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Abstract The Dyson–Schwinger quark equation is solved
for the quark-gluon vertex using the most recent lattice data
available in the Landau gauge for the quark, gluon and
ghost propagators, the full set of longitudinal tensor struc-
tures in the Ball-Chiu vertex, taking into account a recently
derived normalisation for a quark-ghost kernel form factors
and the gluon contribution for the tree level quark-gluon
vertex identified on a recent study of the lattice soft gluon
limit. A solution for the inverse problem is computed after
the Tikhonov linear regularisation of the integral equation,
that implies solving a modified Dyson–Schwinger equation.
We get longitudinal form factors that are strongly enhanced
at the infrared region, deviate significantly from the tree level
results for quark and gluon momentum below 2 GeV and at
higher momentum approach their perturbative values. The
computed quark-gluon vertex favours kinematical configu-
rations where the quark momentum p and the gluon momen-
tum q are small and parallel. Further, the quark-gluon vertex
is dominated by the form factors associated to the tree level
vertex γμ and to the operator 2 pμ + qμ. The higher rank
tensor structures provide small contributions to the vertex.

1 Introduction

The interaction of quarks and gluons is described by Quan-
tum Chromodynamics [1–4], a renormalisable gauge theory
associated to the color gauge group SU(3). Of its correla-
tion functions, the quark-gluon vertex has a fundamental role
in hadron phenomenology, in the understanding of chiral
symmetry breaking mechanism and the realisation of con-
finement. Despite its relevance for strong interactions, our
knowledge of the quark-gluon vertex from first principles
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calculations is relatively poor. At the perturbative level, only
recently a full calculation of the twelve form factors asso-
ciated to this vertex was published [5] but only for some
kinematical configurations, namely the symmetric configu-
ration (equal incoming, outgoing quark and gluon squared
momenta), the on-shell configuration (quarks on-shell with
vanishing gluon momentum) and what the authors called its
asymptotic limit. In particular, the vertex asymptotic limit
was used to investigate ansätze that can be found in the lit-
erature [6–11] with the aim to test their description of the
ultraviolet regime.

At the non-perturbative level, the quark-gluon vertex has
been studied within continuum approaches to QCD by sev-
eral authors [11–23]. Typically, the computation is performed
after writing the vertex in terms of other QCD vertices and
propagators and taking into account its perturbative tail. Most
of the computations include only a fraction of the twelve form
factors required to fully describe the quark-gluon vertex.
In [17,22,23] the authors look for a first principle determina-
tion of the vertex by solving the theory at the non-perturbative
level, gathering information on the vertex from QCD sym-
metries and relying on one-loop dressed perturbation theory.
The vertex has also been investigated perturbatively within
massive QCD, i.e. using the Curci-Ferrari model [18], and
all its (perturbative) tensor structures form factors accessed
for some kinematical configurations.

Lattice simulations, both for quenched [24–26] and full
QCD [27], were also used to investigate the quark-gluon
vertex. Again, only a limited set of kinematical configura-
tions were accessed and, in particular, its the soft gluon limit,
defined by a vanishing gluon momenta, was mostly explored.
For full QCD so far only a single form factor, that associated
with the tree level tensor structure, was measured on lattice
simulation in the soft gluon limit.

One can also find in the literature attempts to combine con-
tinuum non-perturbative QCD equations with lattice simula-
tions to study the quark-gluon vertex. Indeed, in [28] a gener-
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alised Ball-Chiu vertex was used in the quark gap equation,
together with lattice results for the quark, gluon and ghost
propagators to investigate the quark-gluon vertex. In [29],
the full QCD lattice data for λ1 was studied relying on con-
tinuum information about the vertex.

The use of continuum equations with results coming from
lattice simulations requires high quality lattice data to feed
the continuum equations that should be solved for the ver-
tex. In this approach, the computation of a solution of the
continuum equations requires assuming some type of func-
tional dependence for various propagator functions. In recent
years, there has been an effort to improve the quality of the
lattice data, in the sense of being closer to the continuum
and producing simulations with large statistical ensembles,
both for propagators and for vertex functions. This approach
that combines lattice information and continuum equations
relies strongly on the effort to access high precision lattice
simulations.

For the practitioner oftentimes it is sufficient to have a
good model of the vertex that should incorporate the pertur-
bative tail to describe the ultraviolet regime, some “guess-
ing” for the infrared region and, hopefully, comply with
perturbative renormalisation [5–8,31]. A popular and quite
successful model was set in [32], named the Maris-Tandy
model, that assumes a bare quark-gluon vertex and introduces
an effective gluon propagator that is strongly enhanced at
infrared scales and recovers the one-loop behaviour at higher
momentum. This model simplifies considerably the momen-
tum dependence of the combined effective gluon propaga-
tor and quark-gluon vertex and assumes that the dominant
momentum dependence is associated only with the gluon
momentum. Such type of vertex that appears in the Dyson–
Schwinger and the Bethe–Salpeter equations can be seen as
a reinterpretation of the full vertex tensor structure, after
rewriting its main components in a way that formally can
be associated with the effective gluon propagator. Although
the Maris-Tandy model is quite successful for phenomenol-
ogy, it is not able to describe the full set of hadronic prop-
erties and fails to explain the mass splittings of the ρ and
a1 parity partners, underestimates weak decay constants of
heavy-light mesons and cannot reproduce simultaneously the
mass spectrum and decay constants of radially excited vec-
tor mesons to point out some known limitations. For a more
complete description see, for example, [30,33–35] and ref-
erences therein. Several authors have tried to improve the
Maris-Tandy model either by studying its dependence on the
various parameters, see e.g. [34], or by changing its func-
tional dependence at low momenta, see e.g. [36], to achieve
either a better description of Nature or good agreement with
the results from lattice simulations.

The goal of the present work is to explore further the
quark-gluon vertex in the non-perturbative regime from first
principles calculations combining continuum methods with

results coming from lattice simulations. Our approach fol-
lows the spirit of the calculation performed in [28] that solves
the quark Dyson–Schwinger equation for the vertex. In [28]
the quark-gluon vertex was described as a generalised Ball-
Chiu vertex and single unknown form factor, function only of
the gluon momentum, was considered. The current work goes
beyond this approximation and includes the full set of lon-
gitudinal form factors that appear in the Ball-Chiu vertex. In
this work we disregard any contribution due to the transverse
form factors and consider the Landau gauge quark-gluon ver-
tex, to profit from the recent high quality lattice data for the
quark, the gluon and the ghost propagators. Moreover, our
computation also incorporate the recent analysis of the full
QCD lattice simulation for the quark-gluon vertex in the soft
gluon limit that identifies an important contribution, for the
infrared vertex, associated with the gluon propagator [29]. As
in other studies, we rely on a Slavnov–Taylor identity to write
the vertex longitudinal form factors as a function of the quark
wave function, the running quark mass, the quark-ghost ker-
nel form factors and the ghost propagator. The normalisation
of the quark-ghost kernel form factors X0 (see below for def-
initions) derived in [17] for the soft gluon limit is also taken
into account when solving the quark gap equation for the
vertex. The normalisation of X0 played an important role in
the analysis of the full QCD lattice data analysis for λ1, the
form factor associated with the tree level tensor structure γμ,
performed in [29] that identified an important contribution
for λ1 coming from the gluon propagator.

Our solution for the quark-gluon vertex returns a X0

that deviates only slightly from the normalisation condi-
tion referred above. However, the longitudinal form factors
describing the quark-gluon vertex are strongly enhanced in
the infrared region. The enhancement of the four longitudinal
form factors occurs for quark and gluon momentum below 2
GeV and can be traced back to ghost contribution introduced
by the Slavnov–Taylor identity and the gluon dependence
of the ansatz. At high momentum the form factors seem to
approach their perturbative values. The matching with the
perturbative tail is not perfect and this result can be under-
stood partially due to the regularisation for the mathemati-
cal problem, i.e. the Tikhonov regularisation, and partially to
the parametrisation of the vertex. Indeed, by calling the gluon
propagator to describe the various form factors, the inversion
of the Dyson–Schwinger equations is quite sensitive to the
low momentum scales, where the gluon propagator is much
larger, and less sensitive to the ultraviolet regime. In order
to overcome this problem, we considered a relatively large
cutoff in the inversion and in this way add information on the
perturbative tail.

The computed quark-gluon vertex is a function of the
angle between the quark four momentum p and the gluon
four momentum q that, clearly, favours kinematical config-
urations where p and q of the order of 1 GeV or below. The
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Fig. 1 The quark-gluon vertex

p2 −p1

p3

enhancement occurs preferably at momenta of ∼ ΛQCD .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQCD . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γμ and the operator 2 pμ+qμ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
μ (p1, p2, p3) = g ta Γμ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i

A(p2)/p − B(p2)
= i

A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p − mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant,mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
μν(q) ( i g tbγν ) S(p − q) Γ a

μ (−p, p − q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

μν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
μν(q) = −i δab

(
gμν − qμqν

q2

)
D(q2) ; (6)

below both Dab
μν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
μ or, equivalently Γμ, that

Z(p2) and M(p2) can be computed. The Lorentz structure

[
p

]−1 =
p

[ ]−1 +
p

q = p− k

k

Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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of the quark-gluon vertex Γμ can be decomposed into longi-
tudinal Γ (L) and transverse Γ (T ) components relative to the
gluon momenta, i.e. one writes

Γμ(p1, p2, p3) = Γ (L)
μ (p1, p2, p3) + Γ (T )

μ (p1, p2, p3),

(7)

where, by definition,

pμ
3 Γ (T )

μ (p1, p2, p3) = 0. (8)

By choosing a suitable tensor basis in the spinor-Lorentz
space, Γμ can be written as a sum of scalar form factors that
multiply each of the elements of the basis. The full vertex
Γμ requires twelve form factors and for the Ball and Chiu
basis [6] it reads

Γ L
μ (p1, p2, p3) = −i

4∑
i=1

λi (p1, p2, p3) L
(i)
μ (p1, p2) (9)

Γ T
μ (p1, p2, p3) = −i

8∑
i=1

τi (p1, p2, p3) T
(i)
μ (p1, p2).

(10)

The operators associated to the longitudinal vertex are

L(1)
μ (p1, p2) = γμ,

L(2)
μ (p1, p2) = (/p1 − /p2) (p1 − p2)μ ,

L(3)
μ (p1, p2) = (p1 − p2)μ ID ,

L(4)
μ (p1, p2) = σμν (p1 − p2)

ν , (11)

while those associated to the transverse part of the vertex
read

T (1)
μ (p1, p2) = [

p1μ (p2 · p3) − p2μ (p1 · p3)
]
ID,

T (2)
μ (p1, p2) = −T (1)

μ (p1, p2) (/p1 − /p2) ,

T (3)
μ (p1, p2) = p2

3, γμ − p3μ /p3,

T (4)
μ (p1, p2) = T (1)

μ (p1, p2) σαβ pα
1 p

β
2 ,

T (5)
μ (p1, p2) = σμν pν

3 ,

T (6)
μ (p1, p2) = γμ

(
p2

1 − p2
2

)
+ (p1 − p2)μ /p3,

T (7)
μ (p1, p2) = −1

2

(
p2

1 − p2
2

)

× [
γμ (/p1 − /p2) − (p1 − p2)μ ID

]
− (p1 − p2)μ σαβ pα

1 pβ
2 ,

T (8)
μ (p1, p2) = −γμ σαβ pα

1 pβ
2 + (p1μ /p2 − p2μ /p1),

(12)

where σμν = 1
2 [γμ, γν].

