This method has the disadvantage of being
costly for performing robot-obstacle minimum distance cal-
culations. To speed up the computation, researchers have
utilized the power of parallel processing, and GPU proces-
sors, to carry out the calculations [8]. A collision avoidance
framework for mechanisms with complex geometries was
demonstrated in simulation environment [9]. Diverse geome-
tries/shapes have been reported in literature for accurate
representation of humans and objects, namely in computer
graphics science [10]. However, concerning the application
in real environment using real sensors, capsules and spheres
continue to be the most common geometry applied. Previ-
ous studies in human-robot collision avoidance showed that
the error derived from the representation of humans using
capsules is relatively small compared to the human-robot
minimum distance dimension, so that it can be considered not
problematic for the collision avoidance process [11].

In this study, the human and the robot are represented by
capsules. Capsules are considered a good geometric primitive
to represent a human, as in Figure 1 (A), in which L’Uomo
Vitruviano from Leonardo da Vinci is represented by 10 cap-
sules. The human body can be represented roughly by a single
capsule, Figure 1 (B). In this scenario the arms can extend out
of the capsule volume for some configurations. Figure 1 (C)
shows a human represented by 3 capsules. In Figure 1 (D)
the human is represented by 5 capsules, 2 capsules in each
arm and 1 single capsule for the torso and head. A relatively
precise representation of the human hand and forearm by
21 capsules is shown in Figure 1 (G).

A robot can roughly be represented by 2 capsules,
Figure 1 (E), or by 3 capsules representing the main robot
links (KUKA iiwa with 7 DOF), Figure 1 (F). The pose of
the capsules covering the robot is obtained from forward
kinematics calculation using the measured robot joint angles.

In [12], it is proposed an algebraic method for minimum
distance computation between two capsules. Another method
for computing the minimum distance between cylinders with
flat ends was proposed in [13]. Nevertheless, the aforemen-
tioned methods are lengthy because they consider the differ-
ent configurations in which two capsules might collide with
each other. A method to determine the minimum distance
between multiple known (geometry, position, orientation and
configuration) andmultiple unknown objects within a camera
image is presented in [14]. The distance is estimated by
searching for the largest expansion radius where the pro-
jected model does not intersect the object areas classified
as unknown. A novel approach to approximate the mini-
mum distance between robot links and obstacles is proposed
in [15]. Obstacles are represented by a bounding box, mod-
eled as cylinders and boxes. Each part of the robot arm is
subdivided into an optimal number of spheres that encompass
the initial volume. The minimum distance between the robot
and the objects is approximated by the minimum distance

FIGURE 1. (A) L’Uomo Vitruviano from Leonardo da Vinci and its
representation by 10 capsules, (B) human represented by 1 capsule,
(C) human represented by 3 capsules, (D) human represented by
5 capsules, (E) robot represented by 2 capsules, (F) robot represented by
3 capsules and (G) human hand and forearm are represented by
21 capsules.

between the obstacle bounding box and the spheres. An algo-
rithm for computing the minimum translational distance
based on the Gilbert-Johnson-Keerthi algorithm between two
spherically extended polytopes is introduced in [16]. A well-
known methodology for efficiently computing the segment
to segment (capsules) distance which is considered the most
efficient method in literature concerning computational effi-
ciency is detailed in [17, pp. 417–418].

In this study, Section II presents the proposed QR-based
capsule-capsule minimum distance method. Experiments and
results are reported in Section III, both qualitative and quan-
titative. Finally, the conclusion is in Section IV. The Media
materials contain the detailed deduction of the proposed QR
method and running code.
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FIGURE 2. Minimum distance between two capsules.

II. MINIMUM DISTANCE: CAPSULE-CAPSULE
A. FORMULATION
Owing to their geometry, calculating the minimum distance
between two capsules can be reduced to the calculation of the
minimum distance between two line-segments at the capsules
axes. In Figure 2 it is shown two line-segments representing
the axes of two capsules and their associated common normal.
Each capsule can be defined by two vectors (at the beginning
and end of the capsule’s axis-segment) and a radius ρ. Let’s
designate the position vectors defining the end points of the
axis-segment of a capsule by p1 and u1 (capsule 1), and p2 and
u2 (capsule 2). Then, we can define two vectors s1 = u1−p1
and s2 = u2 − p2.

Two points of interest, one in each axis segment of a
capsule, are considered. Those points are represented relative
to the base frame by two vectors, r1 and r2:

r1 = p1 + s1λ1 (1)

r2 = p2 + s2λ2 (2)

where λ1 and λ2 are scalar parameters. Each parameter has
a value in the range from zero to one when the point it
represents is confined in between the two ends of the axis-
segment of the capsule.

The problem of calculating the minimum distance between
the two capsules renders to a minimization problem:

min(8) = min(|p2 + s2λ2 − (p1 + s1λ1)| − ρ1 − ρ2) (3)

where ρ1 and ρ2 are the radii of the capsules. Giving that ρ1
and ρ2 are constants, then the minimization problem can be
reformulated:

min(|4r|) = min(|p2 + s2λ2 − (p1 + s1λ1)|) (4)

where 4r = r2 − r1. We can rewrite the optimization
function in the following equivalent quadratic form:

min(f ) = min((Ax+ y)T(Ax+ y)) (5)

FIGURE 3. Region of feasible solutions of optimization problem (5).

FIGURE 4. Modified optimization problem (7).

where matrix A =
[
s2 −s1

]
and vector y = p2 − p1.

The problem can be viewed as minimizing (5), subject to the
constrains 0 < x1 < 1 and 0 < x2 < 1 (x1 and x2 are
the components of the vector x). Figure 3 shows the level
sets and the region of feasible solutions of the optimization
problem (5).