2.1 QCD symmetries and the quark-gluon vertex

The global and local symmetries of QCD constrain the full
vertex Γμ and connect several of the Green’s functions the-
ory. For example, the global symmetries of QCD require
that the form factors λi and τi to be either symmetric or
anti-symmetric under exchange of the two first momenta;
see, e.g., ref. [38] and references therein. On the other hand,
gauge symmetry implies that the Green functions also satisfy
the Slavnov–Taylor identities (STI) [39–41]. These identi-
ties play a major role in our understanding of QCD and, in
particular, the longitudinal part of the quark-gluon vertex is
constrained by the following identity

pμ
3 Γμ(p1, p2, p3) = F(p2

3)
[
S−1(−p1) H(p1, p2, p3)

− H(p2, p1, p3) S
−1(p2)

]
, (13)

where the ghost-dressing function F(q2) is related to the
ghost two-point correlation function as

Dab(q2) = − δab Dgh(q
2) = − δab

F(q2)

q2 (14)

and H and H are associated to the quark-ghost kernel. As dis-
cussed in [38], these functions can be parametrised in terms
of four form factors as

H(p1, p2, p3) = X0 ID + X1 /p1 + X2 /p2 + X3 σαβ pα
1 pβ

2 ,

H(p2, p1, p3) = X0 ID − X2 /p1 − X1 /p2 + X3 σαβ pα
1 pβ

2 ,

(15)

where Xi ≡ Xi (p1, p2, p3) and Xi ≡ Xi (p2, p1, p3).
The STI given in Eq. (13) can be solved with respect to

the vertex [13] to write the longitudinal form factors λi in
terms of the quark propagator functions A(p2), B(p2) and
the quark-ghost kernel functions Xi and Xi as

λ1(p1, p2, p3) = F(p2
3)

2

×
{
A(p2

1)
[
X0 +

(
p2

1 − p1 · p2

)
X3

]

+ A(p2
2)
[
X0 +

(
p2

2 − p1 · p2

)
X3

]

+ B(p2
1) [X1 + X2]

+ B(p2
2)
[
X1 + X2

] }
, (16)

λ2(p1, p2, p3) = F(p2
3)

2
(
p2

2 − p2
1

)

×
{
A(p2

1)
[(

p2
1 + p1 · p2

)
X3 − X0

]

+ A(p2
2)
[
X0 −

(
p2

2 + p1 · p2

)
X3

]

123



Eur. Phys. J. C (2019) 79 :116 Page 5 of 33 116

+ B(p2
1) [X2 − X1]

+ B(p2
2)
[
X1 − X2

] }
, (17)

λ3(p1, p2, p3) = F(p2
3)

p2
1 − p2

2

×
{
A(p2

1)
[
p2

1 X1 + p1 · p2 X2

]

− A(p2
2)
[
p2

2 X1 + p1 · p2 X2

]

+ B(p2
1) X0 − B(p2

2) X0

}
, (18)

λ4(p1, p2, p3) = − F(p2
3)

2

{
A(p2

1) X2 − A(p2
2) X2

+ B(p2
1) X3 − B(p2

2) X3

}
. (19)

A nice feature of the above solution for the various form
factors λi , that can be checked by direct inspection, is that the
symmetry requirements on the λi due to charge conjugation
are automatically satisfied independently of the functions A,
B, Xi and Xi . This is a particularly important point when
modelling the vertex.

3 Decomposing the Dyson–Schwinger equation into its
scalar and vector components

The Dyson–Schwinger equation for the quark propagator is
written in (4), with the quark self-energy being given by (5).
This equation can be projected into its scalar and vector com-
ponents by taking appropriate traces.

The scalar part of the equation is given by the trace of (4)
which, after some algebra, reduces to

i B(p2) = i Z2 m
bm

+ CF Z1g
2
∫

d4q

(2 π)4
Δ(q2)[

A(k2)
]2 k2 − [

B(k2)
]2

×
{

2 h(p, q)

(
2
[
B(k2)

]
λ2 −

[
A(k2)

]
(λ3 + λ4)

)

+3

([
B(k2)

]
λ1 +

[
A(k2)

] (
2p2 + q2 − 3(p · q)

)
λ4

)}
,

(20)

after insertion of the vertex decomposition (7), taking into
account only its longitudinal part, where k = p − q,

h(p, q) = p2 q2 − (p · q)2

q2 , (21)

λi ≡ λi (−p, p−q, q) and CF = 4/3 is the Casimir invari-
ant associated to the SU(3) fundamental representation.

The vector component of (4) is obtained after multiplica-
tion by /p and then taking the trace of the resulting equation
to arrive on

−i p2A(p2) = −i Z2 p2

+CF Z1g
2
∫

d4q

(2 π)4

Δ(q2)[
A(k2)

]2
k2 − [

B(k2)
]2

×
{

2 h(p, q)

([
A(k2)

] [
λ1 + λ2

(
2p2 + q2 − 2p · q

)]

+
[
B(k2)

]
(λ4 − λ3)

)

+ 3

([
A(k2)

]
λ1

(
(p · q) − p2

)

+
[
B(k2)

]
λ4 ((p · q) − 2p2)

)}
. (22)

The two Eqs. (20) and (22) can be simplified further
by modelling the quark-gluon vertex. For example, in [13,
28] the vertex was parametrised using the solution of the
Slavnov–Taylor identity (16)–(19) and setting X1 = X2 =
X3 = 0. The rationale for such a choice comes from per-
turbation theory which gives, at tree level, X0 = 1 and
X1 = X2 = X3 = 0. This ansatz, that ignores all form
factor associated to the quark-ghost kernel but X0, assumes
that at the non-perturbative level the hierarchy of the form
factors follows its relative importance observed in the high
momentum regime. Furthermore, in order to compute a solu-
tion of the Dyson–Schwinger equations it was introduced a
further restriction on X0, that it depends only on the incoming
gluon momenta, i.e. that X0 = X0(q2).

In order to solve the Dyson–Schwinger equations for the
vertex, it will be assumed that the form factors associated to
the quark-ghost kernel, see Eq. (15), factorize as

Xi (p
2
1, p

2
2, p2

3) = gi (p
2
1, p2

2) Yi (p
2
3), (23)

where gi (p2
1, p2

2) = gi (p2
2, p

2
1) are symmetric functions of

its arguments. This type of factorisation is compatible, for
example, with the Maris-Tandy quark-gluon description of
the quark-gluon vertex [32] and simplifies considerably the
analysis of the solutions of the equations to be solved. In [17]
it was proved that, to all-orders,

X0(p, −p, 0) = 1 and X1(p, −p, 0) = X2(p, −p, 0)

(24)

that, for the ansatz (23) implies

g(p2, p2) Y0(0) = 1,

g1(p
2, p2) Y1(0) = g2(p

2, p2) Y2(0). (25)

A solution that complies with the second relation given in
Eq. (24) is to assume that X1 = X2 for any kinematical
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configuration. Note also that by choosing the gi to be sym-
metric functions of the arguments, the form factors Xi and
Xi become identical. If one takes into account these relations
into the ansatz for the quark-gluon vertex, then the solutions
of the Slavnov–Taylor identities (16)–(19) become

λ1(−p, p − q, q) = F(q2)

2

×
{[

A(p2) + A(k2)

]
g0(p

2, k2) Y0(q
2)

+ 2

[
B(p2) + B(k2)

]
g1(p

2, k2) Y1(q
2)

+
[
A(p2)

(
2p2 − (pq)

)

+A(k2)

(
2p2 + q2 − 3(pq)

)]

× g3(p
2, k2) Y3(q

2)

}
, (26)

λ2(−p, p − q, q) = F(q2)

2(q2 − 2(p · q))

×
{
ΔA g0(p

2, k2) Y0(q
2)

+
[
A(p2) (pq) − A(k2)

(
q2 − (pq)

)]

× g3(p
2, k2) Y3(q

2)

}
, (27)

λ3(−p, p − q, q) = F(q2)

q2 − 2(p · q)

×
{
ΔB g0(p

2, k2) Y0(q
2)

+
[
A(k2)

(
q2 − (pq)

)
− A(p2) (pq)

]

× g1(p
2, k2) Y1(q

2)

}
, (28)

λ4(−p, p − q, q) = F(q2)

2

×
{
ΔA g1(p

2, k2) Y1(q
2) + ΔB g3(p

2, k2) Y3(q
2)

}
,

(29)

where

ΔA = A(k2) − A(p2) , ΔB = B(k2) − B(p2), (30)

and k = p − q. The scalar component of the Dyson–
Schwinger equations is now

i B(p2) = i Z2 m
bm

+ CF Z1g
2
∫

d4q

(2 π)4

Δ(q2) F(q2)[
A(k2)

]2
k2 − [

B(k2)
]2

×
{
g0(p

2, k2) Y0(q
2)K (0)

B (p, q)

+ g1(p
2, k2) Y1(q

2)K (1)
B (p, q)

+ g3(p
2, k2) Y3(q

2)K (3)
B (p, q)

}
(31)

where the kernels are defined as

K
(0)
B (p, q) = 2 h(p, q)

q2 − 2(pq)

(
B(k2) ΔA − A(k2) ΔB

)

+3

2
B(k2)

[
A(k2) + A(p2)

]
, (32)

K
(1)
B (p, q)

= h(p, q) A(k2)

[
2
A(p2)(pq) − A(k2)

(
q2 − (pq)

)
q2 − 2(pq)

− ΔA

]

+ 3 B(k2)

(
B(p2) + B(k2)

)

+ 3

2
A(k2) ΔA

(
2p2 + q2 − 3(pq)

)
, (33)

K
(3)
B (p, q)

= h(p, q)

{
2 B(k2)

A(p2)(pq) − A(k2)
(
q2 − (pq)

)
q2 − 2(pq)

−A(k2) ΔB

}

+ 3

2
B(k2)

[
A(p2)

(
2p2 − (pq)

)

+ A(k2)

(
2p2 + q2 − 3(pq)

)]

+ 3

2
A(k2) ΔB

(
2p2 + q2 − 3(pq)

)
. (34)

Similarly, the vector component of the Dyson–Schwinger
equations reduces to

−i p2A(p2) = −i Z2 p2

+CF Z1g
2
∫

d4q

(2 π)4

Δ(q2) F(q2)[
A(k2)

]2
k2 − [

B(k2)
]2

×
{
g0(p

2, k2) Y0(q
2)K (0)

A (p, q)

+ g1(p
2, k2) Y1(q

2)K (1)
A (p, q)

+ g3(p
2, k2) Y3(q

2)K (3)
A (p, q)

}
(35)

with the kernels given by

K
(0)
A (p, q)

= h(p, q)

{
A(k2)

[
A(p2) + A(k2) + 2p2 + q2 − 2(pq)

q2 − 2(pq)
ΔA

]
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−2B(k2)
ΔB

q2 − 2(pq)

}

−3

2
A(k2)

(
A(p2) + A(k2)

)(
p2 − (pq)

)
, (36)

K
(1)
A (p, q)

= h(p, q)

{
2 A(k2)

(
B(p2) + B(k2)

)

+ B(k2)

[
ΔA + 2

A(p2)(pq) − A(k2)(q2 − (pq))

q2 − 2(pq)

]}

− 3 A(k2)

(
B(p2) + B(k2)

)(
p2 − (pq)

)

+ 3

2
B(k2) ΔA

(
(pq) − 2 p2

)
, (37)

K
(3)
A (p, q)

= h(p, q)

{
A(k2)

[
A(p2)

(
2p2 − (pq)

)

+A(k2)

(
2p2 + q2 − 3(pq)

)

+ 2p2 + q2 − 2(pq)

q2 − 2(pq)

×
(
A(p2)(pq) − A(k2)(q2 − (pq))

)]

+ B(k2) ΔB

}

+ 3

2

(
(pq) − p2

)
A(k2)

×
(
A(p2)

(
2p2 − (pq)

)
+ A(k2)

(
2p2 + q2 − 3(pq)

))

+ 3

2

(
(pq) − 2p2

)
B(k2) ΔB. (38)

4 The Dyson–Schwinger equations in Euclidean space

As already stated, our goal is to solve the Dyson–Schwinger
equations for the quark-ghost kernel, said otherwise for the
quark-gluon vertex, and this requires the knowledge of the
quark, gluon and ghost propagators. For the propagators we
will rely on lattice inputs that provide first principles non-
perturbative results and also demand that the above expres-
sions should be rewritten in Euclidean space. The Wick rota-
tion to go from Minkowski to Euclidean space is achieved
by making use of the following substitutions

p2 → −p2
E (p · q) → −(pE · qE )

A(p2) → AE (−p2
E ) B(p2) → BE (−p2

E )∫
q → i

∫
qE

Δ(p2) → −ΔE (−p2
E )

(39)

on Eqs. (31) and (35). For completeness, we provide now all
expressions in Euclidean space.

The scalar component of the Dyson–Schwinger equations
reads

B(p2) = Z2 m
bm

+CF Z1g
2
∫

d4q

(2 π)4

Δ(q2) F(q2)[
A(k2)

]2
k2 + [

B(k2)
]2

×
{
g0(p

2, k2) Y0(q
2)K (0)

B (p, q)

+ g1(p
2, k2) Y1(q

2)K (1)
B (p, q)

+ g3(p
2, k2) Y3(q

2)K (3)
B (p, q)

}
(40)

while its vector component is given by

p2A(p2) = Z2 p2

+CF Z1g
2
∫

d4q

(2 π)4

Δ(q2) F(q2)[
A(k2)

]2
k2 + [

B(k2)
]2

×
{
g0(p

2, k2) Y0(q
2)K (0)

A (p, q)

+ g1(p
2, k2) Y1(q

2)K (1)
A (p, q)

+ g3(p
2, k2) Y3(q

2)K (3)
A (p, q)

}
. (41)

The kernels appearing in Eqs. (40) and (41) are

K
(0)
B (p, q) = 2 h(p, q)

q2 − 2(pq)

[
B(k2) ΔA − A(k2) ΔB

]

+ 3

2
B(k2)

[
A(k2) + A(p2)

]
, (42)

K
(1)
B (p, q)

= h(p, q) A(k2)

[
ΔA − 2

A(p2)(pq) − A(k2)
(
q2 − (pq)

)
q2 − 2(pq)

]

+ 3 B(k2)

[
B(p2) + B(k2)

]

+ 3

2
A(k2) ΔA

(
3(pq) − 2p2 − q2

)

K
(3)
B (p, q), (43)

= h(p, q)

{
A(k2) ΔB

−2 B(k2)
A(p2)(pq) − A(k2)

(
q2 − (pq)

)
q2 − 2(pq)

}

+ 3

2
B(k2)

[
A(p2)

(
(pq) − 2p2

)

+A(k2)

(
3(pq) − 2p2 − q2

)]

+ 3

2
A(k2) ΔB

(
3(pq) − 2p2 − q2

)
. (44)

K
(0)
A (p, q)

= h(p, q)

{
− A(k2)

[
A(p2) + A(k2) + 2p2 + q2 − 2(pq)

q2 − 2(pq)
ΔA

]
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−2B(k2)
ΔB

q2 − 2(pq)

}

+ 3

2
A(k2)

[
A(p2) + A(k2)

](
p2 − (pq)

)
, (45)

K
(1)
A (p, q)

= h(p, q)

{
− 2 A(k2)

(
B(p2) + B(k2)

)

− B(k2)

[
ΔA + 2

A(p2)(pq) − A(k2)(q2 − (pq))

q2 − 2(pq)

]}

+ 3 A(k2)

[
B(p2) + B(k2)

](
p2 − (pq)

)

+ 3

2
B(k2) ΔA

(
2 p2 − (pq)

)
, (46)

K
(3)
A (p, q)

= h(p, q)

{
A(k2)

[
A(p2)

(
2p2 − (pq)

)

+ A(k2)

(
2p2 + q2 − 3(pq)

)

+ 2p2 + q2 − 2(pq)

q2 − 2(pq)
×

(
A(p2)(pq) − A(k2)(q2 − (pq))

)]

− B(k2) ΔB

}
(47)

+ 3

2

(
(pq) − p2

)
A(k2)

×
[
A(p2)

(
2p2 − (pq)

)

+ A(k2)

(
2p2 + q2 − 3(pq)

)]

+ 3

2

(
2p2 − (pq)

)
B(k2) ΔB . (48)

The computation of any solution of the above equations,
using lattice inputs for the propagators, requires the use of the
renormalised Dyson–Schwinger equations and, therefore, all
quantities appearing on these equations should be finite. This
requirement constrains the integrand functions gi (p2, (p −
q)2) Yi (q2) and, in particular, its possible behaviour in the
limits where q → 0 and p → +∞.

Let us start by investigating the ultraviolet limit of the
integrand functions appearing in Eqs. (40) and (41). In the
large q limit it follows that

q3 D(q2) F(q2)

A2(k2) k2 + B2(k2)
−→ 1

q
, (49)

up to logarithmic corrections associated to the various prop-
agators. In this limit, the integrand function appearing on the
scalar Eq. (40) read

g0

(
p2, (p − q)2

)
Y0(q2)

1

q

{
3

2
B(q2)

[
A(q2) + A(p2)

]}

+ g1

(
p2, (p − q)2

)
Y1(q2) q

{
3

2
A(q2)

[
A(p2) − A(q2)

]}

+ g3

(
p2, (p − q)2

)
Y3(q2) q ×

×
{

3

2

[
A(q2)B(p2) − 2 A(q2)B(q2)

]}
. (50)

The requirement of having a finite integral demands that at
large q

g1

(
p2, (p − q)2

)
Y1(q

2) ≈ 1

q2

g3

(
p2, (p − q)2

)
Y3(q

2) ≈ 1

q2 (51)

or that these functions are proportional to a higher nega-
tive power of q. The logarithmic corrections, not taken into
account in this analysis, are sufficient to avoid the UV log-
arithmic divergence suggested by the naive power count-
ing. Indeed, these logarithmic corrections introduced by the
renormalisation group analysis are, for large momenta, of
type

(
log(q2/Λ2)

)γ
, with γ standing for the anomalous

dimensions. Our large q analysis should take into account
the logarithmic corrections coming from the gluon, the ghost
and the quark propagators that for N f = 2 result in γ =
γglue + γghost + γquark = −137/116. Then, assuming a
large q behaviour as in (51) times the log correction, the
integration function at high momenta becomes

1

q2

[
log

(
q2

Λ2
QCD

)]− 137
116

, (52)

resulting in a finite value for the integral. The difference
between the naive power counting and taking into account
the log corrections is illustrated on Fig. 3, where one can
observe the effect due to the log corrections that suppress
further the integrand function at high momenta. In what con-
cerns the quark-ghost kernel form factor Y0(q2) at high ener-
gies, the power counting analysis is compatible with having
a Y0(q2) = 1 at large momenta as required by perturbation
theory and by the all-orders result summarised in Eq. (25).

The same analysis for the vector component (41) gives,
up to logarithmic corrections,

g0

(
p2, (p − q)2

)
Y0(q

2)
1

q

{
· · ·
}

+ g1

(
p2, (p − q)2

)
Y1(q

2)
1

q

{
· · ·
}

+ g3

(
p2, (p − q)2

)
Y3(q

2) q

{
· · ·
}
, (53)
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p  [GeV]

0.001

0.01

0.1

1
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1/ ( p²  [ log(p² / Λ²QCD) ] 137/116 )

Fig. 3 Large p behaviour and logarithmic corrections. The plotted
function uses ΛQCD = 0.3 GeV

where {· · · } stand for finite expressions involving A(p2),
A(q2), B(p2) and B(q2). The conditions given in (51) are
sufficient to ensure a finite result associate to the UV integra-
tion overq for the vector component of the Dyson–Schwinger
equations.

The dynamics of QCD generates infrared mass scales for
the quark and gluon propagators, see Sects. 5.1 and 5.2, that
eliminate possible infinities associated to the low momentum
limit in the integral of the quark gap equation and the analysis
of the infrared limit does not add any new constraints.

For full QCD, the λ1 form factor was computed in the
soft gluon limit, i.e. vanishing gluon momenta, using lattice
simulations in [27]. The analysis of the lattice data performed
in [29] shows that the lattice data is well described by

λ1(p
2) = A(p2)

{
a + b D(p2)

}
(54)

where a and b are constants, that in terms of Y1 and Y3 trans-
lates into

2 M(p2) Y1(p
2) − 2 p2 Y3(p

2) ∝ D(p2), (55)

where M(p2) = B(p2)/A(p2). This result suggests to write

X1(p
2, (p − q)2, q2) = D

(
p2 + (p − q)2

2

)
Y1(q

2) (56)

that in the high q limit gives X1 ∼ Y1(q2)/q2 and regularises
the ultraviolet behaviour in agreement with the discussion
summarised in (51). Similarly, Eq. (55) also suggests

X3(p
2, (p − q)2, q2) = D

(
p2 + (p − q)2

2

)
Y3(q

2) (57)

giving at highq momenta a X3 ∼ X̃3(q2)/q2 and, in this way,
the ultraviolet problems referred in (51) are solved. Further-
more, for large quark momentum the ansatz (56) and (57)
give

q3 D(q2) F(q2)

A2(k2) k2 + B2(k2)
−−−−−−−−−−→

p→+∞
q3 D(q2) F(q2)

A2(p2) p2

(58)

implying the vanishing of the kernels (42)–(48) for suffi-
ciently large p.

In short, our ansatz for the quark-gluon vertex used to
solve the Dyson–Schwinger equations reads

X0(p
2, (p − q)2, q2) = X0(q

2), (59)

X1(p
2, (p − q)2, q2) = D

(
p2 + (p − q)2

2

)
Y1(q

2),

(60)

X3(p
2, (p − q)2, q2) = D

(
p2 + (p − q)2

2

)
Y3(q

2).

(61)

The quark gap equation should be solved taking into account
the constraint (25) that demands

X0(0) = X0(q → +∞) = 1. (62)

The Landau gauge lattice gluon propagator as given by lattice
simulations [46,47] retuns a D(q2) that is strongly enhanced
at low momenta. It follows from Eqs. (60) and (61) that within
the ansatz considered here, one expects X1 and X3 to rise sig-
nificantly for small p2 + (p − q)2 = 2 p2 + q2 − 2p · q.
On the other hand, at high momenta, the form factors should
approach its perturbative value. At tree level in perturbation
theory the quark-ghost kernel form factors read X0 = 1 and
X1 = X3 = 0, suggesting that X1 and X3 give marginal
contributions to the full vertex at sufficient high energy.
At the qualitative level, the guessed behaviour associated
with the ansatz (59)–(61) reproduce the computed quark-
ghost kernel form factors computed in [23] using the Dyson–
Schwinger equations and one-loop dressed perturbation the-
ory for the quark-ghost kernel. For the inversion of the
Dyson–Schwinger equations, i.e. from the numerical point
of view, given the strong enhancement of the gluon propaga-
tor at low momenta, this can mean a poorer resolution of X1

and X3 in the ultraviolet regime.

5 Preparing to solve the Euclidean Dyson–Schwinger
equations

The computation of a solution of the Dyson–Schwinger equa-
tions requires parameterising either the quark-gluon vertex, if
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one aims to look at the quark propagator, or the quark prop-
agator functions to extract information on the quark-gluon
vertex. In both these cases, a complete description of the
gluon and ghost propagators is assumed explicitly.

In the current work, we aim to solve the gap equation
for the quark-gluon vertex and, therefore, the knowledge of
the various propagators over all range of momenta appearing
in the integral equation is required. This is achieved fitting
the Landau gauge lattice propagators with model functions
that are compatible with the results of 1-loop renormalisation
group improved perturbation theory. In this way, it is ensured
that the perturbative tails are taken into account properly
in the parameterisation of the propagators. The parameter-
isations considered here are compared to those of [28] in
“Appendix B”. As can be seen on Fig. 44, the differences
between the two sets of curves are more quantitative than
qualitative.

5.1 Landau gauge lattice gluon and ghost propagators

The lattice gluon propagator has been computed in the Lan-
dau gauge both for full QCD and for the pure Yang–Mills.
The gluon propagator is well known for the pure Yang–
Mills theory and it was calculated in [47] for large statistical
ensembles and for large physical volumes ∼ (6.6 fm)4 and
∼ (8.2 fm)4; see also e.g. [44,45]. Furthermore, in [47] the
authors provide global fits to the lattice data that reproduce
the 1-loop renormalisation group summation of the lead-
ing logarithmic behaviour. Of the various expressions given
there, we will use to solve the integral Dyson–Schwinger
equations the following fit to the (6.6 fm)4 volume result

D(p2) = Z
p2 + M2

1

p4 + M2
2 p2+M4

3

[
ω ln

(
p2+m2

0

Λ2
QCD

)
+1

] γ

,

(63)

with the gluon anomalous dimension being γ = −13/22,
Z = 1.36486±0.00097, M2

1 = 2.510±0.030 GeV2, M2
2 =

0.471 ± 0.014 GeV2, M4
3 = 0.3621 ± 0.0038 GeV4, m2

0 =
0.216 ± 0.026 GeV2 using ΛQCD = 0.425 GeV and where
ω = 33 αs(μ)/12π with a strong coupling constant αs(μ =
3 GeV) = 0.3837; see [47] for details. This fit to the lattice
data has an associated χ2/d.o.f. = 3.15. The authors provide
fits with better values for the χ2/d.o.f. However, given that
the level of precision achieved on lattice simulations for the
quark propagator is considerably smaller than for the gluon
propagator, one should not distinguish between the various
fitting functions provided in [47]. Our option considers the
simplest functional form given in that work.

The lattice data for the Landau gauge gluon dressing func-
tion p2D(p2), renormalised in the MOM-scheme at the mass

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
p  [GeV]

0

0.5

1

1.5

2

p²
 D

(p
²)

β = 6.0       644       2000 quenched conf

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
p  [GeV]

1

1.5

2

2.5

3

F(
p²

)

β = 6.0       804       77 quenched conf.

Fig. 4 Pure Yang–Mills gluon (top) and ghost (bottom) lattice dressing
functions and the corresponding fit functions used herein. See text for
details

scale μ = 3 GeV and the fit associated to Eq. (63) can be
seen on the top part of Fig. 4.