B. QR FACTORIZATION
The function f can be reformulated by performing QR fac-
torization on matrix A and fixing. Then, the optimization
problem in (5) is equivalent to:

min(f1) = min((Rx+QTy)T(Rx+QTy)) (6)

where Q is a 3 × 2 matrix whose column vectors are of unit
length and mutually orthogonal, and matrixR is a 2×2 upper
triangular. By performing a variable change the optimization
problem becomes:

min(f1) = min(uTu) (7)

where u is given by:

u = (Rx+QTy) (8)

The modified optimization problem (7) is shown
in Figure 4. We notice that after performing the transfor-
mation described in (8) the elliptical level sets of the cost
function are transformed into circles and the rectangular
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Algorithm 1: Minimum distance calculation

Input : R region of feasible solutions
(Q,R) facorization matrices of A

Output : umin vector of coefficients
01 : Transform R using the function f (x) = (Rx+QTy)
02 : If Origin is inside R then
03 : umin← [0, 0]T

04 : else
05 : for each boundary segment of R do
06 : c← point of segment closest to origin
07 : If first iteration then
08 : umin← c
09 : else
10 : If norm(umin) > norm(c) then
11 : umin← c
12 : end if
13 : end if
14 : end for
15 : end if

region of feasible solutions is transformed into a parallelo-
gram. The solution to the modified optimization problem (7)
is reduced to finding that point of the parallelogram region
closest to the origin, umin, efficiently calculated in 2D space,
Algorithm 1. Finally, the minimum distance between two
capsules is calculated from:

dmin =
√
uTminumin + y

Ty− yTQQTy− ρ1 − ρ2 (9)

For a set of n line-segments/capsules it can be noticed that:
1) Minimum distance calculations shall be performed

mutually between any two capsules of the set, resulting
in O

(
n2
)
complexity;

2) QR factorization of matrix Ai associated with a subset
i of two capsules can be enhanced for efficiency since
different Ai have shared columns in their structure;

3) The vector umin is calculated in two dimensional space,
while other algorithms calculate xmin in the three
dimensional space;

4) Vector operations in <2 are less costly than operations
in <3;

5) We propose umin in <2 and take advantage of the fact
that the area of feasible solutions is a parallelogram.

A document with the full detail of the proposed QR
method, including comparison with the method in [17] and
C++ running code is in Media materials.

III. EXPERIMENTS AND RESULTS
Performance was evaluated by comparing the proposed QR
method with the method in [17] to compute the segment
to segment minimum distance. Three comparison criteria
were considered: (1) computational complexity, (2) execution
time using C++ and (3) numerical precision. The results for
the computational complexity of the algorithms (number of
floating point operations – addition, multiplication, division

FIGURE 5. Execution time comparison for the proposed QR method,
the method in [17] and the modified method in [17] as a function of
number of line-segments/capsules of the set. Algorithms implemented in
C++.

FIGURE 6. Execution time ratio (Method [17]/QR), (Modified method
[17]/QR) and (Method [17]/Modified
method [17]) as a function of number of line-segments/capsules of the
set. Algorithms implemented in C++.

and square root for QR) are in Table 1. For the second
comparison criteria, a set of line-segments was randomly gen-
erated and the minimum distance (squared) between each two
line-segments of the set was calculated using the proposed
QR method and the method in [17]. By implementing the
algorithms in C++, results indicate that in terms of execution
time the proposed QR method performed about 10% faster
than the method in [17], Figure 5 and Figure 6.

We noticed that method [17] can be modified by promoting
some of the operations from O(n2) to O(n). The results of
those operations can be stored in memory and used later in
theO(n2) part of the algorithm. In such a case, theO(n2) com-
putational complexity of method [17] is reduced as shown
in Table 1. Nevertheless, the proposed QR method is still
more efficient in terms of execution time as shown in Figure 5
and Figure 6. The modified method in [17] is detailed in the
Media materials.

Considering the third comparison criteria, numerical pre-
cision, a group of 5000 line-segments/capsules has been
generated randomly in 3D space. The (x, y, z) coordinates
of the start and end point of each segment are in the
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TABLE 1. Computational complexity for the method in [17], the modified method in [17] and the proposed QR method.

FIGURE 7. Average relative error between the method in [17] and the
proposed QR method as a function of the number of
line-segments/capsules of the set.

range [−100, 100]. The proposed QRmethod and the method
in [17] are used to calculate the minimum distance between
each couple of segments from the set. For each couple of
segments, the relative error is defined as the ratio of the
absolute value of difference between calculations using the
two methods:

e =
2|dqrmin − d

s
min|

dqrmin + d
s
min

(10)

where dqrmin is the minimum distance calculated using the
proposed QR method and d smin is the minimum distance cal-
culated using the method in [17]. Experimental tests resulted
in a maximum value of the relative error of 1.059e−8, a min-
imum value of the relative error of 1.11e−16 and an average
error of 4.87e−10. These values demonstrate that the error
is negligible. The same test has been repeated for different
groups of line-segments/capsules with different number of
elements, Figure 7.

IV. CONCLUSION
In this study we proposed a novel method based on QR
factorization for performing minimum distance calculations
for a set of line-segments/capsules. Capsules demonstrated
to be good solution to represent humans and objects in real
environment having data from real sensors as input. Exper-
imental results indicate that the proposed solution is more
efficient than the existing most efficient method in literature.
Such efficiency was measured in computationally complex-

ity (reduced number of floating point operations), execution
time (about 10% better) and numerical precision (the error is
negligible).
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