For the ghost propagator we take the data reported in [46]
for the 804 lattice simulation and fit the lattice data to the
functional form

Dgh(p2) = F(p2)

p2

= Z

p2

p4 + M2
2 p2 + M4

1

p4 + M2
4 p2 + M4

3

⎡
⎢⎢⎣ω ln

⎛
⎜⎜⎝

p2 + m4
1

p2+m2
0

Λ2
QCD

⎞
⎟⎟⎠+ 1

⎤
⎥⎥⎦

γgh

,

(64)

getting Z = 1.0429 ± 0.0054, M4
1 = 18.2 ± 5.7 GeV4,

M2
2 = 33.4 ± 6.4 GeV2, M4

3 = 6.0 ± 2.7 GeV4, M2
4 =

29.5 ± 5.7 GeV2, m4
1 = 0.237 ± 0.049, m2

0 = 0.09 ±
0.42 GeV2 with a χ2/d.o.f. = 0.27. In the above expression
the ghost anomalous dimension reads γgh = −9/44 with
ω and ΛQCD taking the same values as in the gluon fitting
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function (63). The lattice data, renormalised in the MOM-
scheme at the mass scale μ = 3 GeV, and the fitting curve
(64) can be seen on the bottom of Fig. 4.

5.2 Lattice quark propagator

For the quark propagator we consider the result of a N f = 2
full QCD simulation in the Landau gauge [27,42] for β =
5.29, κ = 0.13632 and for a 323 × 64 lattice. For this par-
ticular lattice setup, the corresponding bare quark mass is 8
MeV and the pion mass reads Mπ = 295 MeV.

Our fittings to the lattice data, see below, take into account
that the lattice data is not free of lattice artefacts; see [27]
and [42] for details. At high momenta the lattice quark
wave function Z(p2) is a decreasing function of momenta, a
behaviour that is not compatible with perturbation theory that
predicts a constant Z(p2) in the Landau gauge. As reported
in [27,42], the analysis of the lattice artefacts relying on the
H4 method suggests that, indeed, Z(p2) is constant at high
p. In order to be compatible with perturbation theory, we
identify the region of momenta where Z(p2) is constant and,
for momenta above this plateaux, we replace the lattice esti-
mates of Z(p2) by constant values, i.e. the higher value of the
quark wave function belonging to the plateaux. The original
lattice data and the ultraviolet corrected lattice data can be
seen on top of Fig. 5. The UV corrected lattice data is then
fitted to the rational function

Z(p2) = Z0
p4 + M2

2 p2 + M4
1

p4 + M2
4 p2 + M4

3

(65)

giving Z0 = 1.11824 ± 0.00036, M4
1 = 1.41 ± 0.18 GeV4,

M2
2 = 6.28 ± 1.00 GeV2, M4

3 = 2.11 ± 0.28 GeV4, M2
4 =

6.20 ±0.98 GeV2 for a χ2/d.o.f. = 0.74. The solid red line
on Fig. 5 (top) refers to the fit just described.

The removal of the lattice artefacts for the running quark
mass is more delicate when compared to the evaluation of
the quark wave function lattice artefacts [24,42,43]. The lat-
tice data published in [27,42] and reported on Fig. 5 (bot-
tom) was obtained using the so called hybrid corrections to
reduce the lattice effects [24] . The hybrid method results in a
smoother mass function when compared to the one obtained
by applying the multiplicative corrections. The differences on
the corrected running mass between the two methods occur
for momenta above 1 GeV, with the multiplicative corrected
running mass being larger than the corresponding hybrid esti-
mation; see Appendix on [42]. The running mass provided
by the two methods, corrected for the lattice artefacts, seems
to converge to the same values at large momentum.

The running mass reported on Fig. 5 (bottom) is not
smooth enough to be fitted. To model the lattice running
mass in a way that reproduces the ultraviolet and the infrared
lattice data and is compatible with the perturbative behaviour
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Fig. 5 Quark wave function (top) and running mass (bottom) lattice
functions from full QCD simulations with N f = 2

at high moment, we remove some of the lattice data at inter-
mediate momenta. On Fig. 5 the data in the region with an
orange background was not taken into account in the global
fit of the running quark mass. The remaining lattice data was
fitted to

M(p2) = mq(p2)[
A + log(p2 + λm2

q(p
2))
]γm (66)

where γm = 12/29 is the quark anomalous dimension for
N f = 2 and

mq(p
2) = Mq

p2 + m2
1

p4 + m2
2 p2 + m4

3

+ m0. (67)

The fitted parameters are Mq = 349±10 MeV GeV2, m2
1 =

1.09 ± 0.43 GeV2, m2
2 = 0.92 ± 0.28 GeV2, m4

3 = 0.42 ±
0.15 GeV4, m0 = 10.34±0.63 MeV and A = −2.98±0.25
for a χ2/d.o.f. = 1.97 after setting λ = 1 GeV2/MeV2. The
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Fig. 6 The scalar (top) N
(0)
B (p, q) and vector (bottom)

N
(0)
A (p, q)/p2 kernel components of the Dyson–Schwinger equations.

For comparison with the kernels shown in [28], the above kernels
do not include the Gauss–Legendre quadrature weights required to
perform the integration over the gluon momentum q. This applies also
to Figs. 7, 8, 9 and 10

fit function and the full lattice running quark mass data can
be seen on Fig. 5 (bottom). Note that in (66) and in (67) p is
given in GeV and mq(p2) and M(p2) are given in MeV.

6 Solving the Dyson–Schwinger equations

Let us now discuss the solutions of the Euclidean space Dy-
son-Schwinger Eqs. (40) and (41) for the quark-ghost kernel,
i.e. for the quark-gluon vertex. The momentum integration
will be performed as described in “Appendix A”, i.e. by intro-
duction an hard cutoff Λ, and with all integrations performed
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Fig. 7 The scalar (top) N
(1)
B (p, q) and vector (bottom)

N
(1)
A (p, q)/p2 kernel components of the Dyson–Schwinger equations.

See also the caption of Fig. 6

with Gauss–Legendre quadrature. For the angular integration
we consider 500 Gauss–Legendre points as in [28]. After
angular momentum integration, one is left with the kernels

N (0,1,3)
A,B (p, q) = q3 D(q2) F(q2)[

A(k2)
]2

k2 + [
B(k2)

]2 K (0,1,3)
A,B (p, q)

(68)

that can be seen on Figs. 6, 7 and 8, without taking into
account the Gauss–Legendre weights associated to the inte-
gration over the gluon momentum. The inclusion of the
Gauss–Legendre weights associated to theq momentum inte-
gration does not change the outcome reported on Figs. 6, 7
and 8 and the main difference being that the associated
numerical values are considerably smaller.
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Fig. 8 The scalar (top) N
(3)
B (p, q) and vector (bottom)

N
(3)
A (p, q)/p2 kernel components of the Dyson–Schwinger equations.

See also the caption of Fig. 6

The major contributions of the N (0)
B and N (0)

A kernels
occur in a well defined momentum region where p � 1.5
GeV and q � 1.5 GeV. Further, for p, q � 2 GeV the
kernels become marginal. The results for N (0)

B and N (0)
A

reproduce the corresponding behaviour observed in [28]. It
follows that the integration over momentum in Eqs. (40) and
(41) associated to the kernels N (0)

B and N (0)
A kernels, that

are coupled to X0(q2), is finite.
The function N (1)

A (p, q) displays a similar pattern and,
again, the integration over the gluon momentum associated
with N (1)

A is expected to be well behaved. On the other

hand the remaining kernels, i.e.N (1)
B (p, q),N (3)

B (p, q) and

N (3)
A (p, q), are all increasing functions of q. The require-

ment of a finite integration over q demands that X1 and X3

should approach zero fast enough to compensate the increase
with q of these kernel functions; see the discussion of the
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Fig. 9 The scalar (top) N
(1)
B (p, q) and vector (bottom)

N
(1)
A (p, q)/p2 kernels including the term of the gluon propaga-

tor as defined in (60). See also the caption of Fig. 6

kernels ultraviolet limit in Sect. 4. The ansatz (59)–(61) adds
a multiplicative gluon propagator term that is just enough
to regularize the high momentum associated to N (1)

B (p, q),

N (3)
B (p, q) andN (3)

A (p, q). Indeed if one takes into account
the multiplicative gluon propagator contribution to the ker-
nels, those who are divergent become well behaved. This can
be seen on Figs. 9 and 10 where the kernels, now including
the multiplicative gluon propagator term, are reported. The
new versions of N (1)

B (p, q), N (3)
B (p, q) and N (3)

A (p, q)

mimic the pattern observed for N (0)
B , N (0)

A and N (1)
A (p, q)

and, once more, their main contribution to the integral equa-
tions happens for p � 2 GeV and q � 2 GeV. The inclusion
of the gluon propagator in the kernels makes the integration
over q finite.
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Fig. 10 The scalar (top) N
(3)
B (p, q) and vector (bottom)

N
(3)
A (p, q)/p2 kernels including the term of the gluon propaga-

tor as defined in (61). See also the caption of Fig. 6

The Dyson–Schwinger equations are solved using a hard
cutoff that is set to Λ = 20 GeV. All quantities are renor-
malised in the MOM scheme, using the same renormalisation
scale as in [28], i.e μ = 4.3 GeV, so that one can compare
easily the results of the two works. The renormalized quan-
tites satisfy the identities

Z(μ2) = 1

A(μ2)
= 1, D(μ2) = 1

μ2 , F(μ2) = 1. (69)

The bare quark mass quoted in the lattice simulation for the
ensemble used here reads mbm = 8 MeV [27]. In the fol-
lowing we set Z1 = 1, take the value for Z2 from the vector
component of the gap equation at the cutoff and ”measure“
the bare quark mass using the scalar component of the gap
equation at the cutoff momenta. In this way mb.m. does not

H(p1, p2, p3) = I +
p1

×

p3

p2

+ · · ·

Fig. 11 One-loop dressed perturbation theory

coincide with the value quoted in the simulation but, as can
be seen below, its value is close to the 8 MeV quoted above.

The results shown on Sects. 6.1, 6.2, 6.3 and 6.4 were
computed using the same value for αs(μ) = 0.295 as in [28].
In Sect. 6.5 we allow αs(μ) to deviate from this value and
provide a “best value”. From Sect. 6.5 onwards, the results
reported use the optimal value for the strong coupling con-
stant.

6.1 One-loop dressed perturbation theory for X0(q2)

The four longitudinal quark-gluon form factors were parame-
trised in terms of the three quark-ghost kernel form factors
X0, Y1 and Y3. However, the quark gap equation provides
only two independent equations and, therefore, it is not pos-
sible to compute all the form factors at once for the full range
of momenta.

A first look at the quark-ghost kernel form factors is pos-
sible if one computes X0 within one-loop dressed perturba-
tion theory with a simplified version of a quark-ghost kernel
where one sets Y1 = Y3 = 0 and, then, solve the gap equation
to estimate Y1 and Y3. The way the solutions of the Dyson–
Schwinger equations for Y1 and Y3 are built also illustrates
the numerical procedure used to solve the integral equations.

The one-loop dressed approximation to the quark-ghost
kernel is represented on Fig. 11 that, in the simplified version
of kernel, translates into the following integral equation

X0(p
2) = 1

+CF g2

8

∫ Λ

k

[
p2 − (k · p)2

p2

]
D(k2) F((k + p/2)2) F(k2)

(k + p/2)2

× A((k + p)2)
[
A((k + p)2) + A(p2)

]
H1((k + p)2)

A2((k + p)2) (k + p)2 + B2((k + p)2)

× X0(k
2) (70)

with H1(q2) representing the ghost-gluon vertex. When
solving this equation we consider two version of the ghost-
gluon vertex, namely its tree level version where H1(q2) = 1
and an enhanced dressed vertex as given in [48] where

H1(q
2) = c

(
1 + a2q2

q4 + b4

)
+ (1 − c)

w4

w4 + q4 , (71)
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Fig. 12 Simplified one-loop dressed perturbation theory estimation for
X0(q2)

for c = 1.26, a = 0.80 GeV, b = 1.3 GeV and w =
0.65 GeV. For a recent analysis of the quark-ghost vertex
see [49]. Equation (70) was solved after introducing a cutoff
Λ = 100 GeV, after performing the angular integration using
1000 Gauss–Legendre points and considering 2000 Gauss–
Legendre points for the integration over k. The introduction
of a Gauss–Legendre quadrature reduces the integral Eq. (70)
to a linear system of equations that was solved using the QR
decomposition of the matrix appearing in the linear system.

The numerical solutions for X0 can be seen on Fig. 12 and
are, essentially, those reported in [28]. According to one-loop
dressed perturbation theory, the deviations of X0(q2) from
its tree level value are, at most, of the order of 15%. We
have also looked at the iterative solutions for Eq. (70) but no
convergence was observed, therefore, the solutions reported
on Fig. 12 are those computed from a single iteration.

The estimation of X0 allows to solve the gap equation for
Y1 and Y3. In order to solve the Dyson–Schwinger equations,
after the angular integration, the scalar and vector compo-
nents of the equations are rewritten in the form of the larger
linear system

⎛
⎜⎝

B(p) − Z2mb.m. − N (0)
B X0(p)

A(p) − Z2 − N (0)
A X0(p)

⎞
⎟⎠

=
⎛
⎜⎝
N (1)

B N (3)
B

N (1)
A N (3)

A

⎞
⎟⎠
⎛
⎝Y1

Y3

⎞
⎠ ; (72)

from now on we will adopt the short name version B =
N X to refer to this linear system of equations. Note that Y1

has mass dimensions, while X0 and Y3 are dimensionless.
Note that the kernels in N also have different dimensions
and it is only after multiplication that we recover the proper
dimensionful equation.

A direct solution of B = N X results in a meaningless
result, with the components of X oscillating over very large
values due to the presence of very small eigenvalues of the
matrix N , that translates the ill defined problem in hands.
The linear system can be solved using the Tikhonov regular-
isation [50] that replaces the original linear system by a min-
imisation of the functional ||B − N X ||2 + ε||X ||2, where
ε is a small parameter to be determined in the inversion.
This functional favours solutions that solve approximately
the linear system but whose norm is small. For real sym-
metric matrices, Tikhonov regularisation replaces the orig-
inal system by its normal form N T B = (N TN + ε)X .
Although in our case N is not a symmetric matrix, we will
solve the system as given in its normal form.

The determination of the optimal ε is done by solving
N T B = (N TN + ε)X for various values of ε and look
at how ||B − N X ||2 and ||X ||2 behave as a function of the
regularisation parameter ε. The outcome of the inversions for
different ε can be seen on Fig. 13. For smaller values of ε,
i.e. when one is closer to the original ill defined problem, the
corresponding solution of the linear system results on Y1 and
Y3 with larger norms. The larger values of the regularisation
parameter ε are associated to solutions of the modified linear
system with smaller Y1 and Y3 norms. The optimal value of
ε is given by the solution whose residuum, i.e. the difference
between the lhs and the rhs of the original equations, is among
the smallest values just before the norms of Y1 and Y3 start
to grow but without changing the residuum. On the above
figure we point out three solutions in the region where ε

takes approximately its optimum value.
Our first comment on Fig. 13 being that both the scalar and

vector components of the Dyson–Schwinger equations can
be resolved with the ansatz considered, i.e. setting X0(p2)

to its one-loop dressed perturbative result and getting Y1(p2)

and Y3(p2) from solving the modified gap equations, pro-
vided we let the norm of Y1 and Y3 to be large enough. Of
course, for large norms Y1 and Y3 are free to vary over a
large range of values and the solutions with smaller norms
are preferred.

From Fig. 13 three typical solutions close to the optimal
solution, as defined previously, are identified. For the X0

perturbative solution using the tree level (TL) ghost-gluon
vertex, the characteristics of these solutions are

||Y1||2 ||Y3||2 ||ΔSca||2 ||ΔVec||2 ε

I (TL) 1.991 5.945 0.00125 0.03811 0.0095
II (TL) 0.999 0.594 0.01739 0.3151 0.175
III (TL) 0.749 0.324 0.03796 0.4113 0.291

for mb.m. = 6.852 MeV, Z2 = 1.0016, where ΔSca = B −
Z2mb.m. − KBX , ||Y2|| is given in GeV, and ΔVec = A −
Z2 − KAX with ||Y3|| being dimensionless. For all these
solutions ||X0 − 1||2 = 0.24214. On the other hand, the
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Fig. 13 Residuum versus norm for the scalar and vector equation when
solving the gap equation for X1 and X3 with X0 as given by one-loop
dressed perturbation theory. The left plot refers to the inversion using
H1(q2) = 1, while the right plot are the results for the inversion using
the improved gluon-ghost vertex. Smaller values of the regularising
parameter ε are associated to solutions with larger norms, while larger
values of ε produce Y1 and Y3 with smaller norms. Recall that Y1 has
mass dimensions, while Y3 is dimensionless

characteristics of the solutions computed with the enhanced
(Enh) ghost-gluon vertex given by Eq. (71) are

||Y1||2 ||Y3||2 ||ΔSca||2 ||ΔVec||2 ε

I (Enh) 1.994 6.464 0.001257 0.03526 0.0085
II (Enh) 0.999 0.633 0.01644 0.3178 0.17
III (Enh) 0.745 0.350 0.03536 0.4146 0.28

have the same mb.m. and Z2 as the previous ones and ||X0 −
1||2 = 0.45283. In both cases, the norms of X0, Y1 and Y3

are the norms of the corresponding part of the vector that
appear in the linear system .

The quality of the solutions can be appreciated on Fig. 14
where we show both the l.h.s. of the scalar and vector com-
ponents of the gap equation, together with the difference
between the l.h.s. and the computed r.h.s. using the X0 from
one-loop perturbation theory and Y1 and Y3 that solve the
modified linear system. The relative error both for the scalar

and vector components of the Dyson–Schwinger equations
are shown on Fig. 15. On the figures we have defined

ΔSca = B − (Z2m
b.m. + K (0)

B X0 + K (1)
B Y1 + K (3)

B Y3),(73)

ΔVec = A − (Z2 + K (0)
A X0 + K (1)

A Y1 + K (3)
A Y3). (74)

||ΔSca||2 and ||ΔVec||2 should be understood as the sum
of the squares of the components of the linear systems (73)
and (74), respectively, over the Gauss–Legendre points. As
Fig. 15 shows, the relative error on the DSE equations is
below 10% for the scalar equation and below 8% for the
vector equation. Surprisingly, despite the larger values of
||ΔVec||2 relative to ||ΔSca||2, the vector component of the
gap equation is better resolved. This is also due to the fact
that A(p2) spans a narrower range of values relative to B(p2).
We have tried to rescale the linear system by 1/A(p2) for the
vector equation and by 1/B(p2) for the scalar equation to
try to improve the quality of the solutions, specially at large
momentum. However, the numeric solutions of the rescaled
linear systems producedY1 andY3 that don’t seem reasonable
and, for example, result in a Y1 at the cutoff that is far away
from zero. Further, for the rescaled systems the ΔSca and
ΔVec are larger than the ones obtained without rescaling the
linear system. For all these reasons we disregard the rescaled
linear system solutions.

The quark-ghost kernel form factors Y1 and Y3 computed
for the various ε associated to the solutions I (TL) – III (TL)
and I (Enh) – III (Enh) can be seen on Fig 16. For Y1 the
outcome of resolving the integral equations using either the
tree level or the enhanced ghost-gluon vertex result on essen-
tially the same function. Further, the various solutions pro-
vide essentially the same Y1(p2), with the exception of III
(TL) and III (Enh) that return a suppressed form factor rel-
ative to the other solutions. For Y3 the situation is similar,
with the form factor associated to the solutions I (TL) and I
(Enh) being enhanced at momentum above 2 GeV. Looking
at Fig. 15, one can observe that solutions II (TL) and II (Enh)
are those with smaller relative errors over the full range of
momentum considered. So, from now on we will take these
solutions as our best solutions associated to the perturbative
X0 form factor. Note that the scalar equation is solved with
a relative error � 8% and the vector equation is solved with
a relative error � 6%.

The quark-ghost kernel form factors X0, X1 and X3 were
also computed in [23], see their Fig. 4, combining the quark
gap equation with a one-loop dressed perturbation theory for
the quark-ghost kernel. The comparison between the results
of the two calculations is not straightforward. Indeed, if in
our calculation X0 is assumed to be a function only of the
gluon momentum, in [23] the authors take into account its
full momentum dependence and evaluate how it changes with
the quark momentum, the gluon momentum and the angle
between these two momenta. There calculation results on
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Fig. 14 Scalar (top) and Vector (bottom) Dyson–Schwinger equations
and the differences between its lhs and rhs when using the tree level
ghost-gluon vertex (top) and the enhanced gluon-ghost vertex (bottom)

a X0 that is always close to its tree level value X0 = 1
and whose values are in the range [1, 1.12]. A qualitative
comparison with the here reported form factor, shows that,
from the point of view of the dynamical range of values, our
X0 computed using the enhanced ghost-gluon vertex is closer
to that reported in [23]. In both cases X0 is always close to
its tree level value and differs from unit by, at most, 10%.

The comparison between the remaining form factors is
slightly more involved. Indeed, the X1, X2 and X3 referred
in [23] compared with the expressions given in Eqs. (60) and
(61) and not directly with the Y1 and Y3 reported in Fig. 16.
Note that there are signs differences on the definition of the
various quark-ghost kernel form factors between [23] and the
current work. Due to the presence of the gluon propagator in
(60) and (61) one expects some angular dependence of the
quark-ghost kernel form factors. Further, due to the param-
eterisation used for the gluon propagator, the form factors
are expected to be enhanced when, simultaneous, the quark
and gluon momenta become smaller, i.e. in the infrared limit.
This is precisely what is observed for the X1 and X2 reported
in [23].
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Fig. 15 Relative error on the solution of the Scalar (top) and Vector
(bottom) Dyson–Schwinger equation when using the tree level ghost-
gluon vertex (top) and the enhanced gluon-ghost vertex (bottom)

Our estimations for X1 and X2 for the solutions referred
previously and for the particular kinematics p = 0, some-
times called the soft quark limit, can be seen on Fig. 17. The
first comment about these form factors is that they seem to be
independent of the ghost-gluon vertex and, indeed, the form
factors associated to the solution using a tree level ghost-
gluon vertex, named (TL) in the figure, are essentially indis-
tinguishable from those computed using the enhanced ghost-
gluon vertex, named (Enh) in the figure. The quark-ghost ker-
nels form factors X1 and X3 differ from there perturbative
values at low momenta, i.e. for q � 1 GeV for X1 and for
q � 2 GeV for X3. According to [23], these two form factors
increase (in absolute value) for momenta below ∼ 1 GeV, a
result that is in good qualitative agreement with our estima-
tions. From their Fig. 4, it is not clear if X3 �= 0 extends over
a wider range of momenta, when compared to X1. Our cal-
culation returns a X3 that differ from zero on larger range of
momenta, when compared with X1. Furthermore, the X1 and
X3 computed in [23] are monotonic increase functions (abso-
lute values) when the zero momentum limit is approached.
The form factors reported on Fig. 17 show a pattern of max-
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Fig. 16 The quark-ghost kernel form factors X1 and X3 computed for
the tree level ghost-gluon vertex (top) and the enhanced gluon-ghost
vertex (bottom)

ima, with X1 having a single maximum forq ∼ 350 MeV and
X3 showing several maxima (in absolute value) at momenta
q ∼ 250 MeV, ∼ 600 MeV and ∼ 1 GeV. Note that the zero
crossing for X3 occur for momenta that are of the same order
of magnitude of ΛQCD , the gluon mass (or twice ΛQCD)
and the usual considered as a non-perturbative mass scale (1
GeV). It is not obvious why the zero crossing of X3 occur for
such mass scales and why the crossing is not seem for X1.
If the form factors reported on Fig. 4 of [23] never cross the
zero value, that is not the case of the form factors represented
on Fig 17. X1 shows various zeros that, curiously, seem to
disappear for the solution with the smaller norm. On the other
hand, X3 cross zero for q ≈ 363 MeV and 835 MeV for solu-
tions II and III. This is a major difference between the two sets
of solutions under discussion. Another important difference
being the dynamical range of values. Our X1 is within the
range of values [0, 3.5] GeV−1, while the same form factor
computed in [23] is within [0, 0.2] GeV−1 which represents a
factor of ∼ 20 smaller than our estimation. However, the two
calculations report a |X3| within the range [0, 0.5] GeV−2.
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Fig. 17 The quark-ghost kernel form factors X1 (top) and X3 (bottom)
as defined in Eqs. (60) and (61) for the soft quark limit defined by a
vanishing quark momentum

Our result overestimates X1 relative to [23] but returns a |X3|
within the same dynamical range of values. Another major
difference being that the maxima of the form factors does not
occur at vanishing momenta as in [23] but at finite and small
momenta, ∼ ΛQCD for X1 and ∼ 2 ΛQCD for the absolute
maxima of |X3|.

The estimations of X0, X1 and X3 suggest that the quark-
gluon vertex is dominated, at the infrared by those terms that
are associated with X1. If this is the case, then, given the
definitions (26)–(29) one expects that the dominant contri-
butions to the quark-gluon vertex to be associated with the
form factors

λ1(−p, p − q, q) ∼= F(q2)

[
B(p2) + B(k2)

]

× D

(
p2 + (p − q)2

2

)
Y1(q

2), (75)

λ3(−p, p − q, q)

∼= F(q2)

A(k2)

(
q2 − (pq)

)
− A(p2) (pq)

q2 − 2(p · q)
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× D

(
p2 + (p − q)2

2

)
Y1(q

2), (76)

λ4(−p, p − q, q)

∼= F(q2)

2
ΔA D

(
p2 + (p − q)2

2

)
Y1(q

2) (77)

and since Z ∼ 1 and B ∝ M(p2), one expects the dominant
form factor for the quark-gluon vertex to be associated with
the tree level operator, i.e. with λ1.

6.2 Solving the Dyson–Schwinger equations

Let us now discuss the simultaneous computation of X0,
X1 and X3 from the modified linear system of equations
that replace the original Dyson–Schwinger integral equa-
tions. The procedure to build the linear system as well as the
regularisation of the corresponding linear system of equa-
tions follow the steps described in the previous section.
First the angular integration is performed using 800 Gauss–
Legendre points. Then, for the momentum integration the
cutoff Λ = 20 GeV is introduced and we consider 200
Gauss–Legendre points to perform the integration over the
loop momentum. Further, to determine the solutions of the
Dyson–Schwinger equations, now already in the form of a
linear system of equations, the scalar component and the vec-
tor component of the gap equation are grouped into a large
linear system as follows

⎛
⎝ B(p) − Z2m

b.m.

A(p) − Z2

⎞
⎠ =

⎛
⎜⎝
N

(0)
B N

(1)
B N

(3)
B

N
(0)
A N

(1)
A N

(3)
A

⎞
⎟⎠
⎛
⎝ X0

Y1
Y3

⎞
⎠

(78)

that again we refer, as a short name, by B = N X . The upper
component of the large vector X contains the form factor X0

defined in all the set of Gauss–Legendre points used in the
integration over the loop momenta. The remaining compo-
nents of the large X vector are the form factors Y1 and Y3

defined at the lower first half set of Gauss–Legendre points
used in the integration over the momentum. This means that
the solution of the linear system (78) returns X0(q2) for
q ∈ [0, Λ] and Y1(q2) and Y3(q2) for q ∈ [0, Λ/2]. For Y1

and Y3 and for p > Λ/2 the form factors will be assumed to
vanish. In order to fulfil the boundary conditions for X0(q2)

we write X0(q2) = 1 + X̃0(q2) and solve the linear system
for X̃0(q2), rebuilding X0(q2) at the end. The resulting linear
system is then regularised using the Tikhonov regularisation
and the corresponding N T B = (N TN + ε)X linear sys-
tem is solved for various ε. The choice of the optimal regular-
isation parameter ε follows the criteria discussed in Sect. 6.1.
We have checked that by interchanging the roles of X0, Y1

and Y3 when building the large linear system the solutions
are unchanged; more on that below. The differences only
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Fig. 18 Residuum versus norm for the scalar and vector equation when
solving the gap equation for X0, Y1 and Y3. The smaller values of the
regularising parameter ε are associated to solutions with larger norms,
while larger values of ε produce form factors with smaller norms. Recall
that Y1 has mass dimensions, while X0 and Y3 are dimensionless

occur for those functions calculated only for q ∈ [0, Λ/2],
compared to the version of the linear system were they are
computed in the range q ∈ [0, Λ]. In the first case, i.e. for
the solutions computed only for q ∈ [0, Λ/2], there appears
a discontinuity at q = Λ/2 (recall that the form factors are
set to zero for momenta above Λ/2) but for smaller q the
form factors of all versions of the linear system are indistin-
guishable.

On Fig. 18 the residuum squared of the scalar (top) and
vector (bottom) components of the gap equation are shown
against the norm of various form factors. Smaller values of
ε are associated to solutions with larger norms and appear at
the right side of the plots, while larger values of ε are asso-
ciated to solutions with smaller norms that show up on the
left side of the plots. As shown on the figure, the residuum
for both equations has a stronger dependence on ε and can
take quite small values. For the solutions featured in the plot,
the smallest residuum squared reaches values of the order of
10−5 for the scalar equation and 10−4 for its vector com-
ponent. Similar values for the minimum residuum were also
observed for the solutions computed using the perturbative
estimation of X0.

On Fig. 18 we identify four solutions associated to an ε

around its optimal value and whose characteristics are

||X0 − 1||2 ||Y1||2 ||Y3||2 ||ΔSca||2 ||ΔVec||2 ε

I 0.5003 2.0039 4.2966 0.001205 0.05568 0.012
II 0.09298 1.4994 1.2538 0.004890 0.1730 0.071
III 0.03408 1.0002 0.4634 0.02034 0.3154 0.191
IV 0.01811 0.7001 0.2150 0.05486 0.4291 0.365

for mb.m. = 6.852 MeV, Z2 = 1.0016, where ΔSca and
||Y1|| are given in GeV, while ΔVec, ||X0|| and ||Y3|| are
dimensionless.
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Fig. 19 The lhs of the Dyson–Schwinger equations, scalar component
on top and vector component at bottom, together with ΔSca and ΔVec
(top). The plots on the left are the relative error for the scalar equation
(top) and vector equation (bottom)

The relative errors for the solutions I–IV of the regularised
linear system are show on Fig. 19. In general the solution for
the vector component of the equation is satisfactory, with the
scalar component of the equation being more demanding and
not all of the solutions I–IV resolve the scalar part of the gap
equation with a relative error below 10%. Only solutions III
and IV resolve the DSE equations with a relative error below
8%. In particular for these solutions the value of ||X0 − 1||
is of the order of 10−2 suggesting that the non-perturbative
solution prefers having a X0 
 1 and, in this sense and for this
form factor, are close to the result from perturbation theory
discussed in Sect. 6.1. The observed growth of the relative
error for p � 10 GeV is probably related also to the missing
components of Y1 and Y3 which are set to zero for this range
of momenta.

The form factors X0, Y1 and Y3 associated to the solutions
I–IV can be seen on Figs. 20, 21 and 22. On Fig. 20 besides
solutions I –IV we also show the perturbative X0(q2) com-
puted using one-loop dressed perturbation theory with the
tree level ghost-gluon vertex and its enhanced version. The
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Fig. 20 X0(p2) from inverting the Dyson–Schwinger equations
together with its estimation using one-loop dressed perturbation the-
ory by solving exactly Eq. (70)

perturbative solutions and those obtained solving the Dyson–
Schwinger equations have rather different structures, with
perturbation theory providing larger X0(p2) and predicting
a relatively large tail. Indeed, the solutions of the regularised
linear system recover their tree level value X0(p2) = 1 from
p � 10 GeV onwards, while the perturbative solution only
reproduces its tree level value at much larger momentum.
The momentum scale associated to the absolute maxima of
X0(p2) occurs at essentially the same p ≈ 400 MeV, while
the perturbative results points to a maximum of X0(p2) at
momenta slightly above the GeV scale. Qualitatively, the
non-perturbative solutions all have the same pattern for this
form factor. The exception being Sol. I which clearly overes-
timates |X0| for p � 1 GeV. The solutions III and IV resolve
the gap equation with the smaller relative errors that is below
8% – see Fig. 19. The non-perturbative solution of the DSE
gives a X0(p2) that differs from its tree level value by less
than 5%, that are above unit for momenta p � 1 Gev. At
this momenta scale the form factors take values below one,
reaching a minimum for p just above 1 GeV, and approach-
ing its tree level value at high momentum from below. The
differences between the non-perturbative X0 and its tree level
value for p � 10 GeV are rather small.

Our non-perturbative estimations for Y1(p2) can be view-
ed on Fig. 21. All the solutions I–IV reproduce the same
pattern for this form factor, with a positive maxima around
p 
 400 MeV and with Y1 becoming small for p � 1.5
GeV. In particular, for the solutions III and IV, Y1(p2) is
particularly small (� 0.4 GeV) for p � 1.5 GeV. One should
not forget that the quark-ghost form factor appearing in the
quark-ghost kernel is not Y1 but this function times the gluon
propagator – see Eq. (60). The same applies to Y3 as can be
seen on Eq. (61). Once more, as the norm of Y1 decreases,
the form factors seems to prefer to take only positive values.

The form factor Y3(p2) is reported on Fig. 22. It turns out
that this function is positive for p � 400 MeV and for p � 1
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Fig. 21 Y1(p2) from inverting the Dyson–Schwinger equations
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Fig. 22 X (3)(p2) from inverting the Dyson–Schwinger equations

GeV, takes negative values in between, with a maximum at
p 
 1.5 GeV, and then slowly approaches its tree level value
from above. Given the way the solutions are computed, on
Fig. 22Y3(p2) shows a jump at p 
 10 GeV that corresponds
to p = Λ/2. A similar behaviour can be seen on Fig. 21 for
Y1(p2). However, given that for p 
 10 GeV one has a
Y1(p2) 
 0, this sudden jump is not so easily observed.

Finally, on Fig. 23 we provide the various solutions for
X0(p2), Y1(p2) and Y3(p2) after permuting the role of the
form factors when writing the extended vector X . For the
so-called X0 X1 X3 the extended vector included X0 over
the full set of Gauss–Legendre points with Y1 and Y3 being
obtained only in the range p ∈ [0 , Λ/2]. For the so-called
X1 X0 X3 the extended vector included Y1 over the full set
of Gauss–Legendre points with X0 and Y3 being obtained
only in the range p ∈ [0 , Λ/2]. For the so-called X3 X0 X1

the extended vector included Y3 over the full set of Gauss–
Legendre points with X0 and Y1 being obtained only in the
range p ∈ [0 , Λ/2]. We call the readers attention to the sta-
bility of the solution of the various linear systems. Further-
more, the comparison of Fig. 16 from Sect. 6.1 and Fig. 23
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Fig. 23 X (0)(p2), Y1(p2) and Y3(p2) computed from inverting the
Dyson–Schwinger equations (Sol. III) after build the large linear system
(78) in all possible ways, i.e. by permuting the role of the form factors
in X . See text for details

show quite similar Y1 and Y3 suggesting, once again, that X0

almost does not deviates from its tree level value.

6.3 Solving the DSE for X0 = 1

The non-perturbative solutions of the Dyson–Schwinger
equations discussed on the previous paragraph suggest that
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Fig. 24 Residua versus norm of the form factors from inverting the
Dyson–Schwinger equations with X0 = 1

X0(p2) 
 1. Therefore, herein we investigate the results by
solving the DSE with X0(p2) = 1. The residua of the scalar
and vector equations against the norm of the two remaining
form factor Y1 and Y3 can be seen on Fig. 24. The character-
istics of the solutions highlighted in the figure and associated
to an ε close to its optimal value are

||Y1||2 ||Y3||2 ||ΔSca||2 ||ΔVec||2 ε

I 2.4870 10.0286 0.0004739 0.01314 0.0025
II 2.0003 4.6676 0.001351 0.04691 0.013
III 1.5006 1.3225 0.005306 0.1695 0.0745
IV 1.0009 0.4801 0.02232 0.3157 0.1975

for mb.m. = 6.852 MeV, Z2 = 1.0016, where ΔSca and
||Y1|| are given in GeV, while ΔVec, ||X0|| and ||Y3|| are
dimensionless. The relative error on the Dyson–Schwinger
equations for these solutions can be seen on Fig. 25 which
shows that solution I resolves the DSE up to p 
 10 GeV
with an error that is smaller than 3% for the scalar equation
and error of about 1% for the vector equation. However, the
form factor Y3 associated to solution I does not seem to be
converged for momenta above 2 GeV. The solution named
IV solves the scalar equation with a relative error below 10%
and the vector equation with a relative error below 6%.

The form factorsY1(p2) andY3(p2) associated to the solu-
tions I–IV are reported on Fig. 26 and reproduce the same
patterns as the solutions computed in the previous sections.

6.4 Full form factors and comparison of solutions

In Sects. 6.1, 6.2 and 6.3 we have solved the Dyson–
Schwinger equations assuming that the quark-ghost kernel
form factors are given by Eqs. (59)–(61). So, besides, X0,
the full form factors appearing in H and H , see Eq. (15),
should be multiplied by the gluon propagator at the proper
kinematical configuration. Herein, we aim to compare the
various solutions found in previous section and, in this way,
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Fig. 25 Relative error for the DSE associated to the highlighted solu-
tions of the Dyson–Schwinger equations for X0 = 1
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Fig. 26 The solutions of the DSE for Y1 and Y3 when X0 = 1

provide an estimation of the systematics associated to our
ansatz, and also to provide the form of the full functions
appearing on H and H . Looking at the relative errors on
the Dyson–Schwinger equations and at the convergence of
the form factors at higher momenta, the comparison will be
done using Sol. II computed using the perturbative X0 and
the tree level ghost-gluon vertex, Sol. III computed when the
gap equation is solved for the full set of form factors and Sol.
IV when the gap equation is solved for X0 = 1.

Let us start with the X0 that we have assumed to be only
a function of the gluon momenta. The perturbative solutions
are compared with the solution obtained inverting the Dyson–
Schwinger equations for the full set of form factors used in
our ansatz can be seen in Fig. 27. This figure repeats partially
Fig. 20 providing a clear view of the solutions. All solutions
show a X0 that essentially is close to its tree level value, i.e.
X0 = 1, with the perturbative solutions having the largest
deviation from unit.

The form factor Y1(p2) can be seen on Fig. 28 for all the
solutions. Note that all solutions reproduce essentially the
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Fig. 27 The quark-ghost kernel form factor X0(p2)
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Fig. 28 The quark-ghost kernel form factor Y1(p2)

same function of the gluon momentum, with Y1(p2) being
small for p � 1.5 GeV and showing a sharp peak at p 
 400
MeV. Y1(p2) is positive defined except for a small range of
momenta p ∈ [0.75 , 1.4] GeV where it takes small negative
values.

The form factor Y3(p2) can be seen on Fig. 29 for all
the solutions. Surprisingly, Y3(p2) seems to have a relative
large tail that appears in all the solutions. Up to momenta
p 
 3 GeV the solutions reproduce essentially the same
function. However for p 
 3 GeV the solution associated
to X0 = 1 is enhanced relative to all the others, with the
solutions associated to the one-loop perturbative X0 being
slightly enhanced relative to the non-perturbative solution
obtained from inverting the gap equation. Y3(p2) shows a
maxima at p 
 200 MeV, an absolute maxima at p 
 1.4
GeV and an absolute minima at p 
 650 MeV. This form
factor is positive defined at infrared momenta p � 350 MeV
and the high momenta p � 900 MeV taking negative values
in p ∈ [0.35 , 0.9] GeV.
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Fig. 29 The quark-ghost kernel form factor Y3(p2)

In summary, Figs. 26, 27, 28 and 29 resume the compu-
tations of the quark-ghost kernel form factors performed so
far.

6.5 Tunning αs

The results for the relative errors on the scalar and vec-
tor components of the Dyson–Schwinger equation seen on
Figs. 15, 19, 25 show a relative error that for p � 10 GeV
grow with p and take its maximum value ∼ 10% at the cut-
off. This can be viewed in many ways and one of them being
that our choice for the strong coupling constant is not the
best one. In our approach we mix quenched lattice results
with dynamical simulations and, in order to be able to solve
the gap equation for the quark-ghost kernel, the renormaliza-
tion constant Z1, see Eq. (5), is set to identity.1 Although the
original integral equation is linear on the form factors X0, Y1

and Y3, the regularized system that is solved introduces an
extra parameter that needs to be fixed in the way described
above and, therefore, changing the strong coupling constant
changes the balance between the regularizating parameter ε

and the various form factors, allowing for adjustments on
the solutions. Therefore, the relative errors on the integral
equations can be adjusted by changing the strong coupling
constant.

In this section, we report on the results of solving the
regularised linear system of equations that replace the orig-
inal equations in the way it is described on Sect. 6.2 for
αs(μ) = 0.20, 0.22 and 0.25. The properties of the inver-
sions of the regularised system for the various values of the
strong coupling constant can be found in Figs. 30, 31 and 32
and should be compared with Fig. 25 of the Sect. 6.2.

As the figures shows, lowering the value of αs(μ) solves
the problem of the increase of the relative error observed

1 It can also be viewed as been included in the definition of the various
form factors.
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Fig. 30 Norm versus Residuum (top) and relative error of the solutions
of the gap equation for αs(μ) = 0.20. The solutions on the right plot
are those marked on the left plot with I being that associated to the most
right mark

in Sect. 6.2. Moreover, of the various solutions considered,
for αs(μ) = 0.22 one can observe solutions whose relative
error is of the order of ∼ 1% for the scalar equation and
∼ 3–4% for the vector components, the solutions named
Sol. I and II in Fig. 31. The relative error associated to the
remaining solutions given on Figs. 25, 30, 31 and 32 are larger
and, therefore, we take αs(μ) = 0.22 as the optimal value
for the strong coupling constant within our approach. The
corresponding quark-ghost kernel can be seen on Figs. 33, 34
and 35, together with the corresponding solution computed
using αs(μ) = 0.295. The solutions for the two values of αs

are similar, although those associated to the smaller value of
αs achieve higher values. If at momenta p � 1 GeV Sol. I
takes absolute values that are higher than those of Sol. II, at
lower momenta the difference between the two solutions is
marginal.
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Fig. 31 Norm versus Residuum (top) and relative error of the solutions
of the gap equation for αs(μ) = 0.22. The solutions on the right plot
are those marked on the left plot with I being that associated to the most
right mark

7 The Quark-Gluon vertex form factors

In the previous section we have computed the quark-ghost
kernel form factors X0(q2), Y1(q2), Y3(q2) that, together
with the quark, gluon and ghost propagators, define the full
form factors as given in Eqs. (59), (60) and (61). Once the
full quark-ghost kernel form factors are known, then the lon-
gitudinal quark-gluon form factors can be computed using
Eqs. (26)–(29), after performing the rotation to the Euclidean
space and identifying the gi (p2

1, p2
2) functions to

g0(p
2
1, p

2
2) = 1 and

g1(p
2
1, p

2
2) = g2(p

2
1, p

2
2) = D

(
p2

1 + p2
2

2

)
. (79)

For completeness, we write the full expressions for the lon-
gitudinal form factors in Euclidean space
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Fig. 33 The quark-ghost kernel form factor X0(p2) computed using
αs(μ) = 0.22
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Fig. 34 The quark-ghost kernel form factor X1(p2) computed using
αs(μ) = 0.22
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Fig. 35 The quark-ghost kernel form factor X3(p2) computed using
αs(μ) = 0.22

λ1(−p, k = p − q, q) = F(q2)

2

×
{[

A(p2) + A(k2)

]
X0(q

2)

+ 2

[
B(p2) + B(k2)

]
D

(
p2 + k2

2

)
Y1(q

2)

+
[
A(p2)

(
(pq) − 2p2

)

+A(k2)

(
3(pq) − 2p2 − q2

)]

× D

(
p2 + k2

2

)
Y3(q

2)

}
, (80)

λ2(−p, k = p − q, q) = F(q2)

2(2(p · q) − q2)

×
{[

A(k2) − A(p2)

]
X0(q

2)
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+
[
A(k2)

(
q2 − (pq)

)
− A(p2) (pq)

]

×D

(
p2 + k2

2

)
Y3(q

2)

}
, (81)

λ3(−p, k = p − q, q) = F(q2)

2(p · q) − q2

×
{[

B(k2) − B(p2)

]
X0(q

2)

+
[
A(p2) (pq) − A(k2)

(
q2 − (pq)

)]

×D

(
p2 + k2

2

)
Y1(q

2)

}
, (82)

λ4(−p, k = p − q, q) = F(q2)

2
D

(
p2 + k2

2

)

×
{[

A(k2) − A(p2)

]
Y1(q

2)

+
[
B(k2) − B(p2)

]
Y3(q

2)

}
. (83)

Note that by taking into account structures of the quark-ghost
kernel other than X0 the quark-gluon vertex deviates con-
siderably from a Ball-Chiu type and it is now a function
both of p, q and of the angle between the quark and gluon
momenta. The angular dependence appears associated to the
scalar products (pq) and also on the argument of the gluon
propagator D

(
(p2 + k2)/2

)
.

For the calculation of λ1–λ4 we will use Sol. II computed
using αs(μ) = 0.22; see Sect. 6.5 for details. We recall the
reader that the calculation performed here considers only the
longitudinal form factors and that the ansatz for the vertex
takes into account the dependence between the angle of the
incoming quark momentum and the incoming gluon momen-
tum.

The overall picture of the various form factors when the
angle between the incoming quark momentum p and the
incoming gluon momentum q is θ = 0 can be seen on Fig. 36.
On Fig. 37 the λ1 to λ4 are given for a θ = 2π/3. The form
factors λ1 to λ4 are finite for all p and q and approach asymp-
totically their perturbative values. Further, for our definition
of the operators L(1)

μ – L(4)
μ , see Eq. (11) for their definition in

Minkowski space, the corresponding form factors are essen-
tially positive defined. The exception being λ4 that takes both
positive and negative values and whose maximum absolute
value is negative and appears for small p and q. The relative
magnitude of the λi suggest that the quark-gluon vertex is
essentially saturated by λ1 and λ3, with λ2 and λ4 playing a
minor role, i.e. the tensor structures of the longitudinal part
of the vertex seem to be sub-leading; see also the discus-
sion for the soft quark limit, defined by a vanishing quark
momentum, and the symmetric limit below.
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Fig. 36 Longitudinal quark-gluon form factor for θ = 0

Our result differs significantly from the perturbative esti-
mation of the form factors [5], where all the strength appears
associated to λ1. For example, for the kinematical configu-
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Fig. 37 Longitudinal quark-gluon form factor for θ = 2π/3

ration defined by p2 = (p − q)2 at vanishing p they have
λ1 ≈ 1.1 and λ2 ≈ 0.12 GeV−2 and λ3 ≈ 0.18 GeV−1 for a
current mass mq = 115 MeV, a renormalisation scale μ = 2
GeV and for αs = 0.118. Of course, one should look to
the relative values of the various λ’s and not to their absolute
values. For the comparison of the contributions from the vari-
ous form factors one can use the non-perturbative momentum
scale of 1 GeV to build dimensionless quantities. Then, as
seen on Figs. 36 and 37 the scales for λ1 and λ3 are similar,
while the maximum of λ2 is about 10% relative to the max-
ima of λ1 and λ3 and the maximum for λ4 is about half of
that for λ2.

The comparison of our results with those reported in [17,
22,23] is difficult to perform but in these works λ1 clearly
dominates. On [17] λ2 reaches at most 16% of the maximum
value of λ1, while λ3 seems to have the possibility of taking
large values. On [22,23], λ2 and λ3 take, at most, a numerical
value that is about 23% of the maxima of λ1, with λ4 being
essentially negligible. Our solution shows a vertex dominated
by λ1 and λ3 with these form factors reaching numerical
values of the same order of magnitude – see also Fig. 42.

As seen on Figs. 36 and 37 the quark-gluon form factors
are significantly enhanced for low values of p and q. The
momentum region where one observes the enhancement of
the λ1 to λ4 happens for p � 1 GeV and q � 1 GeV, with
its maximum values showing up for p ≈ q ≈ ΛQCD – see,
also, the discussion below on the angular dependence.

The infrared enhancement of λ1 to λ4 with the gluon
momentum is a direct consequence of using the Slavnov–
Taylor identity (13) to rewrite the form factor. Indeed, as can
be seen on Eqs. (80)–(83), all the form factors have, as a
global factor, the ghost dressing function F(q2). The ghost
dressing function is enhanced, roughly by a factor of three,
in the infrared, see Fig. 4, implying the increase of the λi as
q = 0 is approached.

The infrared enhanced of the form factors with the quark
incoming momentum is more subtle. It is linked to our
ansatz that relies on the analysis of the soft gluon limit
of the Landau gauge lattice data for λ1 performed in [29].
Indeed, this work identified a dependence of λ1 on the gluon
propagator that was incorporated in the ansatz, making the
quark-ghost kernel form factors X1 and X3 proportional to
D((p2 + (p − q)2/2). This term is crucial to have well
behaved kernels in the integral equations, i.e. to ensure that
the Dyson–Schwinger equations are finite, and it introduces
an additional dependence on the angle between the quark
and the gluon momenta. The gluon propagator is a decreas-
ing function of its argument and, therefore, for a given q and
angle between the quark and gluon momenta, the terms pro-
portional to X1 and X3 increase as p decreases. This explains,
in part, the observed enhanced of the quark-gluon form fac-
tors together with the increase of the ghost dressing function.
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Fig. 38 λ1 for p = 0.5 GeV (top) and p = 1 GeV (bottom) and
various θ

The dependence of the quark-gluon form factors in the
angle between p and q can be seen on Figs. 38, 39, 40 and
41. These figures also provide a clear picture of the maxima of
the various form factors as functions of the gluon momenta.
For λ1 and λ3 the maxima are for q ≈ 300 MeV, while for
λ2 the maximum is at q ≈ 600 MeV. λ4 seems to be a more
complicated function of p, q and θ . Indeed, this later form
factor shows various maxima of the same order of magnitude
for different p, q and θ values.

All the form factors appear to be monotonous decreas-
ing functions of the angle between the incoming quark and
incoming gluon momenta θ . If the pattern of the q depen-
dence of λ1, λ2 and λ3 seems to be independent of θ , λ4

seems to reverse is behaviour relative to the q − axis for
θ � π/3. Clearly, the maximum values for all the form fac-
tors occurs for θ = 0, i.e. the quark-gluon vertex favours the
kinematical configurations with small values of p and q and
also of the angle between the quark and gluon momentum.2

2 For example, for p = 0.5 GeV λ1 and λ3 there is an enhancement
of a factor of ∼ 2.7 and ∼ 2.0, respectively, between the maxima
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Fig. 39 λ2 for p = 0.5 GeV (top) and p = 1 GeV (bottom) and
various θ

It follows that the quark-gluon vertex favours small quark
and gluon momenta and parallel four-vectors p and q.

From the point of view of the momentum dependence,
our solution for the quark-gluon vertex is closer to that of the
Maris-Tandy model [32] than those computed in [17,22,23],
in the sense that we observe a rather strong enhancement at
low momenta. Indeed, compared to these last references, the
herein computed form factors are significantly larger. Recall
that the Maris-Tandy model considers a single form factor,
that would be (effective) equivalent to our λ1, and ignores
the dependence of the vertex on the quark momentum. In
particular, for this model we also checked that the region
where our quark-gluon form factors are enhanced occurs
essentially within the same range of momenta as the cor-
responding effective form factor of the Maris-Tandy model.
Note also that the maxima of the form factors computed in the

Footnote 2 continued
values for θ = 0 relative to θ = π . For λ2 and λ4 this enhancement
is ∼ 3.5 and ∼ 3.2. The corresponding factors for an incoming quark
momentum p = 1 GeV are ∼ 1.5 for λ1, ∼ 4.4 for λ2, ∼ 2.3 for λ3
and a suppression by a factor of ∼ 0.6 for λ4. Also, for λ1 and λ3 the
maxima at θ = π/2 is about half of the maxima at θ = 0.
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Fig. 40 λ3 for p = 0.5 GeV (top) and p = 1 GeV (bottom) and
various θ

present work occur for momenta where the kernels appear-
ing in the original equations take their maximum values –
see Figs. 6, 9 and 10.

It is difficult to measure the relative importance of the con-
tribution of the longitudinal form factors λ1 – λ4 to the quark-
gluon vertex. However, an idea of their relative importance
can be “measured” looking at particular kinematical config-
urations. Herein we consider the soft quark limit where the
incoming quark momentum vanish and the totally symmetric
limit where p2 = q2 = k2 and θ = 2π/3. The corresponding
form factors multiplied by appropriated powers of momenta
to build dimensionless function can be seen on Fig. 42 (com-
puted using the θ = 2π/3 data). If for the symmetric con-
figuration the dominant form factor seems to be λ1, for the
soft quark limit that role is played by p λ3. Note that the
maximum of the later is about 1.3 times larger than the max-
imum of the former. Curiously, the maxima of λ1 and pλ3

occur at exactly the same momentum scale p = 310 MeV.
As the figure shows it seems that the quark-gluon vertex is
dominated by λ1 and λ3, as observed also when studying the
solutions associated with the perturbative X0 as discussed at
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Fig. 41 λ4 for p = 0.5 GeV (top) and p = 1 GeV (bottom) and
various θ

the end of Sect. 6.1, with the tensor structures associated to
λ2 and λ4 playing a minor role.

Finally, let us consider the soft gluon limit whose λ1 form
factor has recently being computed using full QCD lattice
simulations [27]. The data was investigated in [29] revealing
an important contribution to λ1 linked with the gluon propa-
gator. Our estimation of λ1 in the soft gluon limit can be seen
on Fig. 43 – see the full curve in black. This curve was (arbi-
trarely) normalised to reproduce the lattice data at 1 GeV of
the β = 5.29 and Mπ = 295 MeV simulation3 Clearly, our
ansatz underestimates λ1 in the infrared region. As discussed
in [29], in the soft gluon limit

λ1(p
2) = F(0)

Z(p2)

{
1 + 2 M(p2) X1(p

2) − 2 p2 X3(p
2)

}
,

(84)

3 The normalisation essentially removes the F(0) that can appear in
the expression for λ1; see Eq. (80).
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where p is the quark incoming momenta, and in our notation

X1(p
2) → D(p2) Y1(0) and X3(p

2) → D(p2) Y3(0).

(85)

Our solutions has Y1(0) ≈ 0 GeV and Y3(0) ≈ 0 and, there-
fore, it underestimates λ1(p2) in the infrared region. Note
that herein Y1 and Y3 are assumed to be a function only of
the gluon momentum and, due to the integration over the
gluon momenta q in the Dyson–Schwinger equations, these
form factor are multiplied by q3 that, possibly, prevent the
inversion to resolve correctly Y1(q2) and Y3(q2) in the deep
infrared region. If in the calculation of the soft gluon limit one
assumes that Y1(0) deviates from zero by a small quantity,
the agreement with the lattice data is considerably improved
both in the infrared and in the ultraviolet. This is represented
by the two full curves in colour of Fig. 43 where Y1(0) is set
to a small value. The colour curves suggest a Y1(0) ∼ 0.05–
0.07 GeV. Further, the agreement in the ultraviolet region
can also be improved if Y3(0) assumes small and positive
values; recall that Y3(q2) approaches zero from the above
when q2 → 0 as can be seen on Fig. 35.

8 Summary and conclusions

In this work we investigated the non-perturbative regime of
the Landau gauge quark-gluon vertex (QGV), taking into
account only its longitudinal components, and relying on
lattice results for the quark, gluon and ghost propagators,
together with continuum exact relations, namely a Slavnov–
Taylor identity and the quark propagator Dyson–Schwinger
equation. Furthermore, we incorporate the exact normali-
sation condition for the quark-ghost kernel form factor X0

derived in [17]. In addition, we take into account an empiri-
cal relation that links the gluon propagator and the soft gluon
limit of the form factor λ1 checked against full QCD lattice
simulations [29]. The full set of the quark-ghost kernel ten-
sor structures are taken into account to build an ansatz for
the longitudinal quark-gluon vertex that is a function of both
the incoming quark p and gluon q momenta, and the angle
between p and q.

The quark-ghost kernel requires four scalar form factors
X0, X1, X2, X3 [38]. For the construction of the quark-ghost
kernel a perfect symmetry between incoming and outgoing
quark momentum is assumed, which simplified the descrip-
tion of the QGV in terms of X0, X1 = X2 and X3. Charge
conjugation demands that for the soft gluon limit, defined by
q = 0, λ4 = 0 and our construction implements such con-
straint. Noteworthy to mention that our ansatz goes beyond
the Ball-Chiu type of vertex [6] and includes it as a particular
case, when X1 = X3 = 0 and X0 = 1.

The Dyson–Schwinger equations are solved for the quark-
gluon vertex that are written in terms of the unknown func-
tions X0, X1 and X3. From the point of view of the quark-
ghost kernel form factors, these are linear integral equations.
The corresponding mathematical problem is ill defined and
needs to be regularised in order to obtain a meaningful solu-
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tion. The original integral equations for the scalar and vector
components of the quark gap equation are transformed into
a set of linear system using Gauss–Legendre quadratures to
perform the integrations and after doing the angular integra-
tion. In our approach we rely on the Tikhonov linear regular-
isation that is equivalent to minimize ||B−N X ||2+ε||X ||2.
The solutions are found numerically after writing the regu-
larised linear system in its normal form. The small parame-
ter ε is set by looking at the balance between the associated
error on the Dyson–Schwinger equations, i.e. the difference
between the l.h.s and the r.h.s. ||B−N X ||2, and the norm of
the corresponding quark-ghost form factors, i.e. ||X ||2, for
each solution of the regularised linear system.

The resulting quark-gluon vertex form factors λ1–λ4 show
a strong enhancement in the infrared region and deviate sig-
nificantly from their tree level results for quark and gluon
momenta below ∼ 2 GeV. At high momentum the form fac-
tors approach their perturbative values. In what concerns the
gluon momentum, the observed infrared enhancement for
the QGV form factors can be traced back to the multiplica-
tive contribution of the ghost dressing function introduced
through the Slavnov–Taylor identity. Recall that the gluon
dressing function peaks at q = 0 and, therefore, favours that
the incoming and outgoing quark momentum to be parallel.
On the other hand, the infrared enhancement associated to
the quark momentum is linked to the gluon dependence that
was observed on the analysis of the soft gluon limit of the
QGV and, clearly, favours small quark momentum p ∼ 0
and also p parallel to q; see Eqs. (60), (61) and (80)–(83)
and, in particular, the argument appearing on the gluon prop-
agator term. The maxima of the computed form factors are
essentially at the maxima of X0, X1 and X3 and they appear
for momenta p, q ∼ ΛQCD , which again seems to set the
appropriate non-perturbative momentum scale. Recall that
the momentum scale comes from the use of lattice data for
the propagators. Further, we find that the quark-gluon ver-
tex is dominated by the form factors associated to the tree
level vertex γμ and to 2 pμ + qμ, with the higher rank tensor
structures giving small contributions. Overall, our findings
are in qualitative agreement with previous works both with
phenomenological approaches, as in the case of the effective
vertex introduced in [32], and those based on first principles
ab initio continuum methods, see e.g. [23] and references
therein.

The high momentum behaviour of the quark-gluon vertex
form factors reproduces their perturbative values. However,
the matching between the computed form factors and their
perturbative tail is not yet implemented. In addition, we ver-
ified that for the soft gluon limit, λ1 is not able to reproduce
quantitatively the lattice data from full QCD simulations,
apart the qualitative momentum behaviour. This can be traced
back to the poor resolution of the kernel in the deep infrared
region, due to the q3 factor coming from the momentum inte-

gration. As we have verified, a small tuning of X1 and X3

at q = 0 is enough to reproduce the soft gluon limit lat-
tice data within the present framework. This two challenging
problems, together with inclusion of the transverse part of
the vertex, call for an improvement of the approach devised
herein and are to be tackled in a future work. Despite of that,
we expect that the present results can help understanding
the non-perturbative dynamics of quarks and gluons in the
infrared region and that can motivate further applications to
the study of hadron phenomenology based on quantum field
theoretical approaches as those using Bethe–Salpeter and/or
Faddeev equations – see e.g. [51] and references therein.
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Appendix A: 4D spherical coordinates and integration
over momentum

In 4D the spherical coordinates are related to the cartesian
coordinates as follows

x1 = r cos φ1

x2 = r sin φ1 cos φ2

x3 = r sin φ1 sin φ2 cos φ3

x4 = r sin φ1 sin φ2 sin φ3 (A.1)

where

r ∈ [0, +∞[ , φ1, φ2 ∈ [0, π ] and φ3 ∈ [0, 2π [ .

(A.2)

The 4D volume element reads

dV = r3dr

(
sin2 φ1 dφ1

)(
sin φ2 dφ2

)(
dφ3

)
. (A.3)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


116 Page 32 of 33 Eur. Phys. J. C (2019) 79 :116

0 0.5 1 1.5 2 2.5 3
p  [GeV]

0

1

2

3

4

5

6

7

8

9

10

11

D
(p

²) 
 [G

eV
-2

]
JHEP fit
New fit

Renormalized Fits @ μ = 4.3 GeV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
p  [GeV]

1

1.5

2

2.5

3

F(
p²

)

JHEP fit
New fit

Renormalized Fits @ μ = 4.3 GeV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
p  [GeV]

0.5

0.6

0.7

0.8

0.9

1

1.1

Z(
p²

)

JHEP fit
New fit

Renormalized Data @ μ = 4.3 GeV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
p  [GeV]

0

0.05

0.1

0.15

0.2

0.25

0.3

M
(p

²) 
 [G

eV
]

JHEP fit
New fit

Fig. 44 Fits to the renormalized propagators at μ = 4.3 GeV: (top-
left) pure Yang–Mills gluon propagator; (top-right) pure-Yang–Mills
ghost dressing function; (bottom-left) quark wave function; (bottom-
right) running quark mass

Setting the outgoing quark momenta p = (p, 0, 0, 0) it
follows that

p · q = p q cos φ1 (A.4)

and the angular integration in the Dyson–Schwinger equa-
tions can be written as
∫ π

0
sin2 φ1 dφ1

∫ π

0
sin φ2 dφ2

∫ 2π

0
dφ3

= 4π

∫ 1

−1
sin φ1 d

(
cos φ1

)
= 4π

∫ 1

−1

√
1 − x2 dx

(A.5)

where, in the last identity, we set x = cos φ1. It follows that
momentum integration in the Dyson–Schwinger equations
reads
∫

d4q

(2 π)4 = 4 π

(2 π)4

∫ Λ

0
dq q3

∫ 1

−1
sin φ1 d

(
cos φ1

)

= 1

4 π3

∫ Λ

0
dq q3

∫ 1

−1

√
1 − x2 dx . . . (A.6)

where Λ stands for the cutoff introduced to regulate the the-
ory.

Appendix B: comparing propagator fits with previous
works

For completeness and in order to allow for a better com-
parison between the of the current work with those reported
in [28], we provide the fits used in both works with the gluon
propagator, the ghost propagator and the quark wave func-
tion curves renormalised at μ = 4.3 GeV within the MOM
scheme. On Fig. 44 the curves referred to as JHEP are those
of [28], while those designated as NEW are the curves men-
tioned in Sects. 5.1 and 5.2. As the figure shows, there are
differences between the two sets of curves, not only at the
infrared region but also on the running at high momentum.
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